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ON COLLISION INVARJANTS IN ONE DIMENSION

Consider a system of n particles, with the kinetic energies w;(p;) for
i =1,...,n and the potential energy of the interaction V(&y,...,Z,), which
is invariant under translations. Then the trajectories of a system lie on level
surfaces of the total energy H and momentum, and are solutions of the
Hamiltonian system of differential equations of the form

d#; OH dj;  OH

= = — =—-== fori=1,...,n.

dt ~ 9 dt 0z "
Let us assume that there is a global trajectory of a system that have
the asymptotic free trajectories i*(¢),p; (¢ = 1,...,n) at £ = —oo and

£o¥(t),q; (1 = 1,...,n) at t = 0o, which are solutions of the Hamiltonian
system of differential equations with V equal to zero.

We call a set of functions f;(Z;,p:,t) (i = 1,...,n) a collision invariant
of a system if

[UET @), 8) + oo+ [P, Pus t) = FLETH(®), G10t) + - .
+ [ Z3E4(1), Gns t)
and

dfi(f::n(t)’ﬁiJ) —0= dfi(f?ut(t)’(ﬂat)
dt B dt
for all free trajectories that are asymptotic to some global trajectories of a
system (cf. [1]). We note that

Pt A+ = @1+ 4G and  wi(P1)+. . Awn(Fn) = wi1(§)+. . Awn(dn)-

The general form of collision invariants of a system of interacting particles
in three dimensions was derived in [1]. In particular, it follows that collision
invariants that depend only on the momenta must be linear in the kinetic
energy and momentum (see also the references quoted in [1]). It was also
argued in [1] that there is no analogous result for one dimension (cf. Example
3 of the present paper).

fort=1,...,n
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It is the purpose of this paper to show that also in one dimension, collision
invariants of a system of more than two interacting particles (which depend
only on the momenta) must be linear in the kinetic energy and momentum.
This result was already quoted in [2].

1. Our first theorem reads as follows.

THEOREM 1. Suppose that:

(a) n€e N andn > 3;

(b) w; : R — R are C! functions fori = 1,...,n such that at least two
of them have nonconstant derivative;

(c) M is a subset of R*™ defined by
M= {(pl,...,pn,ql,...,qn) ER™ G+ .. .4 P=G+...+ G,
and w1 (P1) + ...+ wa(Pn) = wi (@) + ... + wn(dn)}-
If f; : R — R are C! functions for i = 1,...,n satisfying the functional
equation
(*) filp)+ .+ fa(pa) = fil@) + - + falgn)
f07‘ (Pl,---,Pm‘Ih-n,‘In) € M’
then exist constants a,b,¢; (i = 1,...,n) such that

fi(p) = awi(p)+bp+c; forpeR and i=1,...,n.

Proof. The assumptions ensure that

(1) dp1+ ...+ dp, =dq1 + ...+ dq,,
(2)  wi(p)dpr+ ...+ wy(pn)dpn = wi(q1)dar + - . . + Wl (gn)dgn,
(3) filp1)dpr + ...+ fr(pn)dpn = fi(e1)dar + - . .+ fr(gn)dgn

for (p1,...,Pny @15 --,qn) € M. Solving the system of equations (1) and (2)
for dp; and dg;, substituting into (3) and equating to zero the coefficient of
dgqi, we get
. fila;) = filae) wi(g;) frlar) — fi(a5)wi(ax)
(4) fi(pi) = 7 Wy Pi) + (. r
wi(g;) — wy(gx) w;(g;) — wi(gx)

where p;, g;, gx can range over all real numbers such that

wzl'(pi) 71: w_;'(qj)7 w;c(qk) 76 w;(qj)a and (ph ceyPn,q1,y .. ,qn) EM
for somep; e R (1€ {1,...,n}\ {}) and g, e R (m € {1,...,n}\ {4, k}).

We note that M contains the diagonal of R?" = R"™ x R™. Thus no
problem arises in the last condition when ¢, j, k are pairwise different, what
we from now assume.

Let w;- be a nonconstant function and assume the following lemma.
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LEMMA 1. Ife : R — R is a nonconstant continuous function, then a
set of € e(R) such that the set {p € R :¢e(p) # r} is dense in R, is dense
in e(R).

Then one can easily see that for fixed 7,k and ¢; € R there exists a set
Jij(gx) C wi(R), which contains more than one point (even infinitely many
points), such that the set

{p € R:wi(pi) # wi(g)), wilar) # wjai) }
is dense in R for all w!(g;) € Jij(gx). Hence, by (4) and continuity of f], we
obtain (for ¢x € R and wi(q;) € Jij(qx))
(5) fi(p) = a;k(gj> @ )wi(p) + bjr(gj qx) forall p € R,
where
o) = ) = i@
(6) ‘*’Ij(‘b’) 7 w(qx) , ,

bi(gs qk) = "-’j(‘Ij)fk(Qk) - fj(qj)wk(Qk).

wi(gj) — wi(gx)

By the hypothesis (b) we can (and do) assume that in addition w] is a
nonconstant function. Then the functions w! and 1 are linearly independent,
so ajx and b;x are constant. Now replacing ¢ by j and j by ¢ we obtain (for
g € R and wi(g:) € Jji(qx))
(7) £i(p) = air(qi, gx)w'i(p) + bir(gi,qx) forallp e R,
where

fi(ai) = filax)

QGik\Gis9k) = 7~ v
© (9699 = (g~ wilan)

bix(ir ) = wi(g)filar) = fi(gi)wi(ar)

’ wi(gi) — wi(ak)
Moreover, a;x and b;; are constant too. Therefore, it follows from (6) and
(7) that
filar) = (aik — aji)wi(q) + ajkwi(ge) + bix  forevery gx € R

and wi(g;) € Jij(qx). But for each gx € R the set Ji;(qx) contains more
than one point, so

(9) aik = ajr and fi(p) = ajrwi(p) + bix forallp € R.
In similar fashion, using (8) and (5), we get additionally
(10) fi(p) = aixwi(p) + bj forall p € R.

Hence bix = bji. Since k € {1,...,n} \ {¢,7} was arbitrary, the desired
result now readily follows from (5), (7), and (10) with @ = aix = ajx and
b = bix = bjx. This completes the proof. a
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Proof of Lemma 1. The interior of ¢(R) is a nonempty open inter-
val. Therefore, it suffices to verify that each nonempty open interval contains
a point r such that the set {p € R:¢e(p) = r} not contains any nonempty
open interval. But to this end it is enough to observe that a set of points
7 such that the set {p € R : ¢(p) = r} contains a nonempty open interval is
countable. a

Before we pass to the second theorem we are going to give the following
remark.

Remark. From the proof it may be seen that for the validity of The-
orem 1 the functional equation (*) is not needed on the whole set M. This
is important because there exist systems for which not all free trajectories
that lie on level surfaces of the energy and momentum are asymptotic to
some global trajectories (cf. [1]).

2. In the case of more special assumptions we have the following infor-
mation about collision invariants.

THEOREM 2. Suppose that the conditions (a), (b), and (c) of Theorem
1 are satisfied and in addition for i = 1,...,n there is a Lie group G left
action - on W; = {(p,wi(p)) : p € R} such that:

(d) the mapping G X W; 3 (g, w)— g-w € W; is C';

(e) e-w=w for all w € W;, where e is a unit element in G;

(f) (9192) - w=g1- (92" w) for all g1,92 € G and w € W;;

(g) for v,w € W; there ezists g € G such that g-v = w;

(h) for a fized v € W; there exists a C' function W; 3 w — g(w) € G
such that g(w)-v = w for all w € W;;

(1) fwi,v; eW; (i=1,...,n),9g€Gandwi+... +w, =v1+...+v,,
theng-w1+...+g - wpo=9g-v1+...+ g v,

If fi : R = R are L}, Borel functions for i = 1,...,n satisfying the
functional equation
(*) A(p) + ..+ falpn) = Ail@) + .-+ faldn)
for (p1,-« s Pny @1+, qn) € M,
then exist constants a,b,c; (1 =1,...,n) such that

fi(p) = awi(p) + bp+c¢; for almostallpe R and i=1,...,n.

Proof. Let forany g € G,p € R and i € {1,...,n}, hi(g)(p) means the
point in R such that

g - (p,wi(p)) = (hi(g)(p),wi(hi(9)(P)))-
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Then it is easy to check that conditions (d) - (i) imply:

(d1) the mapping G X R 5 (g,p) — hi(9)(p) € Ris C;

(e1) hi(e)(p) = p for all p € R, where e is a unit element in G;

(f1) hi(g192)(p) = hi(g1)(hi(g2)(p)) for all g1,9; € G and p € R;

(g1) for ¢,p € R there exists g € G such that h;(g)(q) = p;

(hy) for a fixed ¢ € R there exists a C! function R 3 p — ¢(p,i) € G
such that h;(g(p,¢))(q) = p for all p € R;

(11) if (pla" s Pns s - - '7qn) € M and g€ G? then

(h1(g)(P1)s - - Rn(9)(Pn)s Ra(9)(q1)s - - - Ru(9)(gn)) € M.

Therefore

(11)  AP(9)(@1) + - - -+ falha(9)(Pn)) = fi(ha(g) (@) + ..
+ fa(hn(g)(gn))

for (p1,.-+,Pn>q15---,qn) € M and g € G.
Now the proof depends on the following lemma.

LEMMA 2. Let f: R — R be a L}, Borel function. Let G be a Lie group,
and let u be a right invariant Haar measure on the Borel sets in G. Suppose
Jurther that the mapping G x R 3 (g,p) — h(g)(p) € R is C! and satisfies
the conditions (e;) - (hy) with the indez i deleted. Then

(i) the mapping G xR 3 (g,p) ~ f(h(g)(p)) € R is a Lj,, (with respect
to pu x dp) Borel function (here dp stands for Lebesque measure on the Borel
sets in R);

(ii) for any fixred g € G the mapping R 5 p — f(h(g)(p)) € R isa L},
Borel function;

(iii) for any fized ¢ € CY(R) the function G > g — [, f(h(g)(p))¥(p)dp
€ R is continuous;

(iv) for any fized p € R. the mapping G 5 g — f(h(g)(p)) e R is a L} _
(with repect to p) Borel function;

R(v.) g)lr any fizred € C5(G) the function Ro>pr [, f(h(g)(p))$(g)du(g)
€ 18 .

Let us assume the lemma and set

Fip)= [ fi(hi(9)(p))$(9)du(g) forpe R, p € C3(G)andi=1,...,n.
G

Then, by (v) and (11), the functions F are C! for i = 1,...,n and satisfy
the functional equation (). Application of Theorem 1 therefore shows that

F?(p) = a(¢)wi(p) + b(¢)p+ ci(¢) forp€e R, ¢ € CH(G)andi=1,...,n.
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or

12) [ [ fihi(g)(p))(9)b(p)du(g)dp
R G

=a(¢) [ wilp)d(p)dp+b(¢) [ po(p)dp+ci(e) [ $(p)dp
R R R

for ¢ € CY(R), ¢ € C3(G),and i =1,...,n.
Now, let (U )men be an open basis at e € G, and let (¢m)men be a

sequence of nonnegative C! functions on G such that f dm(g)du(g) =1

G
and @, is zero outside U,, for m € N. Then (i), (iii), (e1), and simple
estimates show that

lm [ [ fi(hi(9)()$mle)(P)dp(g)dp = [ filp)b(p)dp
R G R
for ¢ € CY(R) and i = 1,...,n. Appling this to (12) we obtain

(13) [ fi(e)b(p)dp= lim |a(¢m) [ wi(p)é(p)dp
R R

+b(6m) [ p¥(p)dp+ ci(dm) [ $(p)dp
R R

fory € CYR) and i =1,...,n.

Now the proof is easy completed. Namely, taking in (13) the function w;
with nonconstant derivative, ¥y = x" and x € CZR) such that
Jrwi(p)x'(p)dp # 0, we see that the sequence (a(¢))men converges. Us-
ing this and taking in (13) ¥ € CJ(R) be such that [ py(p)dp # 0 and
Jr ¥(p)dp = 0; we get that the sequence (b(¢m))men converges. Thus the
sequence (¢;(dm))men (¢ =1,...,n) converges too. Therefore

[ £:p)y¥(p)dp=1a [ wi(p)(p)dp+b [ pp(p)dp+e: [ v(p)dp
R R R

R
for v € CQ(R), where ¢ = lim a(¢n), b = lim b(¢m), and ¢; =

mhinoo ci(om) i =1,...,n).
Since the last property is equivalent to the conclusion of the theorem,
the proof is ended. 0

Proof of Lemma 2. The composition of Borel functions is a Borel
function, so the condition of Borel measurability in (i), (ii), and (iv) follows
immediately from our assumptions. Moreover, we can (and do) restrict our-
selves to the case when the function f is nonnegative. Then the condition
of local integrability with respect to g X dp in (i) is a consequence of (iii).
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Now, it is clear that to prove (iii) we can assume that in addition the
function 1 is nonnegative. Then, by (d;) - (f1) and change of variables
formula, we have

(14) [ f(h(g)@))b(p)p=[ F(P)¥(h(g™")(P))|Jg(p)ldp < o0 for g € G,
R R

where J, is the Jacobian of the C! transformation R 3 p — h(g~')(p) € R.
So, (ii) holds and (iii) easy follows, since for any fixed p € R the integrand
in the right side of (14) is a continuous function on G and has support
contained in a compact subset of R, if g ranges over a compact subset of G.
To see that (iv) holds, it is enough to observe that by (iii), G 3 g —
f(h(9)(p)) € R is a L}, (with respect to ) Borel function for almost all

loc
p € R and, by the right invariance of Haar measure p, we have

J f(R())I#(9)ldulg) = [ F(h(g)(a)Ié(g9(p)")ldn(g)
G G

for any (by (g1) and (h;)) fixed ¢ € R and all p € R. Finally, (v) is true
since

(15) [ f(hlg)P))d(g)du(g) = [ F(h(9)(9))$(99(p)~")dp(g) for p € R,
G G

and for any fixed ¢ € G the integrand in the right side of (15) is a C!
function on R and has support contained in a compact subset of G, if p
ranges over a compact subset of R. a

3. Now, let us consider some examples

EXAMPLE 1. Put wi(p) = 5’7’% forpe R, m; >0,(:=1,...,n) and
suppose that G = R is a Lie group of real numbers under the operation of
addition. Let the left action of a group G on W; = {(p, -2;%) :p € R} for
t=1,...,n be given by

P’ P’ mig?
o (r)=(rma e 4o ™)
2 (3
for g,p € R. Then it is easy to verify that the conditions (b) - (i) are satisfied.
Consequently, in case n > 3, Theorem 2 may be employed to obtain

2

f,‘(p)za;n. +bp+e¢; foralmostallpe Randi=1,...,n,

for a L}, solution of the functional equation (*).

EXAMPLE 2. Take wi(p) = /p? + mi forpe R, m; >0, (i = 1,...,n)
and suppose that G = R is a Lie group of real numbers under the operation
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of addition. Let the left action of a group G on W; = {(p,/pP*+ m?) :p€
R} for i =1,...,n be given by

g-(p,\/pZ +mf) = (pcoshg+ \/p* + m?sinh g, psinhg + 4/p? + m? coshg)

for g,p € R. Then the conditions (b) - (i) hold. Therefore, in case n > 3 we
may apply Theorem 2 and get

filp)=ay/pPP+m?+bp+c; foralmostallpec Rand:i=1,...,n,

for a L] _ solution of the functional equation (*).

Remark. It is easy to verify that Theorem 2, in case of Examples 1 and

2 works for f;, which are only measurable L}oc functions for ¢ = 1,...,n.

The following examples show that hypotheses (a) and (b) are not super-
fluous in Theorems 1 and 2.

EXAMPLE 3. Let n = 2. If wy(p) = wa(p) = p? for p € R, then
(p1,P2,01,92) € M implies (p1,p2) = (q1,%) or (p1,p2) = (g2, ) There-
fore, fi = fo = f is a solution of the functional equation (*) for every
function f: R — R.

EXAMPLE 4. Let n = 3. If wy (p) = wy(p) = pand w3(p) = w(p)+pforp €
R, where w : R — R is any one-to-one function, then (p1,ps, 3, ¢1,¢2,93) €
M implies p3 = g3. Therefore, fi(p) =ap+ciforpe R, i =1,2 and f3 is
a solution of the functional equation (x) for every function f; : R — R.
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