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Introduction

Usually, 3-dimensional projective geometry PGj is considered as a two-
sorted theory of incidence relation between two types of objects: points
and planes (cf. {3]). Consequently, lines of PG5 are objects defined within
the framework of this theory, and theory of lines (usually called the line
geometry) constitutes as (proper) part of PG5 (cf. [6]). The set of lines
has a well-known interpretation in 5-dimensional geometry (so-called the
geometry on Plucker’ quadric). It would be interesting to define the line
geometry as an axiomatic theory of certain relations between lines.

This paper constitutes a continuation of [4], where we proposed an axiom
system for line geometry. The theory presented in [4] can be considered as a
formalization of (3-dimensional, not necessarily Pappian) projective geome-
try in one-sorted language with one primitive notion. The variables of this
language stand for lines and denoted by capital Latin letters. The predicate
is denoted by the symbol “-”. The atomic formula A — B is expressed as “A
intersects B”.

In this paper, similarly as in [4], we shall use the following abbreviations:
we shall write # (414 ...A,) instead of A\I_, /\;;l(i #J=>Ai # Aj),
—(A142 ... Ay) instead of A\j_; NG (i # 5 => Ai — Aj),

B — (A1A; ... A,) instead of AI_,(B — 4;),

(B1B2...Bm) — (A14; ... Ay) instead of A7y AJ;(Bi — 4;),
A = B instead of (A — B) (A does not intersect B),

+(A14; ... Ay) instead of AL; Ajo (1 # 5 => Ai — 4y),
where /\?__:1 o; denotes the conjuction oy Aoy A ... Aoy,

Let us recall the axioms of the theory presented in [4], describing struc-
tures (L, —). For every axiom we give its (intended) meaning, expressed in
terms of traditional projective geometry.
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Al. 3AB(A # B A A - B) (nonempty set L and nonempty relation “-”).

A2. A - B = B — A (symmetry of intersecting).

A3. A — A (reflexivity of intersecting).

A4. A~ B = 3CD(—(ABC)A (ABD) A (C + D)) (existence of “trian-
gle” and “tripod”, every two intersecting lines induce at least two objects:
“point” and “plane”, the dimension of a induced projective space is greater
than 2).

A5. —(ABCD)AN—(ABCEYAIF(—(ABF)ANF+C))= D—EANA=B
(transitivity of “triangle” and “tripod” dependence, i.e. Pash axiom in terms
of line geometry).

A6. —(ABC)AD — E = 3F(F — (ABCDE)) (every two “points” can
be connected with a line, and every two “planes” have a common line).

A7. —(ABCD) = IE(—(ABCDE)AVFG(F -+ AVF +BVG+CV
G+DVE-(FG)VA=BVC = D)) (every two pencils in a “star” orin a
“ruled plane” have a common line — the dimension of a induced projective
space is less than 4). If the predicate P is such that

P(ABC) & (A# BA—(ABC)AYD(—(ABD) = D - ()),

then the axiom A7 can be expressed in a shorter form:

A7'. —(ABCD) = 3E(P(ABE)AP(CDE))VA=BvC = D).

A8. —(ABC)AN—(ABD)AD+CANE—-(AB)= E-CVE-DVA=
B (every two intersecting lines induce at most two objects: “point” and
“plane”).

A9. 3D(A+ D A B+ D A C + D) (there are at least three “points” on
a line, a line belongs at most to three “planes”, existence of a “quadrangle”
on a “plane”).

The subject of our considerations is theory Cn({Al, A1, ..., A9}) the set
of consequences of the axioms A1, A2, ..., A9. In this theory we introduced
the T (T - triangle/tripod) relation defined in the following way:

T(ABC) & (# (ABC A —(ABC) A 3D(~(ABD) A C + D)).

The above relation was used to introduce the sets [ABC] = {X € L :
~(ABCX) A T(ABC)} so-called wvarieties. In the set V of all varieties
a,b,c... we were defined the relation =y in the following manner: ¢ =y
b< lanbd| =1Va =>bforall a,b € V. This relation, as an equivalence
relation, define the division set V/=, containing two elements Vj, V3. The
elements of V; we called points (denoted by small Latin letters) and the
elements of V3 we called planes (denoted by small Greek letters). For a € V;
and a € V3 we set ala iff a N @ # 0 and then (V4,V3,[) is a 3-dimensional
projective space, where lines can be identified with the elements of L. Thus,
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as it was already said, Desarguesian projective geometry can be represented
in the geometry of lines defined in [4].

1. Pappus—Gallucci’ axiom

The interesting question is: “What axiom must we add to obtain such
theory in which Pappian projective geometry can be represented?” and:
“Is it simply expressed in the terms of “lines” and “intersects relation”?”.
Notice, that the well known forms of Pappus’ theorem are not simple. In
classical geometry we have Gallucci’ theorem concerning eighth lines: If all
three skew lines intersect other three skew lines, then any transversal of
the first set intersects any transversal line of the second set (cf. [2]). One
may show that Gallucci’ property is equivalent to Pappus’ theorem. We will
prove it (the proof of this fact can be found in [1], but here we give another
proof where we use Veblen—Young’s quadranglian 6-tuple of the points).
First, we notice that Pappus’ theorem is equivalent to the commutativity
of Veblen—Young’s quadranglian 6-tuple of the points (cf. [3]). Precisely,
Pappus’ theorem holds if and only if

ay a4 ay a4
a1 ?/5 as N\ as ;é asANlay as| = |ay a5,
as dadg adg das

where matrices denote Veblen—Young’s quadranglian 6-tuples.

Now, as an additional axiom of the theory of lines, let us take the fol-
lowing phrase (Gallucci’ property):

A10. +(ABCYN+(EFG)AN(ABC)—(EFG)AD—(EFG)ANH —(ABC) >
D-H.

For convenience, especially in this part of article, we will use the incidence
symbol “|” in the following sense:

a|A (or Ala iff A € a, for any point a and line A,
and similarly
Ala (or a]A) iff A € o, for any plane a and line A.
We shall write
a1,4az,...,a,]A instead of A, a;|A, for points ay,as,...,a, and line A.

Similar abbreviations will be used for remaining combinations of points,
lines and planes. And other agreement yet: the unique line C belonging to
set a N b will be denoted by ab, and the unique line C belonging to set anN g
will be denoted by af.

Now we are going to prove the Gallucci’ property implies Pappus’ theo-
rem.
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Consider any Veblen—Young six-tuple | r u | of the points s,7,t,p,u,q
t q

and line X such that s,7,t,p,u,q|X and s # p and r # u. This six-tuple is
defined on a plane, which we denote by 7, by certain quadrangle (in Fig. 1.
we have a quadrangle Imkn), such that the vertices of this quadrangle are
not incident with X. Naturally X|x. In 3-dimensional projective geometry
an existence of such objects is obvious. Let us denote F = lk and A = mn.
Obviously A—F and A # E and A, E|r. Let ky be any point no incident with
7. Then k1 # s and ky # r and k; # ¢ we denote by m; a plane determined by
the line X and point k;. Let us consider three lines sky, rky, gk,. Naturally
ski,7ky,qk1|m1. Set F' = rky. Let ny be a point incident with the line gk,
such that n; # ¢ and n; # k;. Thus ny is not incident with m and hence
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ny # u. Let us denote by D the line uny. We have F—D,F - A,and F # D
because r # u. Notice that D # gk;. Indeed, if D = gk; were fulfilled, then
we would have ¢ = u, hence we would have D|n;,k; and s = u. We should
obtain the equality ¢ = s = u, which is impossible, because then the points
I,m,k,n do not form a quadrangle. From F # D it follows that n; is not
incident with F and, next, the existence of a point l1(I; # k) such that l;|pn,
and l;]rk;. Notice that the points kq,71,l; form a triangle. Let us denote
by B,G,C the lines nym,lky, kl; respectively. We have B — G,C — G and
B,C,G~|r, 7 (see Fig. 1.). Next notice that A + B. Indeed, for if A — B,
then we should have [|A. It is with conflict with a fact that the points
l,m,k,n form the quadrangle. In the same manner we prove that A + C.
Further on we shall prove that B <+ C. Indeed, for if B — C, then would must
be Cla(ns, sky), hence we should have {; = k;. It is impossible, because
the points kqi,ny,/; form a triangle. Finally, we have +(ABC). Below we
shall prove that +~(EFG). First notice that £ + F, because the condition
E — F, together E|r and F|ry, implies » = u. This is contradictory with
our assumption about points r,u. The facts F + G,G = F we can prove
in the same manner as it was done lines A, B,C. It is easy to see that
(ABC)—(EFG)AD - (EFG). Now let us consider two planes: §(n, B) and
¥(n,C). We have  # v, because B + C. Therefore it exists one and only
one line incident with g8,v. Put H = fv. Thus H — (ABC) holds. Last of
all the predecessor of implication in axiom A10 is satisfied. Hence we obtain
D — H. Let us denote by m; the point determined by lines D, H and by § —
the plane determined by these lines. From n, k|6 we have t|é and ¢|mql;. Let
us consider the quadrangle (lymik1n;). From the above considerations it
follows that this quadrangle induces five points r,t, p, u, ¢ from the six-tuple

p s

u r |. The sixth point is uniquely determined. So s’ = s. Thus m;|sk;.

qg |
From the described above configuration (Fig. 1.) we obtain the quadrangle

s p
(mqlinyky) and, realized by it, Veblen—Young’s six-tuple [ 7 u |.Thus the
qg 1

t qg 1
s # p and r # u (our assumption), denotes that Pappus’ axiom holds (cf
(3], p- 76). O
The opposite implication (from Pappus’ theorem to Gallucci’ proposi-
tion) we may prove in the following way: for given eight lines A, B,C, D, E,
F, G, h satisfying the left side of Gallucci’ implication we can construct the

s p s P
implication [r ul = [r u] is true. And this implication, together with
q
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configuration, which ilustrates Fig. 1. The consequence of the property:

s p s p
sEpAr#FuA|r u| = |r u| is an incidence of the line D and
t gq qg t

the point m; determined by the line H and lines A, B,C, E, F, G. This gives
D — H. The detailed proof will be omitted on acount of a similarity of the
reasoning to considerations concerning the first part of proof of the equiv-
alence of Gallucci’ theorem and Pappus’ proposition. Moreover the remark
about it we can find in [2] (cf. [2], p. 277). Oo

Therefore the theory Cn({Al,A2,...,A10}) is Pappian geometry of
lines.

Pappus’ axiom allows us to introduce the notion of quadric in our theory.
Let A, B,C be any lines such that +(ABC). Let us consider the set of all
lines intersecting these lines.

DEerINITION 1. |JABC[= {X : X — (ABC)}.

This set will be called a half-quadric generated by lines A, B, C. Notice
that A € JABC[ and B ¢]ABC| and C ¢ JABC|[. We shall prove that

THEOREM 1. ||ABC][| > 3.

Proof. Basing on the theorems T16, T12, T4a of the work [4] let us
consider three lines A, B, C such that +(ABC). From T16 there exist three
points b,b’,b" such that B € b and B € b’ and B € b"”. By T12 there exist
A’,C" such that A’ € band C' € band A" — A and C’' — C. From T4a there
exist two lines A", C" such that [AA'A"] and [CC'C"] are planes. Obviously
the planes [AA’A"] and [CC'C"] have only one common line X . Notice that

X — A because X € [AA'A"],
X — C because X € [CC'C"],
X — B because X € b.

Repeating the construction above for points &’ and b"” we obtain two lines
Y, Z. Notice that # (XY Z). Indeed, if # (XY Z) were not fulfiled then
X =Y would hold. Consequently, X € b and X € b, on other hand B € b
and B € . Since b # b/, s0 [bNb'| = 1. Thus B=X.But B+ Aand B+C.

We obtain a contradiction. ¢

One may show that every two lines belonging to the half-quadric are
skew, i.e.
THEOREM 2. X,Y € JABC[=> X +Y.

Proof. Suppose that X — Y. Simultaneously from D1 we have X —
(ABC) and Y — (ABC). Thus we obtain —(XY A) and —(XYB) and
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~(XYC). By A8 we deduce that C — A or C — B. We obtain a contra-
diction to ~(ABC). o

DEFINITION 2. A half-quadric |M NO[ will be called associated with a
half-quadric JABC[ iff M, N, O € JABC]|.

From Theorems 2 and 1 it follows that for every half-quadric it exists a
half-quadric associated with it.

THEOREM 3. If |ABC]| is associated with |DEF|, then |DEF| is associ-
ated with |ABC]|.

Proof. Assume that JABC]| is associated with | DEF[. This means that
A,B,C € |DEF[ and thus we have (ABC) — (DEF). Obviously we have
(DEF) — (ABC). On the other hand +(ABC) holds. Thus D,E,F ¢
JABC|. o

Now we are going to prove that the definition of half-quadric does not
depend on lines which generate it. We shall prove the following, so-called
exchange theorem.

THEOREM 4. Let |ABC[ and |[DEF|[ be any two half-quadrics mutually
assoctated. If U € |DEF[ and U # A and U # B, then |ABC] =]ABU]|.

Proof. Let U € |DEF]. Consider two cases. ©

P1: U = C. We immediately obtain the thesis.

P2. U # C. We prove two inclusions.

“C”. Take W € JABC|[. Then W — (ABC). Simultaneously U — (DEF).
By A10 we have W — U. Thus W € |JABU|. O

“>7”. Take W € JABU|. Then W — (ABU). Thus we have +(ABU) A
~(DEFYA (ABU)~ (DEF)ANC — (DEF)AW — (ABU).

By A10 we obtain W — C. Thus W — (ABC), i,e, W € JABC[. Oo¢

The axiom A10 implies the pappian line geometry and in consequence
the geometry over commutative field. Now we are going to show a simple
axiom, which implies the geometry over quadratically complete field.

2. An axiom inducing the geometry of lines over quadratically
complete field

Let us take a phrase

All1. 3E(ABCD) ~ E), i.e. for any four lines it exists a line intersecting
every line of them of four.

And next consider the following

DEFINITION 3. We say that D—]ABC| (a line D intersects quadratic
|ABCY) iff it exists a line E € JABC|[ with D — E.

We have following
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LemMA 1. D-]ABC] iff it exists a line E such that E ~ (ABCD).

Proof. “=”: Let D—]ABC]|. Then, by Definition 3, it exists E such that
E € ]JABC[ and D~ E. But E €)ABC| denotes E — (ABC). In consequence
we obtain £ — (ABCD).

“«<”: Let three skew lines A, B, C (which define the quadric |ABCY) and
any line D be given. Since E — (ABC) then E € JABC[. Then we have
E € )ABC| and D — E. We obtain D~]ABC|. o

Accepting the axiom All and using Lemma 1 we can formulate

THEOREM 5. For any quadric |ABC| and any line D the condition
D—])ABC] is satisfied, i.e. every line intersects every quadric.

Consider the ruled quadric z? + z2 — 2% — z2 = 0 and the line {z; =
1,29 = A,z3 = 0,24 = 0}. The existence of a common point of the above
quadric and line is equivalent to the existence of a solution of equation
1+ A% = 0 (generally: the existence of a common point of every quadric and
every lines is equivalent to the existence of a solution of arbitrary quadratic
equation). This equation has a root in quadratically complete field. Hence
the theory Cn(A1,A2,...,A10,A11) can be treated as the line geometry over
quadratically complete field.

3. Final comments

A) Both axioms A10 and A1l are very simple. It appears, that in the
line geometry such complicated properties as Pappus’ theorem and property
of “quadratic completeness of field” are expressed very simply and very
naturally. One believes that the language accepted in the description of line
geometry is straightforward as possible.

B) It is worthwhile to remind, that no finite field is algebraically closed.
Then, the obtained above axiomatics excludes all finite geometries of lines.

C) The theory Cn({Al,A2,...,A10}) admits the geometries over finite
(so-called Galois) fields. Particularly in LG(2), i.e. in line geometry over
GF(2) (GF(q) — Galois field of ¢ elements) any half-quadric has exactly
three elements. This is a consequence of the number of points incident with
any line [5]. In (3-dimensional) projective geometry PG(3,q) over GF(q)
every line is incident with ¢ + 1 points. Indeed, from theorem 1 and 2 it
follows that every point incident with a line belonging to a half-quadric ¥
lies on one and only one line from the half-quadric X' associded with X.
This reasoning shows that every half-quadric in LG(q) contains at most
g+ 1 lines.

D) The interesting role in the study of the structure of line geometry
may be played by computer programs written in PROLOG language. By
appropriate simple programs, constructed by means of PROLOG with use of
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Plucker’s coordinates, the structure LG(q) has been analysed. Particularly,
in this way, it was checked for ¢ = 2, 3,4 (for not large numbers) that every
quadric in LG(q) contains exactly ¢ + 1 lines. Generally, PROLOG may be
an interesting computer system in geometrical research, especially in study
of geometric configurations in axiomatically defined theories, wherever the
investigation concerns finite structures, or if the obtained, in whis way, result
may be treated as the search problem concerning any structure (finite or
infinite). The results obtained by computer programs most often allow us
to formulate definitions and theorems, sometimes they may be treated as
proofs.
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