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Introduction 
Usually, 3-dimensional projective geometry PGz is considered as a two-

sorted theory of incidence relation between two types of objects: points 
and planes (cf. [3]). Consequently, lines of PG3 are objects defined within 
the framework of this theory, and theory of lines (usually called the line 
geometry) constitutes as (proper) part of PG3 (cf. [6]). The set of lines 
has a well-known interpretation in 5-dimensional geometry (so-called the 
geometry on Plucker' quadric). It would be interesting to define the line 
geometry as an axiomatic theory of certain relations between lines. 

This paper constitutes a continuation of [4], where we proposed an axiom 
system for line geometry. The theory presented in [4] can be considered as a 
formalization of (3-dimensional, not necessarily Pappian) projective geome-
try in one-sorted language with one primitive notion. The variables of this 
language stand for lines and denoted by capital Latin letters. The predicate 
is denoted by the symbol "-". The atomic formula A - B is expressed as " A 
intersects B". 

In this paper, similarly as in [4], we shall use the following abbreviations: 
we shall write {A\A2 .. .An) instead of / \"= 1 A"=i(* 3 —> Ai ^ Aj), 
~(A1A2 ...An) instead of A L i A"=i(?' i 3 = > Ai ~ Aj), 
B - (AxA2...An) instead of f\n

i=l{B - Ai), 
( 5 I 5 2 . . . B m ) ~ (AxA2 ...An) instead of A . l i A"=x (Bt - Aj), 
A + B instead of ->(A — B) ( A does not intersect B), 
^(AiAi ...An) instead of A L i A"=i(* ^ 3 => Ai - Aj), 
where Af=i denotes the conjuction G\ A 02 A . . . A a n . 

Let us recall the axioms of the theory presented in [4], describing struc-
tures (L, —). For every axiom we give its (intended) meaning, expressed in 
terms of traditional projective geometry. 
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Al. 3AB(A B A A — B) (nonempty set L and nonempty relation "-"). 
A2. A — B => B — A (symmetry of intersecting). 
A3. A — A (reflexivity of intersecting). 
A4. A - B => 3CD(-(ABC) A (ABD) A (C -r D)) (existence of "trian-

gle" and "tripod", every two intersecting lines induce at least two objects: 
"point" and "plane", the dimension of a induced projective space is greater 
than 2). 

A5. - ( A B C D ) A - ( A B C E ) A 3 F ( - ( A B F ) A F + C)) => D - E A A = B 
(transitivity of "triangle" and "tripod" dependence, i.e. Pash axiom in terms 
of line geometry). 

A6. -(ABC) A D-E=> 3 F(F - (ABODE)) (every two "points" can 
be connected with a line, and every two "planes" have a common line). 

A7. -(ABCD) 3E(—(ABCDE) A VFG(F T4VFt5VGTCV 
G+DVE- (FG) V A = B V C = D)) (every two pencils in a "star" or in a 
"ruled plane" have a common line - the dimension of a induced projective 
space is less than 4). If the predicate P is such that 

P(ABC) O (A ¿ B A -(ABC) A VD(-(ABD) D - C)), 

then the axiom A7 can be expressed in a shorter form: 
AT. -(ABCD) => 3E(P(ABE) A P(CDE)) V A = B V C = D). 
A8. -(ABC) A -(ABD) A D + C A E - (AB) E - C V E- DV A = 

B (every two intersecting lines induce at most two objects: "point" and 
"plane"). 

A9. 3D(A + DAB + DAC + D) (there are at least three "points" on 
a line, a line belongs at most to three "planes", existence of a "quadrangle" 
on a "plane"). 

The subject of our considerations is theory Cn({ Al, Al,..., A9}) the set 
of consequences of the axioms Al, A2, . . . , A9. In this theory we introduced 
the T (T - triangle/tripod) relation defined in the following way: 

T(ABC) O (ABC A -(ABC) A 3D(-(ABD) A C + £>)). 

The above relation was used to introduce the sets [ABC] = {X G L : 
—(ABCX) A T ( A B C ) } so-called varieties. In the set V of all varieties 
a,b,c... we were defined the relation =v in the following manner: a =y 
6 o | a f l 6 | = l V a = i> for all a, b £ V. This relation, as an equivalence 
relation, define the division set V/=v containing two elements Fj, V3. The 
elements of V\ we called points (denoted by small Latin letters) and the 
elements of V3 we called planes (denoted by small Greek letters). For a 6 V\ 
and a £ V3 we set a |a iff a fl a ^ 0 and then (Vj, V3, |) is a 3-dimensional 
projective space, where lines can be identified with the elements of L. Thus, 
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as it was already said, Desarguesian projective geometry can be represented 
in the geometry of lines defined in [4]. 

1. Pappus—Gallucci' axiom 
The interesting question is: "What axiom must we add to obtain such 

theory in which Pappian projective geometry can be represented?" and: 
"Is it simply expressed in the terms of "lines" and "intersects relation"?". 
Notice, that the well known forms of Pappus' theorem are not simple. In 
classical geometry we have Gallucci' theorem concerning eighth lines: If all 
three skew lines intersect other three skew lines, then any transversal of 
the first set intersects any transversal line of the second set (cf. [2]). One 
may show that Gallucci' property is equivalent to Pappus' theorem. We will 
prove it (the proof of this fact can be found in [1], but here we give another 
proof where we use Veblen-Young's quadranglian 6-tuple of the points). 
First, we notice that Pappus' theorem is equivalent to the commutativity 
of Veblen-Young's quadranglian 6-tuple of the points (cf. [3]). Precisely, 
Pappus' theorem holds if and only if 

<Zi Û4 a i a4 
ai a^ A <i2 ^ A a 5 «5 

03 a6 a6 0.3 
where matrices denote Veblen-Young's quadranglian 6-tuples. 

Now, as an additional axiom of the theory of lines, let us take the fol-
lowing phrase (Gallucci' property): 

A10. +(ABC)A+(EFG)A(ABC)-(EFG)AD-(EFG)AH-(ABC) => 
D-H. 

For convenience, especially in this part of article, we will use the incidence 
symbol in the following sense: 

a\A (or A\a iff A £ a, for any point a and line A, 

and similarly 

A\a (or a\A) iff A 6 a , for any plane a and line A. 

We shall write 

ai,a2,.. .,an\A instead of AT=i ai\A, for points ai,a2, • • and line A. 
Similar abbreviations will be used for remaining combinations of points, 
lines and planes. And other agreement yet: the unique line C belonging to 
set a fl b will be denoted by ab, and the unique line C belonging to set an/3 
will be denoted by a(5. 

Now we are going to prove the Gallucci' property implies Pappus' theo-
rem. 
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:H 

D. 

Fig. 1 

Consider any Veblen-Young six-tuple of t h e p o i n t s s,r,t,p,u,q 

and line X such that s,r, t,p, u,q\X and s ^ p and r u. This six-tuple is 
defined on a plane, which we denote by 7r, by certain quadrangle (in Fig. 1. 
we have a quadrangle Imkn), such that the vertices of this quadrangle are 
not incident with X . Naturally X|7r. In 3-dimensional projective geometry 
an existence of such objects is obvious. Let us denote E = Ik and A — mn. 
Obviously A—E and A^ E and A, E\ir. Let k\ be any point no incident with 
7r. Then k\ ^ s and k\ ^ r and k\ ^ q we denote by 7Ti a plane determined by 
the line X and point ki. Let us consider three lines ski,rk\,qk\. Naturally 
sk\,rk\,qk\\-K\. Set F — rk\. Let n\ be a point incident with the line qki 
such that n\ ^ q and n\ k\. Thus ni is not incident with 7r and hence 
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Hi ± u. Let us denote by D the line unx. We have F-D,F-A, and F ^ D 
because r / u . Notice that D ± qk\. Indeed, if B - qkx were fulfilled, then 
we would have q = u, hence we would have D\ni,ki and s = u. We should 
obtain the equality q = s = u, which is impossible, because then the points 
/, m, k, n do not form a quadrangle. From F ^ D it follows that n\ is not 
incident with F and, next, the existence of a point Zi(/i ^ k) such that Ij |pn\ 
and /i|rA:i. Notice that the points k\,n\,li form a triangle. Let us denote 
by B,G,C the lines nim,lki,kli respectively. We have B - G,C — G and 

C , 7 T ! (see Fig. 1.). Next notice that A-^B. Indeed, for if A - B, 
then we should have l\A. It is with conflict with a fact that the points 
l,m,k,n form the quadrangle. In the same manner we prove that A -f C. 
Further on we shall prove that B + C. Indeed, for if B — C, then would must 
be C\a(ns,sk\), hence we should have Zi = k\. It is impossible, because 
the points form a triangle. Finally, we have -^(ABC). Below we 
shall prove that +(EFG). First notice that E -r F, because the condition 
E — F, together E\ir and F|7ri, implies r = u. This is contradictory with 
our assumption about points r, u. The facts E -f G, G F we can prove 
in the same manner as it was done lines A,B,C. It is easy to see that 
(ABC) - (EFG) AD- (EFG). Now let us consider two planes: f3(n, B) and 
7 ( n , C ) . We have ¡3 ^ 7 , because B -r C. Therefore it exists one and only 
one line incident with ¡3,7. Put H = ¡3^. Thus H — (ABC) holds. Last of 
all the predecessor of implication in axiom A10 is satisfied. Hence we obtain 
D — H. Let us denote by m\ the point determined by lines D, H and by 8 -
the plane determined by these lines. From n, k\6 we have /|<5 and ijmi/i. Let 
us consider the quadrangle ( l imiki t i i ) . From the above considerations it 
follows that this quadrangle induces five points r, t,p, u, q from the six-tuple 

5' r 

I 
. The sixth point is uniquely determined. So s' = s. Thus m\\sk\. 

From the described above configuration (Fig. 1.) we obtain the quadrangle 
s p 

(milin\k\) and, realized by it, Veblen-Young's six-tuple Thus the 

implication 
s P' s p~ 
r u r u 
t q. t 

is true. And this implication, together with 

s ^ p and r ^ u (our assumption), denotes that Pappus' axiom holds (cf 
[3], p. 76). • 

The opposite implication (from Pappus' theorem to Gallucci' proposi-
tion) we may prove in the following way: for given eight lines A, B, C, D, E, 
F, G, h satisfying the left side of Gallucci' implication we can construct the 
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configuration, which ilustrates Fig. 1. The consequence of the property: 

is an incidence of the line D and 
s p s p 

s ^ p A r ^ u A r u r u 
t q_ A K 

the point mi determined by the line H and lines A, B, C, E, F, G. This gives 
D — H. The detailed proof will be omitted on acount of a similarity of the 
reasoning to considerations concerning the first part of proof of the equiv-
alence of Gallucci' theorem and Pappus' proposition. Moreover the remark 
about it we can find in [2] (cf. [2], p. 277). Do 

Therefore the theory Cn({Al, A2,..., ^410}) is Pappian geometry of 
lines. 

Pappus' axiom allows us to introduce the notion of quadric in our theory. 
Let A,B,C be any lines such that -j-(ABC). Let us consider the set of all 
lines intersecting these lines. 

DEFINITION 1. ]ABC[= {X : X - (ABC)}. 

This set will be called a half-quadric generated by lines A, B,C. Notice 
that A <£ }ABC[ and B g]ABC[ and C $ ]ABC[. We shall prove that 

T H E O R E M 1. \]ABC[\ > 3 . 

P r o o f . Basing on the theorems T16, T12, T4a of the work [4] let us 
consider three lines A, B, C such that +(ABC). From T16 there exist three 
points b,b',b" such that B £ b and B £ b' and B £ b". By T12 there exist 
A', C' such that A! £ b and C' £ b and A! - A and C' - C. From T4a there 
exist two lines A",C" such that [AA'A"] and [CC'C"] are planes. Obviously 
the planes [AA'A"] and [CC'C"] have only one common line X. Notice that 

X - A because X £ [AA'A"], 
X - C because X £ [CC'C"], 
X — B because X £ b. 

Repeating the construction above for points b' and b" we obtain two lines 
Y,Z. Notice that ^ (XYZ). Indeed, if ± (XYZ) were not fulfiled then 
X = Y would hold. Consequently, X £ b and X £ on other hand B £ b 
and B £ b'. Since b ± b', so |6n6'| = 1. Thus B = X. But B + A and B-^C. 
We obtain a contradiction, o 

One may show that every two lines belonging to the half-quadric are 
skew, i.e. 

T H E O R E M 2 . X,Y £ ]ABC[=> X + Y. 

P r o o f . Suppose that X — Y. Simultaneously from D1 we have X -
(ABC) and Y - (ABC). Thus we obtain -(XYA) and -(XYB) and 
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-(XYC). By A8 we deduce that C - A or C - B. We obtain a contra-
diction to ±(ABC). o 

DEFINITION 2. A half-quadric ]MNO[ will be called associated with a 
half-quadric ]ABC[ iff M,N,0 6\ABC[. 

From Theorems 2 and 1 it follows that for every half-quadric it exists a 
half-quadric associated with it. 

THEOREM 3. If]ABC[ is associated with ]DEF[, then )DEF[ is associ-
ated with ]ABC[. 

P r o o f . Assume that }ABC[ is associated with ]DEF[. This means that 
A,B,C G }DEF[ and thus we have (ABC) - (DEF). Obviously we have 
(DEF) - (ABC). On the other hand +(ABC) holds. Thus D,E,F G 
]ABC{. o 

Now we are going to prove that the definition of half-quadric does not 
depend on lines which generate it. We shall prove the following, so-called 
exchange theorem. 

THEOREM 4. Let ]ABC[ and ]DEF[ be any two half-quadrics mutually 
associated. If U G ]DEF[ and U ^ A and U ± B, then ]ABC] =]ABU[. 

P r o o f . Let U G ]DEF[. Consider two cases, o 
PI : U — C. We immediately obtain the thesis. 
P2. U ^ C. We prove two inclusions. 
"C". Take W G }ABC[. Then W - (ABC). Simultaneously U - (DEF). 

By A10 we have W - U. Thus W G ]ABU[. • 
"D". Take W G ]ABU[. Then W - (ABU). Thus we have +(ABU) A 

-f (DEF) A (ABU) - (DEF) AC- (DEF) A W - (ABU). 
By A10 we obtain W - C. Thus W - (ABC), i,e, W G ]ABC{. Do 
The axiom A10 implies the pappian line geometry and in consequence 

the geometry over commutative field. Now we are going to show a simple 
axiom, which implies the geometry over quadratically complete field. 

2. A n axiom inducing the geometry of lines over quadratically 
complete field 

Let us take a phrase 
A l l . 3 E ( A B C D ) — E), i.e. for any four lines it exists a line intersecting 

every line of them of four. 
And next consider the following 

DEFINITION 3 . We say that D-]ABC[ (a line D intersects quadratic 
]ABC[) iff it exists a line E G ]ABC[ with D - E. 

We have following 
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L E M M A 1. D-]ABC[ i f f it exists a line E such that E - (ABCD). 

P r o o f . Let D-]ABC[. Then, by Definition 3, it exists E such that 
E e ]ABC[ and D-E. But E e]ABC[ denotes E - (ABC). In consequence 
we obtain E - (ABCD). 

Let three skew lines A, B, C (which define the quadric \ ABC\) and 
any line D be given. Since E - (ABC) then E G ]ABC[. Then we have 
E e ]ABC[ and D-E. We obtain D-]ABC[. o 

Accepting the axiom A l l and using Lemma 1 we can formulate 

T H E O R E M 5 . For any quadric \ABC[ and any line D the condition 
D—\ABC[ is satisfied, i.e. every line intersects every quadric. 

Consider the ruled quadric x\ x\ — x\ — XQ = 0 and the line {xi = 
1,22 = A, £3 = 0,2:4 = 0}. The existence of a common point of the above 
quadric and line is equivalent to the existence of a solution of equation 
1 + A2 = 0 (generally: the existence of a common point of every quadric and 
every lines is equivalent to the existence of a solution of arbitrary quadratic 
equation). This equation has a root in quadratically complete field. Hence 
the theory Cn(Al,A2,. . . ,A10,A11) can be treated as the line geometry over 
quadratically complete field. 

3. Final comments 
A) Both axioms A10 and A l l are very simple. It appears, that in the 

line geometry such complicated properties as Pappus' theorem and property 
of "quadratic completeness of field" are expressed very simply and very 
naturally. One believes that the language accepted in the description of line 
geometry is straightforward as possible. 

B) It is worthwhile to remind, that no finite field is algebraically closed. 
Then, the obtained above axiomatics excludes all finite geometries of lines. 

C) The theory Cn({Al, A2 , . . . , A10}) admits the geometries over finite 
(so-called Galois) fields. Particularly in LG(2), i.e. in line geometry over 
GF(2) (GF(q) — Galois field of q elements) any half-quadric has exactly 
three elements. This is a consequence of the number of points incident with 
any line [5]. In (3-dimensional) projective geometry PG(3,q) over GF(q) 
every line is incident with q + 1 points. Indeed, from theorem 1 and 2 it 
follows that every point incident with a line belonging to a half-quadric S 
lies on one and only one line from the half-quadric £ ' associded with E. 
This reasoning shows that every half-quadric in LG(q) contains at most 
9 + 1 lines. 

D) The interesting role in the study of the structure of line geometry 
may be played by computer programs written in PROLOG language. By 
appropriate simple programs, constructed by means of PROLOG with use of 
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Plucker's coordinates, the structure LG(q) has been analysed. Particularly, 
in this way, it was checked for q = 2 ,3 ,4 (for not large numbers) that every 
quadric in LG(q) contains exactly q + 1 lines. Generally, PROLOG may be 
an interesting computer system in geometrical research, especially in study 
of geometric configurations in axiomatically defined theories, wherever the 
investigation concerns finite structures, or if the obtained, in whis way, result 
may be treated as the search problem concerning any structure (finite or 
infinite). The results obtained by computer programs most often allow us 
to formulate definitions and theorems, sometimes they may be treated as 
proofs. 
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