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LOCAL CHARACTERIZATION OF FUNCTIONS
WITH CLOSED GRAPHS

Let X and Y be topological spaces. A function f: X — Y has a closed
graph if the set G(f) = {(z, f(z) : * € X} is a closed subset of X x Y.
Functions with closed graphs play an important rule in functional analysis
and they have been studied extensively. The purpose of the present paper
is to introduce a suitable pointwise definition of that notion and to give a
characterization of the set of all closedness graph points.

For a subset A of a topological space we denote by Cl1 A and Int A the
closure and the interior of A, respectively. The letters N, Q and R stand
for the set of positive integers, rational and real numbers, respectively. For
z € X denote by U, the family of all neighbourhoods of z.

In [6] it is shown (for compact Hausdorff X and Hausdorff Y also in [13])
that a function f : X — Y has a closed graph if and only if C(f,z) = {f(z)},
where C(f, z) is the cluster set of f at z defined by C(f,z) = Ny ¢y, CLf(U)
(= {y € Y : there exists a net 7, in X with limz, = z and lim f(z,) =
y}). Hence the following definition seems to be reasonable.

DEFINITION 1. We say that a function f : X — Y has a closed graph
atz € X if C(f,z) = {f(2)}.

Hence f has a closed graph if and only if it has a closed graph at each
point. Denote by H(f) the set of all closedness graph points of f: X — Y.
Further denote by C(f) and D(f) the set of all continuity and discontinu-
ity points of f, respectively. Obviously, for a Hausdorff Y (but not for an
arbitrary Y') we have C(f) C H(f) (e.g. [7])-
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A function f: X — Y is c-continuous at z € X if for each open neigh-
bourhood V of f(z) such that Y \ V is compact there is an open neighbour-
hood U of z such that f(U) C V. A function is c-continuous if it is such
at every point [5]. Denote by T'(f) the set of all c-continuity points of f.
Evidently C(f) C T(f).

It is known that a function f : X — Y with a closed graph is c-continuous
[10]. If Y is locally a compact Hausdorff space, then these properties are
equivalent [10]. The assumptions on Y cannot be omitted [12]. We shall
show that these assertions are true also pointwisely.

ProrosiTiON 1. We have H(f) C T(f).

Proof. Fix ¢ € H(f) and let V be an open neighbourhood of f(z) such
that K =Y \ V is compact. Then C(f,z) C V and hence C(f,z)N K = 0.
Since K is compact and (Cl f(U) N K)ueu, is a family of closed subsets of
K with (e, CLF(U) 0 K = Q there are neighbourhoods Uy, ...U, of «
such that (., Cl f(U;)N K = 0. Now U = (., U; is a neighbourhood of
z and f(U) C ﬂ:;l f(U;)cv.O

PRroPosSITION 2. Let Y be a Hausdorff locally compact space. Then T(f)
= H(f).

Proof. Fix z € T(f) and take y # f(z). Then there is a closed compact
neighbourhood K of y such that f(z) ¢ K. The c-continuity of f at z im-
plies that there is an open neighbourhood U of z such that f(U) C Y \ K.
Therefore y ¢ Cl f(U) and z € H(f). O

Denote by B(f) the set of all Jocal boundedness points of f : X —
Y, ie. B(f) = {z € X : thereis a compact set K in Y such that z €
Int f~1(K)}. Evidently B(f) is an open set. In [3] it is shown (also in [8]
for metrizable X and ¥ = R) that for a function f with a closed graph we
have B(f) C C(f). Also this is true pointwise.

ProrosITION 3. We have B(f) N H(f) C C(f).

Proof. Fix 2 € B(f) N H(f) and let V be an open neighbourhood of
f(z). Then one can find a compact set K and an open neighbourhood G of
z with f(G) ¢ K. Now K\V is compact and C(f,z) C V. Hence (Cl f(U)N
(K\V))veu, is a family of closed subsets of K'\V with (¢, Clf(U)N(K\
V) = 0. Hence there are neighbourhoods Uy, . .., U, of z with (N, Cl f(U;)
N(K\V)=0. Then H=Gn (., U; is a neighbourhood of z. If y € H,
then f(y) € K and f(y) ¢ K \ V. Therefore f(y) € V and z € C(f). O

From Propositions 2 and 3 we obtain B(f) NT(f) C C(f) for a locally
compact Hausdorff space Y. We shall show that the local compactness can
be omitted.
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PROPOSITION 4. Let Y be a Hausdorff space. Then B(f)NT(f) C C(f).

Proof. Fix z € B(f) N T(f) and let V be an open neighbourhood of
f(z). Then one can find a compact set K and an open neighbourhood G
of z with f(G) C K. Since Y is Hausdorff space so K is closed. Hence
W = VU (Y \ K) is an open neighbourhood of f(z) such that the set
Y\ W = K \V is compact. Hence there is a neighbourhood U of z with
fIUYCW.Now f(UNG)CVandz € C(f). O

Remark 1. The assumption Y is a Hausdorff space” in Proposition
4 cannot be omitted. Let X = R with the usual topology and let Y = R
with the topology 7, where A € Tif A=0Qor A=Y or A = (a,0) for
some a € R. Let f: X — Y be definded by f(z) = 1 for irrational 2z and
f(z) = 0 for rational z. Then B(f) = T(f) = X and C(f) = 0.

ProPoOsITION 5. Let Y be a Hausdorff locally compact space. Then B(f)N
H(f)=C(f) = B(f)nT(f).

Proof. We have C(f) C H(f). Further, if z € C(f) and K is a com-
pact neighbourhood of f(z), then there is a neighbourhood U of z with
f(U)YC K,ie.z € B(f). O

It is known that if Y is compact [8], [6] or if X is first countable and
Y is countably compact [9], [6] or if X is saturated and Y is regular count-
ably compact [5], then functions with closed graphs are continuous. How-
ever, from their proofs it follows that under above assumptions on X and
Y we have H(f) C C(f) and if moreover Y is a Hausdorff space, then
H(f)=C(f). 1t is easy to see the following

ProproOSITION 6. If A is a subset of X and f : X — Y has a closed graph
at z € A, then flJA: A —Y has a closed graph at z.

Now we shall characterize the set H(f). We recall that a metric space
(Y,d) is called b-compact if every bounded subset of Y has the compact
closure [6; p.29].

THEOREM 1. Let X be a topological space and let Y be a b-compact metric
space. Then H(f) is a Gs set.

Proof. Let b be a point in Y.For @ € Y and n € N denote by
Sp={yeY:d(y,a)2 3},
TS = {y €Y : d(y,b) < n} and
K:=S5:NnTg.



646 J. Borsik

Notice that K2 is a closed bounded subset of Y and therefore it is com-
pact. Put
A% ={z € X : thereis U € U, with f(U) CY \ K2}

and observe that every A2 is an open set. Therefore

is a Gg set. We shall show that A = H(f).

Fix z € A and let y # f(z). Then there is ny € N such that d(y, f(z)) >

=, Further, there are ny, ng € N such that d(y, ) < % and d( f(z),b) < na.
Put n = max{2, nl,n2,n3} Since z € A, there is a € Y such that € AZ.
Then d(f(z),a) < L. (If namely d(f(z),a) = L, then f(z) € K? and
hence z ¢ A2 n 2 contra.dlctlon) This yields to -y < d(y,f(:r)) < d(y,a) +
d(a, f(z)) < L+d(y, a) and therefore d(y,a) > 2 "Let U be a neighbourhood
of z with f(U) C Y\I& PutG={z€Y: d(y,z)< 11

Let z € G. Then £ < d(y,a) £ d(y,2) + d(z,a) < d(z a) + = and thus
L < d(z,a),i.e. z € S2. Further, d(z,b) £ d(z,y)+ d(y,0) < L + 2 < n,
thus z eTp. Therefore z € K2 and G C K¢. This yields to G n f(U) =
and y ¢ le(U). Therefore y ¢ C(f,z) and z € H(f).

Now fix 2 € H(f) and n € N. Then, by Proposition 1, z € T(f) and

since K™ is compact closed and f(z) & K; @ , so there is a neighbourhood

Uofzwith f(U)CY \ Ki 1) Thus 2 € AL ). But n € N is arbitrary and
hence z € A. O

Remark 2. Obviously every b-compact metric space is locally com-
pact. Hence, by Proposition 2, also the set T'(f) is a G5 set. However, The-
orem 1 is not true if we replace ”Y is b-compact metric” by Y is locally
compact metric”. Let X = R with the ususal topology and let Y = R with
the discrete metric (i.e. d(a,b) = 1 for a # b). Then Y is a locally com-
pact metric space. If f : X — Y is defined by f(z) = 0 for rational z and
f(z) = 1 for irrational z, then H(f) = Q is not a G; set.

We recall that a topological space is almost resolvable if it is a count-
able union of sets with empty interiors. Every first countable topological
space without isolated points, locally compact Hausdorff topological space
without isolated points, real linear topological space or separable topological
space without isolated points is almost resolvable [2]. A topological space
is perfect if every closed subset of this space is Gs [4]. A space is perfect
normal if it is normal (need not be T;) and perfect.

THEOREM 2. Let X be an almost resolvable topological space. Let H be
a subset of X. Then H is a Gs set if and only if H = H(f) for some
f: X —>R.
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Proof. Sufficiency follows from Theorem 1. By [2] there is a function
f:X —[0,1] with C(f) = H and by Proposition 5 we have H = H(f). O

LEMMA 1. Let f,g: X - R. Then C(f)N H(g)C H(f + g).

Proof. Let z € C(f)N H(g). For every n € N there is a neighbourhood
V,, of z such that f(V,,) C (f(z) - %, f(z) + %). Further, by Proposition 1
there is a nelghbourhood W, of z such that g(W,) C (—o0,—2n) U (g(z) —
L g(z)+ 1)U (2n, ). Now for n>|f(z)|+1 we have (f+ g)(Vo,NW,) C
(—o0, —n) U (f(z) + g(z) — %, f(z) + g(z) + £) U (n,00). This yields to
C(f+g,2) C Noe,CUS + g)(V nNw,) C {f(:r) + g(z)} and therefore
r€H(f+g). O

THEOREM 3. Let X be a Baire almost resolvable perfectly normal topo-
logical space. Let C', H be subsets of X. Then the following conditions (A)
and (B) are equivalent:

(A) There ezxists a function f : X — R such that C = C(f) and H =
H(f);

i) C and H are Gj sets,

(i
(ii
(iii) C 1s open in H
(iv) Int(H\ C) =

Proof. (A) = (B):

(i) By Theorem 2.

(ii) Obvious.

(iii) The set B(f) is open and by Proposition 5 we have B(f) N H(f) =
C(f)-

(iv) Suppose that G = Int(H(f)\ C(f)) # 0. By Proposition 6 we have
G =GN H(f) C H(f|G). Therefore f|G has a closed graph and since G is
a Baire space so by [14] D(f|G) is closed and nowhere dense in G. However,
since G is open, we have C(f|G) = C(f)N G = 0, a contradiction.

(B)=(A):Put S=|{FECX:FEisopenand ENH = C}. Then § is
an open set, C C S and SN H = C. Since X is almost resolvable we have
X =U_; X, where Int X,,, =0 and X,, N X, = 0 if m # n. Further, by
(i), C =Nowy Cn and H =\, , Hn, where C,, and H,, are open. We can
assume that Cp,y1 C C, C S and H,y1 C H, foreachn e N.Put Co = §
and Hy = X. Since X is perfectly normal, there is a continuous function
t: X — [0,1] such that t71(0) = X \ S. Define g: X — R as

1 .
g(l‘): t(_.’lij’ lfIL‘ES,
0, freX\S.
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Further let A : X — R be defined by

0, ifz e H,

1 if 2 € (Coot \ Co) \ Int(Cp1 \ Cn),
h(z)=4 "

ey ifz € X NInt(Cr-1 \ Cr),

n, if 2 € (Hoy \ Hn)\ 5.

Take
f=g+h
We shall show that C(f) = C and H(f) = H.

1. Let ¢ € C. Then C, is a neighbourhood of ¢ and h(C,) C [0,1).
Therefore h is continuous at z. Since ¢ is continuous at z, we have

(1) C c C(f).

2. Let z € H\ C. Then by (iii) 2 ¢ S and f(z) = 0. Let n € N. Then
there is a neighbourhood Uy, of z such that #(U,) C [0,1). Let y € H,NU,.
If y € S, then g(y) 2 n, h(y) 2 0 and hence f(y) € [n, o).

Ifye H\S, then g(y) = h(y) = f(y) = 0.

Hye(H,NnU)\(HUS), then g(y) = 0, h(y) 2 n and hence f(y) € [r,0).
Therefore f(H,NU,) C {0}U[n, c0). This yields to C(f,z) C No—, Cl f(UnN
H,) c {0},ie. C(f,z) = {0} = {f(2)}. Therefore we have

@) H\C C H()).

3. Let 2 € H\C. Let U be an open neighbourhood of . Then z ¢ §

and f(z) = 0. By (iv) thereisy e UN(X \ (H\ C)).

If y € § then g(y) 2 1, h(y) 2 0 and hence f(y) 2 1.

If y ¢ S then there is n € N such that y € (H,—; \ H,) \ S. Then h(y) =n
and hence f(y) 2 1. Therefore z ¢ C(f) and

(3) H\CcCX\C(f).

4. Let z € (X \ H)\ S. Then f(z) # 0. Suppose that z ¢ CI(H \ C).
Then there is an open neighbourhood V of z such that VN (H \ C) = 0.
Then V is an open set, VUS # Sand VN H C C,thus VUS)N H = C,
a contradiction with the definition of 5.

Therefore z € CI(H \ C). Then for each neighbourhood U of z we have
UN(H\C) # 0. However for y € H\C we have f(y) = 0 and hence 0 € f(U)
for each neighbourhood U of z and thus 0 € C(f,z). However f(z) # 0 and
hence z ¢ H(f). Therefore we have

(4) (X\H)\ S Cc X\ H(f)

5. Let z € (X \ H)N S. Then there is n € N such that x € C,_y \ Ch.
We shall show that z ¢ H(h). We have two possibilities:
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a) Let 2 € Int(Cy—1\Chr). Then thereis m € Nwith z € X, NInt(Cyr_1\
Cy) and hence h(z) = - Since the set {% : j € N} is discrete there is

n+m "

¢ > 0 such that ln-&m - %| > ¢ for each j # n + m. Denote by K =
[0, #n; —€JU [;H}—m- +¢,1]. Let U be an arbitrary neighbourhood of z. Since

Int X,, = 0 there is k£ € N with k # n and U NInt(Cr—1 \ Cp) N Xy # 0. We
have h(UNInt(Cr-1\Cn)NXk) = {njm} C K. Therefore (ClLR(U)NK )yeu,
is a family of closed subsets of K with the finite intersection property. Hence
M = Nyey, CLAU)N K C C(h,z) is a nonempty set. Since h(z) ¢ M we
have C(h,z) # {h(z)} and = ¢ H(h).

b) Let z € (Cpm1 \ Cr)\Int(Cr—1 \ Cy) = By. Then h(z) = % Lete >0
be such that |%-—%| > ¢ for each j # n. Denote by K = [0, 1 —¢]. Let U be an
arbitrary neighbourhood of z. Since Int B,, = () thereis y € (UNCp-1)\ Bn.
Then A(y) < L and hence h(y) € K. Now (ClA(U) N K)yey, is a family of
closed subsets of K with the finite intersection property. Similarly as in a)
we show that z ¢ H(h).

Since ¢ € C(g) then, according to Lemma 1 we have z ¢ H( f). Therefore
we see that

(5) (X\H)nSC X\ H(S)
Combining (1), (2), (3), (4) and (5) we obtain H = H(f)and C = C(f). O

COROLLARY 1. Let X be a complete metric space without isolated points.
If C and H are subsets of X then conditions (A) and (B) are equivalent.

Remark 3. a) The condition ”X is normal” cannot be omitted. In [1]
it is shown that there is a closed nowhere dense subset F' of the Niemytzki
plane X such that D(f) # F for each function f : X — R with a closed
graph. The Niemytzki plane X is a Baire perfect T; completely regular
almost resolvable space and the sets H = X and C = X \ F satisfy (B).

b) The condition ” X is perfect” cannot be omitted. Let X be the set of all
ordinal numbers which are less than the first uncountable ordinal Q equipped
with the topology 7, where Ae Tif A=QorA=XorAd={zeX:z>
a} for some o € X. Then X is a Baire almost resolvable normal space and
H = X and C = X \ {1} satisfy (B). However, X is compact and hence (by
Proposition 5) for every function f: X — R we have H(f) = C(f).

c¢) Evidently the condition ” X is almost resolvable ”cannot be omitted.

d) We do not known what is in the case of non-Baire spaces.

PrROBLEM. Is Theorem 3 true if we omit the condition "X is a Baire
space” (and if we replace the condition (iv) with (iv’), where
(iv’): Int(H \ C) is of the first category)?

Remark 4. If f: X — R has a closed graph then by [3] the set D(f)
(= H(f)\ C(f)) is of the first category and closed. If moreover X is a
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Baire space then D(f) is even nowhere dense. However this is not true for
H(H\C(f),if H(f)# X. Let f: R — R be defined by

f(z) = {0, if z € R\ Q,

n, if z =gy,

where Q = {¢1,¢2,...,4n, .. -} is a one-to-one sequence. Then C(f) = 0 and
H(f) =R\ Q, therefore H(f)\ C(f) is residual and not closed.
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