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ON COLLISION INVARIANTS IN ONE DIMENSION 

Consider a system of n particles, with the kinetic energies u>i(pi) for 
i = 1 , . . . , n and the potential energy of the interaction V(x\,..., xn), which 
is invariant under translations. Then the trajectories of a system lie on level 
surfaces of the total energy H and momentum, and are solutions of the 
Hamiltonian system of differential equations of the form 

dxi _ dH dpi _ dH . _ 
dt dpi' dt dx i ' ' 

Let us assume that there is a global trajectory of a system that have 
the asymptotic free trajectories x]n(t),pi (i = l , . . . , n ) at f = —oo and 
ic°ut(t),qi (i = l , . . . , n ) at t = oo, which are solutions of the Hamiltonian 
system of differential equations with V equal to zero. 

We call a set of functions f i (Si ,Pi , t ) (i = 1 , . . . , n) a collision invariant 
of a system if 

¿ ( f n O . f t , * ) + • • • + = / l(f?O t(0,9i, i) + • • • 
+ / „ C C t ( i ) , ? n , 0 

and 
dfi(S\n{t),Pi,t) _ d f j j x r ^ q u t ) 

dt = °= It for i = 1 , . . . , n 
for all free trajectories that are asymptotic to some global trajectories of a 
system (cf. [1]). We note that 

+ .. .+pn - + . • -+qn and u1(p1)+.. .+un(pn) = w i ( g i ) + . . .+w„(g„). 

The general form of collision invariants of a system of interacting particles 
in three dimensions was derived in [1]. In particular, it follows that collision 
invariants that depend only on the momenta must be linear in the kinetic 
energy and momentum (see also the references quoted in [1]). It was also 
argued in [1] that there is no analogous result for one dimension (cf. Example 
3 of the present paper). 
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It is the purpose of this paper to show that also in one dimension, collision 
invariants of a system of more than two interacting particles (which depend 
only on the momenta) must be linear in the kinetic energy and momentum. 
This result was already quoted in [2]. 

1. Our first theorem reads as follows. 

T H E O R E M 1. Suppose that: 

(a) n e N and n > 3; 
( b ) Ui : R —• R are C1 functions for i = 1 , . . . , n such that at least two 

of them have nonconstant derivative; 

( c ) M is a subset of R 2 n defined by 

M = { ( p i , . . . , p n , q i , - - - , q n ) € R 2 n :pi + . . . + P n = qi + . . . + ? » , 

and wi(pi) + . . . + u n ( p n ) = wi(?i) + . . . + un(qn)} . 

If f i : R —• R are Cl functions for i = 1 , . . . , n satisfying the functional 

equation 

(*) / l (Pl) + • • • + fn(Pn) = f l ( q i ) + • • • + fn(qn) 

for ( p i , . . . , p „ , ? i , . . . , ? n ) 6 M, 
then exist constants a,b,Ci (i = 1 , . . . , n) such that 

f i ( p ) = au>i(p) + bp+ Ci for p £ R and i = 1 , . . . , n. 

P r o o f . The assumptions ensure that 

(1) dpi + . . . + dpn = dqi + . . . + dqn, 

(2) wj(pi)dpi + • • • + w'n(Pn)dpn = oj[(qi)dqi + . . . + u'n(qn)dqn, 

( 3 ) f{(Pi)dpi + • • • + f'n{pn)dpn = f [ ( q i ) d q i + . . . + f'n{qn)dqn 

for ( p i , . . .,pn, qi, • • •, qn) £ M. Solving the system of equations (1) and (2) 
for dpi and dqj, substituting into (3) and equating to zero the coefficient of 
dqk, we get 

m ? ( „ \ - I M z M S t l ^ U r , ^ . " K f r O / i < M - f ^ M i g x ) 

{ ) f i { P i ) - u > ( q j ) - ^ q k f M + u><{qj)-u<k{qk) ' 

where Pi,qj,q,t can range over all real numbers such that 
"¡(Pi) ± u'j(qj), «*(?*) ^ u j ( q j ) ' a n d (Pi»--->Pn,5i,. . . ,9n) € M 

for some pt G R (/ € {1 , . . . , rc} \ {i}) a n d qm G R (m e { 1 , . . . , » } \ { j , fc}). 
We note that M contains the diagonal of R 2 n = R " x R" . Thus no 

problem arises in the last condition when i,j,k are pairwise different, what 
we from now assume. 

Let u'j be a nonconstant function and assume the following lemma. 
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LEMMA 1. If £ : R —> R is a nonconstant continuous function, then a 
set of r G ¿(R) such that the set {p G R : e(p) r} is dense in R, is dense 
in e(R). 

Then one can easily see that for fixed i, k and qk G R there exists a set 
Jij(lk) C ^j-(R), which contains more than one point (even infinitely many 
points), such that the set 

{pGR: u{(Pi) ± u'jiqj), u'k(qk) ± u f a ) } 
is dense in R for all v'j(qj) G Jij(qk)- Hence, by (4) and continuity of / / , we 
obtain (for qk G R and w'j(qj) G Jij(qk)) 
(5) f l i p ) = ajk(qj, qk)u\(p) + bjk(qj,qk) for all p G R, 
where 

(6) 

ajk(qj,qk) = 

bjk(qj,qk) = 

u'j(qj) - u'kiikY 
« K n W i k ) - f'MM(qk) 

By the hypothesis (b) we can (and do) assume that in addition u[ is a 
nonconstant function. Then the functions and 1 are linearly independent, 
so a,jk and bjk are constant. Now replacing i by j and j by i we obtain (for 
qk G R and G Jji(qk)) 
(7) f j ( p ) = aik(qi, qkWj{p) + bik(qi,qk) for all p G R, 
where 

„(„ a \ - AM ~ KM a-ik\qi,qk) - ,, x —r, 
m - v'k(9k) 
K )

 h ,a „ X _ "'i(qi)f'k(qk)-fi(qiWk(qk) 
Oik{qi,qk) rr^—n—^ • 

Moreover, a ^ and bik are constant too. Therefore, it follows from (6) and 
(7) that 

/*(?*) = (aik ~ ajk)vj(qj) + ajkuk(qk) + bik for every qk G R 
and ijj'j(qj) G Jij{qk)- But for each qk G R the set Jij(qk) contains more 
than one point, so 
(9) aik = ajk and f'k(p) = ajku'k(p) + bik for all p G R. 

In similar fashion, using (8) and (5), we get additionally 
(10) fk(p) = aiku'k{p) + bjk for all p G R. 
Hence bik = bjk. Since k G { l , . . . , n } \ {¿,j} was arbitrary, the desired 
result now readily follows from (5), (7), and (10) with a = <z,fc = a.jk and 
b — bik = bjk• This completes the proof. • 
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P r o o f of L e m m a 1. The interior of e(R) is a nonempty open inter-
val. Therefore, it suffices to verify that each nonempty open interval contains 
a point r such that the set { p f R : s(p) = r} not contains any nonempty 
open interval. But to this end it is enough to observe that a set of points 
r such that the set {p G R : e{p) = r} contains a nonempty open interval is 
countable. • 

Before we pass to the second theorem we are going to give the following 
remark. 

R e m a r k . From the proof it may be seen that for the validity of The-
orem 1 the functional equation (*) is not needed on the whole set M. This 
is important because there exist systems for which not all free trajectories 
that lie on level surfaces of the energy and momentum are asymptotic to 
some global trajectories (cf. [1]). 

2. In the case of more special assumptions we have the following infor-
mation about collision invariants. 

T H E O R E M 2. Suppose that the conditions (a), (b), and (c) of Theorem 
1 are satisfied and in addition for i = 1,.. ,,n there is a Lie group G left 
action • on Wi = {(p,Ui(p)) : p G R} such that: 

(d) the mapping G x Wi 9 (g,w) i-»- g • w G Wj is C1; 
(e) e • w = w for all w G Wi, where e is a unit element in G\ 
(f) (0102) -w = gx-{g2-w) for all gx,g2 G G and w G Wi; 
(g) for v, w G Wi there exists g G G such that g • v = w, 
(h) for a fixed v G Wi there exists a Cl function Wi 3 w g{w) G G 

such that g(w) • v — w for all w G Wi\ 
(i) ifwi,Vi G Wi (i = 1 , . . . ,n), g G G and + .. . + wn = +... + vn, 

then g • + ... + g • wn - g • + ... + g • vn. 
If fi : R —> R are Ljoc Borel functions for i = 1,.. .,n satisfying the 

functional equation 

(*) / l (pi) + • • • + fn(Pn) = fl(qi) + . . . + fn(qn) 
for (p1,...,pn,q1,...,qn) G M, 

then exist constants a,b,Ci (i = 1 , . . . , n) such that 

fi(p) = auji(p) + bp + Ci for almost all p G R and i = 1 , . . . , n. 

P r o o f . Let for any g G G, p G R and i G {1,.. -,n}, hi(g)(p) means the 
point in R such that 

g • (p,Ui(p)) = (hi(g)(p),Ui(hi(g)(p))). 
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Then it is easy to check that conditions (d) - (i) imply: 
(di) the mapping G x R 5 ( s , | ) ) h hi(g)(p) G R is C 1 ; 
(ei) hj(e)(p) = p for all p G R , where e is a unit element in G; 
( f i ) hi{g\92)(p) = hi(g-i)(hi{g2){p)) for all gx,g2 € G and p G R ; 
(gi) for q,p G R there exists g G G such that hi(g)(q) — p; 
(hi ) for a fixed q G R there exists a C1 function R g(jp, i) G G 

such that hi(g(p, i))(q) = p for all p G R ; 
( i i ) if (pi,...,pn,qi,---,qn) G M and g € G, then 

(hi(g)(Pi), ••••, hn(g)(Pn), hi(g)(qi),..., hn(g)(qn)) G M. 

Therefore 

(11) /l(/»l(flf)(pi)) + • • • + / „ ( M $ ) ( P n ) ) = + • • • 

+ fn(hn(g)(qn)) 

for ( P I , . . . , P N , g i , . . . , ? „ ) G M and g G G. 
Now the proof depends on the following lemma. 

L E M M A 2 . L e i / : R —• R be a Ljoc Borel function. Let G be a Lie group, 
and let fi be a right invariant Haar measure on the Borel sets in G. Suppose 
further that the mapping G X R 9 (g,p) h(g)(p) G R is C1 and satisfies 
the conditions (ei) - (hi) with the index i deleted. Then 

(i) the mapping G X R 9 (g,p) ^ f(h(g)(p)) G R ¿s a L]oc (with respect 
to fix dp) Borel function (here dp stands for Lebesgue measure on the Borel 
sets in R ) ; 

(ii) for any fixed g G G the mapping R 9 p f(h(g)(p)) G R is a Ljoc 

Borel function; 
(iii) for any fixed if) G Cft(R) the function G 9 g •-»• fR f (h(g)(p))ip(p)dp 

G R is continuous; 
(iv) for any fixed p G R the mapping G 9 g •-»• f(h(g)(p)) G R is a Ljoc 

(with repect to / / ) Borel function; 
(v) for any fixed <f>€Cl(G) the function R9/>•-> JG f(h(g)(p))4>(g)dfi(g) 

G R is C 1 . 

Let us assume the lemma and set 

FfiP) = f fi(hi(g)(p))<K9)dti9) for p G R , 4> G ^ ( G ) and » = 1 , . . . , n. 
G 

Then, by (v) and (11), the functions i7/ are C 1 for i = 1 , . . . , n and satisfy 
the functional equation (*) . Application of Theorem 1 therefore shows that 

F?(p) = a^iip) + b{4>)p + Ci{<t>) for p G R , 4> € and i = 1 , . . . , n. 
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or 

(12) / f fi(hi{g)(p))<t>(g)rl>(p)drtg)dp 
R G 

= a(4>) J Ui(p)ip(p)dp + b(<f>) f pip(p)dp + Ci(<f>) f i>(p)dp 
R R R 

for $ G C§(R), <t> G CQ(G), and i = 1 , . . . , n. 
Now, let (Um)meN be an open basis at e G G, and let (</>m)mgn be a 

sequence of nonnegative C1 functions on G such that J <f>m(g)dfj,(g) = 1 
G 

and <j>m is zero outside Um for me N. Then (ii), (iii), (ei), and simple 
estimates show that 

Um f f fi(hi(g)(p))<fim(g)4>(p)dft(g)dp = f fi(p)tf(p)dp 
m—kx> u •J J 

K G R 
for V> G GQ ( R ) and i = 1 , . . . , n. Appling this to (12) we obtain 

(13) J fi(p)i,(p)dp= lim m.—• nr 
R 

a(<t>m) f Ui(p)i>(p)dp 
R 

+ b(<f>m) J p^(p)dp + Ci(<f>m) J ip(p)dp 
R R 

for V G C° ( R ) and i = 1 , . . . , n. 
Now the proof is easy completed. Namely, taking in (13) the function Wj 

with nonconstant derivative, ip — x" AN(I X G Gq(R) such that 
Iru;'i(p)x'(p)^P 0? w e s e e that the sequence {a{cf>m))m€N converges. Us-
ing this and taking in (13) V* G Cq (R) be such that Jllp'^(p)dp ^ 0 and 
Jnip(p)dp = 0; we get that the sequence (6(^>TO))m€N converges. Thus the 
sequence (cj(<^TO))men (i = 1 , . . . , n ) converges too. Therefore 

f fi(p)1>{p)dp = a f uji(p)tp(p)dp+b f pijj(p)dp+Ci f i>(p)dp 
R R. H, R. 

for tp G Cq(R) , where a = lim a(<£m), b — lim 6(<^m), and C{ = m—t-oo m—• oo 
lim Ci(<f>m) (i = 1 , . . . , n ) . m—*oo 

Since the last property is equivalent to the conclusion of the theorem, 
the proof is ended. • 

P r o o f o f L e m m a 2. The composition of Borel functions is a Borel 
function, so the condition of Borel measurability in (i), (ii), and (iv) follows 
immediately from our assumptions. Moreover, we can (and do) restrict our-
selves to the case when the function / is nonnegative. Then the condition 
of local integrability with respect to /i X dp in (i) is a consequence of (iii). 
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Now, it is clear that to prove (iii) we can assume that in addition the 
function rp is nonnegative. Then, by (di) - (fi) and change of variables 
formula, we have 

( 1 4 ) f f ( h ( f f ) ( p m p ) d p = f f(p)1p(h(g-l)(p))\Jg(p)\dp<oofovgeG, 

R R 

where Jg is the Jacobian of the C 1 transformation R 9 J H - > h(g~1)(p) G R. 
So, (ii) holds and (iii) easy follows, since for any fixed p G R the integrand 

in the right side of (14) is a continuous function on G and has support 
contained in a compact subset of R , if g ranges over a compact subset of G. 

To see that (iv) holds, it is enough to observe that by (iii), G 3 g 
f ( h ( g ) ( p ) ) G R is a L}oc (with respect to /x) Borel function for almost all 
p G R and, by the right invariance of Haar measure fx, we have 

J mg)(p))\<Ks)\M9) = J / ( H f f M M f f s i p ) - 1 ) ^ ) 
G G 

for any (by (gi) and (hi)) fixed q G R and all p G R. Finally, (v) is true 
since 

( 1 5 ) f f(h(g)(p))<t>(g)dti(g)= f / ( ^ ^ M ^ p ) " 1 ) ^ ) for p G R , 

G G 

and for any fixed g G G the integrand in the right side of (15) is a C1 

function on R and has support contained in a compact subset of G, if p 
ranges over a compact subset of R. • 

3. Now, let us consider some examples 
2 

E X A M P L E 1. Put u>i(p) = for p e R, mi > 0, (i = 1 , . . . , n ) and 
suppose that G — R is a Lie group of real numbers under the operation of 

2 

addition. Let the left action of a group G on Wi — {(p, .' p G R } for 
i = 1 , . . . , n be given by 

( P2 \ ( P2 rni9
2\ 

9 - { P ' 2 ^ ) = { P + m i 9 > 2 m i + 9 P + — ) 

for g,p G R . Then it is easy to verify that the conditions (b) - (i) are satisfied. 
Consequently, in case n > 3, Theorem 2 may be employed to obtain 

P2 

fi(p) — a- b bp + c, for almost all p G R and i = 1 , . . . , n, 
2 TUi 

for a Ljoc solution of the functional equation (*). 

E X A M P L E 2 . Take cji(p) = y/p2 + m] for p G R , mt- > 0, (i = 1 , . . . , n) 
and suppose that G = R is a Lie group of real numbers under the operation 
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of addition. Let the left action of a group G on Wi = {(p, \Jp2 + m2) : p £ 
R } for i = 1 , . . . , n be given by 

g- ̂ p, \Jp2 + m^j = ^p coshg + yjp2 + m] sinh g,p sinhg + yjp2 + mf cosh g"j 

for g,p 6 R. Then the conditions (b) - (i) hold. Therefore, in case n > 3 we 
may apply Theorem 2 and get 

fi(p) = a\Jp2 + m2 + bp + Cj for almost all p € R and i = 1 , . . . , n, 

for a i | o c solution of the functional equation (*). 

R e m a r k . It is easy to verify that Theorem 2, in case of Examples 1 and 
2 works for which are only measurable Ljoc functions for ¿ = 1 , . . . , n. 

The following examples show that hypotheses (a) and (b) are not super-
fluous in Theorems 1 and 2. 

E X A M P L E 3 . Let n = 2 . If U>I(p) = W2(p) = p2 for p e R, then 
(Pi,P2,qi,q2) € M implies (pi,p2) = (gi,92) or (Pi,P2) = (?2,9i)- There-
fore, / i = fa = / is a solution of the functional equation (*) for every 
function / : R —• R. 

E X A M P L E 4. Let n = 3. Ifu>i(p) = u;2(p) = p and u;3(p) = ui(p)+p for p £ 
R, where u> : R —> R is any one-to-one function, then (pi,P2>P3,<7i,<72,<73) € 
M implies pz = Therefore, fi(p) = ap + Cj for p 6 R, ¿ = 1,2 and fa is 
a solution of the functional equation (*) for every function fa : R —> R. 
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