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LOCAL CHARACTERIZATION OF FUNCTIONS 
WITH CLOSED GRAPHS 

Let X and Y be topological spaces. A function / : X —»• Y has a closed 
graph if the set G ( f ) = { ( x , f ( x ) : x 6 X } is a closed subset of X x Y . 

Functions with closed graphs play an important rule in functional analysis 
and they have been studied extensively. The purpose of the present paper 
is to introduce a suitable pointwise definition of that notion and to give a 
characterization of the set of all closedness graph points. 

For a subset A of a topological space we denote by CI A and Int A the 
closure and the interior of A, respectively. The letters N, Q and R stand 
for the set of positive integers, rational and real numbers, respectively. For 
x £ X denote by Ux the family of all neighbourhoods of x. 

In [6] it is shown (for compact HausdorfF X and Hausdorff Y also in [13]) 
that a function / : X Y has a closed graph if and only if C(f, x) — {/(x)}, 
where C(f, x) is the cluster set of / at x defined by C(f, x) — Hi/gw CI / (? / ) 
(= {y g Y : there.exists a net xa in X with l imx a = x and l i m / ( z a ) = 
y}). Hence the following definition seems to be reasonable. 

D E F I N I T I O N 1. We say that a function / : X —• Y has a closed graph 
a t x e X i f C ( f , x ) = { / ( x ) } . 

Hence / has a closed graph if and only if it has a closed graph at each 
point. Denote by H(/) the set of all closedness graph points of / : X —> Y. 
Further denote by C ( f ) and D(f) the set of all continuity and discontinu-
ity points of / , respectively. Obviously, for a Hausdorff Y (but not for an 
arbitrary Y) we have C ( f ) C H ( f ) (e.g. [7]). 
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A function / : X —• Y is c-continuous at x G X if for each open neigh-
bourhood V of f(x) such that Y \ V is compact there is an open neighbour-
hood U of x such that f(U) C V. A function is c-continuous if it is such 
at every point [5]. Denote by T ( f ) the set of all c-continuity points of /. 
Evidently C ( f ) C T (/ ) . 

It is known that a function f : X Y with a closed graph is c-continuous 
[10]. If Y is locally a compact Hausdorff space, then these properties are 
equivalent [10]. The assumptions on Y cannot be omitted [12]. We shall 
show that these assertions are true also pointwisely. 

PROPOSITION 1. We have H ( f ) c T ( f ) . 

P r o o f . Fix x G H ( f ) and let V be an open neighbourhood of f(x) such 
that K - Y \ V is compact. Then C(f, x) C V and hence C(f, x) n K = 0. 
Since K is compact and (Glf(U) fl K)ueux is a family of closed subsets of 
K with (\ueu CI/"(Z7) H K — 0 there are neighbourhoods U\,...Un of a; 
such that nr=i C 1 f(Ui) 0 ^ = 0. Now U = fl"=1 Ui is a neighbourhood of 
® and f(U) C fir=i fWi) C V. • 

PROPOSITION 2. Let Y be a Hausdorff locally compact space. Then T ( f ) 

= B ( f ) . 

P r o o f . Fix x G T ( f ) and take y ^ f(x). Then there is a closed compact 
neighbourhood K of y such that f(x) £ K. The c-continuity of / at x im-
plies that there is an open neighbourhood U of x such that f(U)cY\K. 

Therefore y $ CI f(U) and x G H(f). • 

Denote by B ( f ) the set of all local boundedness points of / : X —• 

Y, i.e. B ( f ) — {x G X : there is a compact set K in Y such that x G 
Int/ _1 ( isT)} . Evidently B ( f ) is an open set. In [3] it is shown (also in [8] 
for metrizable X and Y = K ) that for a function / with a closed graph we 
have B ( f ) C C(f). Also this is true pointwise. 

PROPOSITION 3. We have B ( f ) n H ( f ) C C(f). 

P r o o f . Fix x G B ( f ) fl H ( f ) and let V be an open neighbourhood of 
f(x). Then one can find a compact set K and an open neighbourhood G of 
x with f(G) C K. Now K\V is compact and C(/, x) C V. Hence (CI f(U)n 

(K\V))UeUt is a family of closed subsets of K\V with f]ueUx Clf(U)n(K\ 

V) = 0. Hence there are neighbourhoods U\,..., Un of x with Plt=i CI f(Ui) 

n (K \ V) = 0. Then H = G n f)?=i Ui is a neighbourhood of x. If y G H, 
then f(y) G K and f(y) £ K \ V. Therefore f(y) G V and x G C ( f ) . • 

From Propositions 2 and 3 we obtain B ( f ) fl T ( f ) C C ( f ) for a locally 
compact Hausdorff space Y . We shall show that the local compactness can 
be omitted. 
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P R O P O S I T I O N 4. Let Y be a Hausdorff space. Then B ( f ) r \ T ( f ) C C ( f ) . 

P r o o f . Fix x G B ( f ) H T ( f ) and let V be an open neighbourhood of 
f(x). Then one can find a compact set K and an open neighbourhood G 
of x with f(G) C K. Since Y is Hausdorff space so K is closed. Hence 
W = V U (Y \ K) is an open neighbourhood of f ( x ) such that the set 
Y \ W = K \ V is compact. Hence there is a neighbourhood U of x with 
f(U) C W. Now f(U n G) C V and x G C{f). • 

R e m a r k 1. The assumption nY is a Hausdorff space" in Proposition 
4 cannot be omitted. Let X = R with the usual topology and let Y = R 
with the topology T , where A £ T if A = 0 or A = Y or A = (a, oo) for 
some a £ R. Let / : X —• Y be definded by f ( x ) = 1 for irrational x and 
f ( x ) = 0 for rational x. Then B ( f ) = T { f ) = X and C { f ) = 0. 

P R O P O S I T I O N 5 . Let Y be a Hausdorff locally compact space. Then B(f)rL 
ff(/) = C ( / ) = B ( / ) n r ( / ) . 

P r o o f . We have C ( f ) C H ( f ) . Further, if x e C ( f ) and K is a com-
pact neighbourhood of f(x), then there is a neighbourhood U of x with 
f(U) C K, i.e. x e B ( f ) . • 

It is known that if Y is compact [8], [6] or if X is first countable and 
Y is countably compact [9], [6] or if X is saturated and Y is regular count-
ably compact [5], then functions with closed graphs are continuous. How-
ever, from their proofs it follows that under above assumptions on X and 
Y we have H ( f ) C C ( f ) and if moreover Y is a Hausdorff space, then 
H ( f ) = C ( f ) . It is easy to see the following 

P R O P O S I T I O N 6 . If A is a subset of X and f : X —>Y has a closed graph 
at x £ A, then f\A : A —» Y has a closed graph at x. 

Now we shall characterize the set H ( f ) . We recall that a metric space 
(Y, d) is called b-compact if every bounded subset of Y has the compact 
closure [6; p.29]. 

T H E O R E M 1. Let X be a topological space and let Y be a b-compact metric 
space. Then H ( f ) is a Gs set. 

P r o o f . Let 6 be a point in Y.For a G Y and n G N denote by 

TZ = {yeY:d(y,b)Zn} and 
K = s * n 
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Notice that K£ is a closed bounded subset of Y and therefore it is com-
pact. Put 

A^-{xeX: there is U €UX with f(U) C Y \ 
and observe that every A£ is an open set. Therefore oo 

n=laeY 
is a G5 set. We shall show that A = H ( f ) . 

Fix x e A and let y ^ f(x). Then there is n\ G N such that d(y, f(x)) > 
Further, there are 712, G N such that d(y, b) < ^ and d(f(x), b) < n3. 

Put n = max{2,ni,n2,713}. Since there is a G Y such that x G 
Then d(f(x),a) < (If namely d(f(x),a) ^ then f ( x ) G and 
hence x £ a contradiction.) This yields to ^ < d(y,f(x)) ^ d(y,a) + 
d(a, f(x)) < ^+d(y, a) and therefore d(y, a) > K Let U be a neighbourhood 
of x with / ({/) C Y \ K*. Put G = {z G Y : d(y, z) < 

Let z e G. Then \ < <¿(2/, a) ^ d(y,z) + d(z,a) < d(z,a) + £ and thus 
i < d(z,o), i.e. 2 G Further, d(z,b) ^ d(z,y) + d(y,b) < i + f < n, 
thus z G Therefore z e K" and G C This yields to G n f(U) = 0 
and y £ CI f(U). Therefore y ¿ C{f,x) and x G £T(/). 

Now fix x G H ( f ) and n G N. Then, by Proposition 1, x G T ( / ) and 
since 

is compact closed and f{x) £ Kh , so there is a neighbourhood 
U of x with f(U) C Y\ K}

n
{x). Thus x G AS

n
{x). But n G N is arbitrary and 

hence x G i . • 
R e m a r k 2. Obviously every b-compact metric space is locally com-

pact. Hence, by Proposition 2, also the set T { f ) is a G{ set. However, The-
orem 1 is not true if we replace "Y is b-compact metric" by "Y is locally 
compact metric". Let X = R with the ususal topology and let Y = R with 
the discrete metric (i.e. d(a, b) = 1 for a ^ b). Then Y is a locally com-
pact metric space. If / : X —• Y is defined by f ( x ) — 0 for rational x and 
f ( x ) = 1 for irrational x, then H ( f ) — Q is not a Gg set. 

We recall that a topological space is almost resolvable if it is a count-
able union of sets with empty interiors. Every first countable topological 
space without isolated points, locally compact Hausdorff topological space 
without isolated points, real linear topological space or separable topological 
space without isolated points is almost resolvable [2]. A topological space 
is perfect if every closed subset of this space is G5 [4]. A space is perfect 
normal if it is normal (need not be Ti ) and perfect. 

T H E O R E M 2 . Let X be an almost resolvable topological space. Let H be 
a subset of X. Then H is a G$ set if and only if H = H ( f ) for some 
f : X 
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P r o o f . Sufficiency follows from Theorem 1. By [2] there is a function 
/ : X [0,1] with C ( f ) = H and by Proposition 5 we have H = H ( f ) . • 

L E M M A 1 . Let f,g : X R. Then C ( f ) fl H(g) C H(f + g). 

P r o o f . Let x G C ( / ) n H(g). For every n G N there is a neighbourhood 
Vn of x such that f(Vn) C ( f (x) - £ , f ( x ) + £)• Further, by Proposition 1 
there is a neighbourhood Wn of x such that g(Wn) C ( -oo , - 2 n ) U (g(x) -
$,g(x)+ i ) U ( 2 n , o o ) . Now for n > \f(x)\ + 1 we have ( f + g)(VnC)Wn) C 
( - o o , - n ) U ( f ( x ) + g(x) - $,f(x) + g(x) + \ ) U (n,oo). This yields to 
C(f + g,x) C n ~ = i Cl( / + g)(Vn n Wn) C { f ( x ) + g{x)} and therefore 
xeH(f + g). • 

T H E O R E M 3 . Let X be a Baire almost resolvable perfectly normal topo-
logical space. Let C, H be subsets of X. Then the following conditions (yl) 
and (B) are equivalent: 

(A) There exists a function f : X —> R such that C = C ( f ) and H = 
H(fy, 

(B) (i) C and H are Gs sets, 
(ii) C c H , 
(iii) C is open in H, 
(iv) Int(jy \ C) = 0. 

P r o o f . (A) (B): 
(i) By Theorem 2. 
(ii) Obvious. 
(iii) The set B ( f ) is open and by Proposition 5 we have B ( f ) fl H ( f ) = 

C ( f ) . 
(iv) Suppose that G = I n t ( H ( f ) \ C ( f ) ) ± 0. By Proposition 6 we have 

G = G fl H ( f ) C H(f\G). Therefore f\G has a closed graph and since G is 
a Baire space so by [14] D(f\G) is closed and nowhere dense in G. However, 
since G is open, we have C(f\G) = C ( f ) fl G = 0, a contradiction. 

(B) (A): Put S = U { E C X : E is open and E n H = C}. Then S is 
an open set, C C S and S fl H = C. Since X is almost resolvable we have 
X = Um=i where Int Xm = 0 and Xm n Xn = 0 if m ^ n. Further, by 
(i), C = (XLi Cn a n d H — n r = i where Cn and Hn are open. We can 
assume that C„+i C Cn C S and Hn+\ C Hn for each n G N. Put Co = S 
and HQ = X. Since X is perfectly normal, there is a continuous function 
t : X [0,1] such that i _ 1 (0 ) = X \ S. Define g : X R as 

if z G 5, 
9(x) = t(xy 

0, if x G X \ S. 
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Further let h : X R be defined by 

/i(z) = 

0, \fxeH, 

if x G (Cn-i \ C„) \ Int(Cn_i \ C n ) , 

if® G Xm n Int(C„_i \ Cn), 
n + m' 

Take 
f = g + h. 

We shall show that C(f) = C and H(f) = H. 
1. Let x € C. Then Cn is a neighbourhood of x and h(Cn) C [0, 

Therefore h is continuous at x. Since g is continuous at a;, we have 

(1) C C C(f). 

2. Let x e H\ C. Then by (iii) x $ S and f(x) = 0. Let n G N. Then 
there is a neighbourhood Un of x such that t(Un) C [0, Let y G Hn fl Un. 
If y G S, then g(y) ^ n, h(y) ^ 0 and hence f(y) G [n, oo). 
If y G H \ 5 , then ^(y) = % ) = /(y) = 0. 
If y G (-fiT„n?7n)\(JffU5), then g(y) = 0, h(y) ^ n and hence f(y) G [n, oo). 
Therefore f(HnC\Un) C {0}u[n, oo). This yields t o C(/ ,z)c n r = i C 1 / ( ^ n 

H n ) C {0} , i.e. C(/,z) = {0 } = {/(a;)}. Therefore we have 

(2) H\CcH{f). 

3. Let x G H \ C. Let U be an open neighbourhood of x. Then x $ S 
and f(x) = 0. By (iv) there is y G U n (X \ (H \ C)). 
If y € S then g(y) ^ 1, h(y) ^ 0 and hence f(y) Z 1. 
If y S then there is n G N such that y G (Hn-1 \ Hn) \ S. Then h(y) = n 
and hence f(y) ^ 1. Therefore x $ C(f) and 

(3) H\CcX\C(f). 

4. Let x G (X \ H) \ S. Then f(x) ± 0. Suppose that x £ CI(H \ C). 
Then there is an open neighbourhood V of x such that V n (H \ C) = 0. 
Then V is an open set, V U 5 ^ S and V n H C C, thus (V U S) n H = C, 
a contradiction with the definition of S . 

Therefore x G CI(H \ C). Then for each neighbourhood U of x we have 
Un(H\C) ± 0. However for y G H\C we have f(y) = 0 and hence 0 G f(U) 
for each neighbourhood U of x and thus 0 G C{f,x). However f(x) / 0 and 
hence x ^ H(f). Therefore we have 

(4) (X\H)\SGX\H(f). 

5. Let x G (X \ H) fl S. Then there is n G N such that x G C n - i \ Cn. 
We shall show that x $ H(h). We have two possibilities: 
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a) Let X e Int(C„_i \Cn). Then there is m G N with x G X m nIn t (C„_ i \ 
Cn) and hence h(x) = Since the set {y : j G N} is discrete there is 
e > 0 such that | ^ ^ - j | > e for each j ^ n + m. Denote by K = 
[0> — £] U + £,!]• Let U be an arbitrary neighbourhood of x. Since 
I n t x l = 0 there is k G N with k £ n and U n Int(C„_i \ Cn) n I t / 0 . We 
have / i ( i /nInt(C n_i \C 7 l )nX f c ) = C K. Therefore {C\h{U)f)K)UeUz 

is a family of closed subsets of K with the finite intersection property. Hence 
M = C\uzu Cl/i(i7) fl K C C(h,x) is a nonempty set. Since h(x) £ M we 
have C(h,x) {/i(z)} and x $ H(h). 

b) Let x e (C„_i \ C „ ) \ I n t ( C „ _ i \Cn) = Bn. Then h(x) = Let £ > 0 
be such that —j| > £ for each j ^ n. Denote by K = [0, e]. Let U be an 
arbitrary neighbourhood of x. Since In t5„ = 0 there is y G (U f)Cn-i)\Bn. 
Then h(y) < £ and hence h(y) G K. Now (C\h(U) n K)ueux is a family of 
closed subsets of K with the finite intersection property. Similarly as in a) 
we show that x H(h). 

Since x G C(g) then, according to Lemma 1 we have x H ( f ) . Therefore 
we see that 
(5) ( X \ H ) n S c X \ H ( f ) . 

Combining (1), (2), (3), (4) and (5) we obtain H = H(f) and C = C ( f ) . • 

C O R O L L A R Y 1 . Let X be a complete metric space without isolated points. 
If C and H are subsets of X then conditions (A) and (B) are equivalent. 

R e m a r k 3. a) The condition "X is normal" cannot be omitted. In [1] 
it is shown that there is a closed nowhere dense subset F of the Niemytzki 
plane X such that D ( f ) ̂  F for each function / : X —> R with a closed 
graph. The Niemytzki plane X is a Baire perfect Ti completely regular 
almost resolvable space and the sets H = X and C = X \ F satisfy (B). 

b) The condition " X is perfect" cannot be omitted. Let X be the set of all 
ordinal numbers which are less than the first uncountable ordinal il equipped 
with the topology T, where A 6 T iff A = 0 or A - X or A = {x £ X :x > 
a } for some a G X. Then X is a Baire almost resolvable normal space and 
H — X and C — X \ {1} satisfy (B). However, X is compact and hence (by 
Proposition 5) for every function / : X —>• R we have H ( f ) = C ( f ) . 

c) Evidently the condition "X is almost resolvable "cannot be omitted. 
d) We do not known what is in the case of non-Baire spaces. 
P R O B L E M . Is Theorem 3 true if we omit the condition "X is a Baire 

space" (and if we replace the condition (iv) with (iv'), where 
(iv'): Int(H \ C) is of the first category)? 

R e m a r k 4. If / : X —> R has a closed graph then by [3] the set D ( f ) 
(= H ( f ) \ C ( f ) ) is of the first category and closed. If moreover X is a 
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Baire space then D ( f ) is even nowhere dense. However this is not true for 
H ( f ) \ C(./), if H ( f ) ± X. Let / : R -»• R be defined by 

( , = | 0 , if z e R \ Q , 
\n, if x = qn, 

where Q = {gi, <72 > . . . , qn, • • •} is a one-to-one sequence. Then C ( f ) = 0 and 
H ( f ) - R \ Q, therefore H ( f ) \ C ( f ) is residual and not closed. 
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