

Adrian Petrușel

ON A THEOREM BY ROMAN WĘGRZYK

1. Introduction

The concept of generalized metric space was introduced by Jung as follows:

DEFINITION 1.1 ([3]). The pair (X, d) will be called a generalized metric space if X is an arbitrary nonempty set and d is a function $d : X \times X \rightarrow [0, \infty]$ which fulfills all the standard conditions for a metric.

In this space, the generalized metric d is allowed to take on $+\infty$ as well. In a generalized metric space, just as in a metric space, we can define open and closed balls, convergences of sequences, completeness of the space, etc.

C.K. Jung gave in [3] the following characterization of the generalized metric space by metric spaces. Let (X_i, d_i) , $i \in I$ be a nonempty family of disjoint metric spaces. Then the set

$$X = \bigcup_{i \in I} X_i,$$

with the function d defined by

$$d(x, y) := \begin{cases} d_i(x, y), & \text{if there exists } i \in I \text{ such that } x, y \in X_i \\ +\infty, & \text{otherwise} \end{cases}$$

is a generalized metric space. The converse is also true.

THEOREM 1.2 ([3]). *Let (X, d) be a generalized metric space. Then the relation “ ρ ” defined as*

$$x \rho y \Leftrightarrow d(x, y) < \infty \text{ for } x, y \in X$$

1980 *Mathematics Subject Classification* (1985 Revision). Primary 47H10, Secondary 54H25.

Key words and phrases. Generalized metric space, multivalued φ -contraction, fixed points.

is an equivalence relation and if $\{X_i|i \in I\}$ are the equivalence classes under ρ , then $d(x, y) = +\infty$ whenever $x \in X_i$, $y \in X_j$, $i \neq j$. Also, if we let $d_i := d|_{X_i \times X_i}$, then (X_i, d_i) is a metric space for each $i \in I$.

DEFINITION 1.3 ([3]). The partition of a generalized metric space (X, d) into a family of disjoint metric spaces (X_i, d_i) , $i \in I$ constructed in Theorem 1.2 will be called the canonical partition of the space (X, d) .

A metric space (X, d) is said to be ϵ -chainable (where $\epsilon > 0$ is fixed) if and only if for any given $a, b \in X$ there is an ϵ -chain from a to b ; i.e. that is a finite set of points $z_0 = a, z_1, \dots, z_n = b$ such that $d(z_{i-1}, z_i) < \epsilon$ for all $i = 1, 2, \dots, n$.

DEFINITION 1.4. We say that a generalized metric space (X, d) is ϵ -chainable (where $\epsilon > 0$ is a fixed number) iff for any given $x, y \in X$ such that $d(x, y) < \infty$ there is an ϵ -chain from x to y .

DEFINITION 1.5. A generalized metric space is called well-chained if and only if is ϵ -chainable for each $\epsilon > 0$.

The first purpose of this paper is to give a characterization of the ϵ -chainable (respectively well-chainable) generalized metric spaces by ϵ -chainable (respectively well-chainable) metric spaces.

On the other hand, in 1969 Jung proved the following theorem:

THEOREM 1.6 ([3]). *Let (X, d) be a complete generalized metric space and let $f : X \rightarrow X$ be a singlevalued contraction, i.e. there exists a fixed real number $a \in [0, 1[$ such that*

$$\forall x, y \in X, \quad d(x, y) < \infty \Rightarrow d(f(x), f(y)) \leq ad(x, y).$$

If there exists a point $x_0 \in X$ such that $d(x_0, f(x_0)) < \infty$ then f has a fixed point x^ (i.e. $x^* \in X$, $x^* = f(x^*)$).*

The second purpose of this paper is to investigate the problem of existence of such results for a class of multivalued operators.

2. Preliminaries

If (X, d) is a generalized metric space, $Y \subset X$, $x \in X$ and $\epsilon > 0$ then

$$\delta(Y) = \sup\{d(a, b)|a, b \in Y\}$$

$$D(Y, x) = \inf\{d(y, x)|y \in Y\}$$

$$S(Y, \epsilon) = \{x \in X|D(Y, x) < \epsilon\}$$

$$P(X) = \{Y \subset X|Y \neq \emptyset\}$$

$$P_{cl}(X) = \{Y \in P(X)|Y = \bar{Y}\}$$

$$P_{b,cl}(X) = \{Y \in P_{cl}(X)|\delta(Y) < \infty\}$$

$$H(A, B) = \begin{cases} \inf\{\epsilon > 0 \mid A \subset S(B, \epsilon), B \subset S(A, \epsilon)\}, & \text{if the infimum exists} \\ +\infty, & \text{otherwise} \end{cases}$$

The pair $(P_{cl}(X), H)$ is a generalized metric space, and H is called the generalized Hausdorff-Pompeiu distance induced by d .

LEMMA 2.1 ([2]). *If (X, d) is a complete generalized metric space then $(P_{cl}(X), H)$ is a complete generalized metric space.*

DEFINITION 2.2 ([7]). A function $\varphi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ is a strong comparison function iff:

- i) φ is strictly increasing,
- ii) $\sum_{n=1}^{\infty} \varphi^n(t) < \infty, \quad \forall t > 0 \quad (\text{where } \mathbb{R}_+ = [0, \infty[)$.

LEMMA 2.3 (see [7], pp. 31). *Let $\varphi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ be a strong comparison function. Then:*

- i) $\varphi(t) < t$, for all $t > 0$,
- ii) $\varphi(0) = 0$,
- iii) φ is continuous from the right in $t = 0$.

DEFINITION 2.4. Let (X, d) be a generalized metric space and $T : X \rightarrow P_{cl}(X)$ be a multivalued operator. Then T is called:

- i) a -contraction if there exists an $a \in [0, 1[$ such that $\forall x, y \in X, d(x, y) < \infty \Rightarrow H(T(x), T(y)) \leq ad(x, y)$,
- ii) φ -contraction if there exists a strong comparison function $\varphi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ such that $\forall x, y \in X, d(x, y) < \infty \Rightarrow H(T(x), T(y)) \leq \varphi(d(x, y))$.

DEFINITION 2.5. Let (X, d) be a generalized metric space and $T : X \rightarrow P(X)$ be a multivalued operator. Then $x^* \in X$ is called a fixed point for T if $x^* \in T(x^*)$. The set of all fixed points will be denoted by $\text{Fix } T$.

The following results are well known in the fixed point theory (see Covitz-Nadler (1970), Rus (1983), Węgrzyk (1982)).

THEOREM 2.6 ([2]). *Let (X, d) be a complete metric space and consider a multivalued a -contraction $T : X \rightarrow P_{cl}(X)$. Then $\text{Fix } T \neq \emptyset$.*

THEOREM 2.7 ([8]). *Let (X, d) be a complete metric space and consider a multivalued φ -contraction $T : X \rightarrow P_{cl}(X)$. Then $\text{Fix } T \neq \emptyset$.*

3. Basic results

The first result of this paper is the following:

THEOREM 3.1. *Let (X, d) be a generalized metric space and let (X_i, d_i) , $i \in I$ be constructed in Theorem 1.2 the canonical partition of the space (X, d) . Then X is ϵ -chainable if and only if X_i is ϵ -chained for each $i \in I$.*

Proof. “ \Rightarrow ” Suppose that (X, d) is a ϵ -chainable generalized metric space. Then, for each $x, y \in X$ such that $d(x, y) < \infty$ there is an ϵ -chain from x to y . Let $i \in I$ and let $x, y \in X_i$. Then $d(x, y) < \infty$. It follows that there is an ϵ -chain from x to y .

“ \Leftarrow ” Suppose that for each $i \in I$, (X_i, d_i) is ϵ -chainable. Let $x, y \in X$ such that $d(x, y) < \infty$. Then there is $i \in I$ such that $x, y \in X_i$. Since X_i is ϵ -chainable there is an ϵ -chain from x to y in $X_i \subset X$.

Using similar arguments as in above we may show

THEOREM 3.2. *Let (X, d) be a generalized metric space and (X_i, d_i) , $i \in I$ be the canonical partition of the space (X, d) . Then X is well-chained if and only if X_i is well-chained, for each $i \in I$.*

The main result of this paper is the following:

THEOREM 3.3. *Let (X, d) be a complete generalized metric space and let $T : X \rightarrow P_{cl}(X)$ be a multivalued φ -contraction. Suppose that there exists a point $x_0 \in X$ such that $D(x_0, T(x_0)) < \infty$. Then $\text{Fix } T \neq \emptyset$.*

Proof. Let $X = \cup_{i \in I} X_i$ be the canonical partition of the space (X, d) . Let $i \in I$ be such that $x_0 \in X_i$.

We shall prove that for each $x \in X_i : T(x) \cap X_i \neq \emptyset$. Let $x \in X_i$ be an arbitrary point.

Observe that $D(x, T(x)) < \infty \Leftrightarrow$ there is $y \in T(x)$ such that $d(x, y) < \infty \Leftrightarrow y \in T(x) \cap X_i \Leftrightarrow T(x) \cap X_i \neq \emptyset$.

Then, for $x \in X_i : T(x) \cap X_i \neq \emptyset$ if and only if $D(x, T(x)) < \infty$. But

$$\begin{aligned} D(x, T(x)) &\leq D(x, T(x_0)) + H(T(x_0), T(x)) \\ &\leq d(x, x_0) + D(x_0, T(x_0)) + H(T(x_0), T(x)) \\ &\leq d(x, x_0) + D(x_0, T(x_0)) + \varphi(d(x_0, x)) < \infty, \end{aligned}$$

then for each $x \in X_i : T(x) \cap X_i \neq \emptyset$.

Consider the multivalued operator

$$T^0 : X_i \rightarrow P_{cl}(X_i), \text{ given by } T^0(x) := T(x) \cap X_i$$

and observe that T^0 is a multivalued φ -contraction on a complete metric space (X_i, d_i) . Now the conclusion follows from Theorem 2.7. ■

COROLLARY 3.4. *Let (X, d) be a complete generalized metric space and let $T : X \rightarrow P_{cl}(X)$ be a multivalued a -contraction. Suppose that there exists a point $x_0 \in X$ such that $D(x_0, T(x_0)) < \infty$. Then $\text{Fix } T \neq \emptyset$.*

Proof. The conclusion follows from Theorem 3.3 by taking $\varphi(t) = at$, for each $t \in \mathbb{R}_+$ (where $a \in [0, 1[$). ■

Remark 3.5. Theorem 3.3 generalizes a result given by Covitz-Nadler (see [2] Corollary 3).

Remark 3.6. Fixed point theorems for a class of locally contractive multivalued operators (see [1] and [4]) are established in a previous paper (see [5]).

References

- [1] E. Barcz, *Some fixed point theorems for multivalued mappings*, Demonstratio Math. 16 (1983), 735–744.
- [2] H. Covitz, S. B. Nadler jr., *Multivalued contraction mappings in generalized metric spaces*, Israel J. Math. 8 (1970), 5–11.
- [3] C. K. Jung, *On generalized complete metric spaces*, Bull. A.M.S. 75 (1969), 113–116.
- [4] A. Petrușel, (ϵ, φ) -locally contractive multivalued mappings and applications, Studia Univ. Babeș-Bolyai, Math. 36 (1991), 101–110.
- [5] A. Petrușel, Locally contractive multivalued mappings in generalized metric spaces, to appear.
- [6] I. A. Rus, *Principii și aplicații ale teoriei punctului fix*, Ed. Dacia, Cluj-Napoca (1979).
- [7] I. A. Rus, *Generalized contractions*, Preprint Babeș-Bolyai Univ. 3 (1983), 1–100.
- [8] R. Węgrzyk, *Fixed point theorems for multifunctions and their applications to functional equations*. Dissertationes Math. PWN Warszawa 201 (1982).

“BABEŞ-BOLYAI” UNIVERSITY
 DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
 Str. Mihail Kogălniceanu nr. 1
 RO-3400 CLUJ-NAPOCA, ROMANIA

Received March 1st, 1995.

