

Jacek Dziok

ON A STARLIKENESS PROBLEM FOR CERTAIN CLASS
OF MULTIVALENT ANALYTIC FUNCTIONS

1. Introduction

Let $P(\alpha)$, $0 \leq \alpha < 1$, denote the class of functions h , with $h(0) = 1$ regular in $K = K(0, 1)$, where $K(a, r) = \{z : |z - a| < r\}$, and satisfying the condition $\operatorname{Re} h(z) > \alpha$ for $z \in K$, and let $P(0) = P$.

Let S_p , where p is a positive integer, denote the class of functions f of the form

$$(1.1) \quad f(z) = z^p + \sum_{n=p+1}^{\infty} a^n z^n, \quad z \in K,$$

regular and p -valent in K . In particular, $S_1 = S$ is the class of univalent functions.

We shall also use the following well known notations

$$S_p^*(\alpha) = \left\{ f \in S_p : \operatorname{Re} \frac{zf'(z)}{f(z)} > \alpha, z \in K \right\}$$

for the p -valent starlike functions of order α , $0 \leq \alpha < p$, and

$$S^c = \left\{ f \in S : \operatorname{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > 0, z \in K \right\}$$

for the class of convex functions.

DEFINITION 1. The function f of the form (1.1), regular in K , belongs to the class $CS_p^*(\alpha)$ of α -close-to-star functions if there exists a function $g \in S_p^*(\alpha)$ such that $\operatorname{Re} \frac{f(z)}{g(z)} > 0$ for $z \in K$. Especially, denote $CS^*(\alpha) = CS_1^*(\alpha)$, $CS^* = CS^*(0)$.

1994 *Mathematics Subject Classification*: 30C45.

Key words: close-to-star functions, multivalent functions.

The class $CS^*(\alpha)$ was investigated by Al-Amiri [1], Kulkarni and Thakare [4], Sakaguchi [7], Krzyż and Rade [3], MacGregor [5] and others.

Let \mathcal{A} denote a subclass of the class of functions regular in K .

DEFINITION 2. Let $B(\mathcal{A})$ denote the set of all pairs $(|a|, r)$, where $a \in K$, $|a| < r \leq 1 - |a|$, such that any function $f \in \mathcal{A}$ maps the disk $K(a, r)$ onto a domain starlike with respect to the origin.

Putting $a = 0$, we obtain the radius of starlikeness for the class \mathcal{A} .

The set $B(\mathcal{A})$ was determined for $\mathcal{A} = S^*$ by Rahmanow [6], for $\mathcal{A} = S^*(\alpha)$, S^c by Stankiewicz and Świtoniak [8], for $\mathcal{A} = S$ by Świtoniak [9] and for $\mathcal{A} = CS^*$ by Dziok [2].

In this paper we determined the set $B(CS_p^*(\alpha))$ for the α -close-to-star functions.

The following lemma is useful for our main result.

LEMMA [9]. *Let f be a regular function in K , $a \in K$, $|a| < r \leq 1 - |a|$. It maps the disk $K(a, r)$ onto a domain starlike with respect to the origin if and only if*

$$(1.2) \quad \operatorname{Re} \frac{e^{i\theta} f'(a + re^{i\theta})}{f(a + re^{i\theta})} \geq 0 \text{ for } 0 \leq \theta \leq 2\pi.$$

2. Main results

THEOREM. Let $f \in CS_p^*(\alpha)$, where p is a positive integer and α is a real number, $0 \leq \alpha < p$. Let

$$\mathcal{B}' = \left\{ (|a|, r) : \begin{cases} |a| < r & \text{for } 0 \leq r \leq r_1 \\ |a| \leq \sqrt{r^2 - (r^2 - (\sqrt{p} - 2\sqrt{r(1+p-\alpha)})^2/(p-2\alpha))^2/(p-2\alpha)} & \text{for } r_1 < r < r_2 \\ |a| \leq q - r & \text{for } r_2 \leq r < q \end{cases} \right\}$$

where

$$(2.1) \quad r_1 = \frac{p}{4(1+p-\alpha)},$$

$$(2.2) \quad r_2 = p(1+p-\alpha)(1+p-\alpha + \sqrt{(1-\alpha)^2 + 2p})^{-2},$$

$$(2.3) \quad q = p(1+p-\alpha + \sqrt{(1-\alpha)^2 + 2p})^{-1},$$

$$(2.4) \quad \mathcal{B}'' = \{ (|a|, r) : |a| < r \leq q - |a| \}$$

and let us put

$$(2.5) \quad \mathcal{B} = \begin{cases} \mathcal{B}' & \text{for } 0 \leq \alpha < p/2 \\ \mathcal{B}'' & \text{for } p/2 \leq \alpha < p \end{cases}.$$

If $(|a|, r) \in \mathcal{B}$, then the function f maps the disk $K(a, r)$ onto a domain starlike with respect to the origin.

The result is sharp for $p/2 \leq \alpha < p$, and for $0 \leq \alpha < p/2$ the set \mathcal{B} can not be larger than \mathcal{B}'' . It means that

$$(2.6) \quad \mathcal{B}' \subset B(CS_p^*(\alpha)) \subset \mathcal{B}'' \text{ for } 0 \leq \alpha < p/2,$$

$$(2.7) \quad B(CS_p^*(\alpha)) = \mathcal{B}'' \text{ for } p/2 \leq \alpha < p.$$

Proof. Let $z = a + re^{i\theta}$, $0 \leq \theta \leq 2\pi$. Since the function $e^{-is}f(e^{is}z)$, $s \in R$, $z \in K$, belongs to the class $CS_p^*(\alpha)$ together with the function f , we may assume without the loss of generality that a is real and nonnegative.

Let $f \in CS_p^*(\alpha)$. Thus there exists a function $g \in S_p^*(\alpha)$ which satisfies the $\frac{f(z)}{g(z)} = h(z)$, where $h \in P$, or equivalently

$$(2.8) \quad f(z) = g(z)h(z).$$

Because $g \in S_p^*(\alpha)$, therefore $\frac{zg'(z)}{pg(z)} \in P(\alpha/p)$. Since the domain of variability of the functional h in the class $P(\alpha/p)$ is known, we have

$$\left| \frac{zg'(z)}{pg(z)} - \frac{\alpha}{p} - \left(1 - \frac{\alpha}{p}\right) \frac{1+|z|^2}{1-|z|^2} \right| \leq \frac{2(1-\alpha/p)|z|}{1-|z|^2}.$$

Thus, after some calculations, we obtain

$$(2.9) \quad (1-|z|^2) \operatorname{Re} \frac{e^{i\theta}g'(z)}{pg(z)} \geq \operatorname{Re} \frac{e^{i\theta}(1+(1-2\alpha/p)|z|^2)}{z} - 2(1-\alpha/p).$$

Logarithmic differentiation of the equality (2.8) gives

$$\frac{f'(z)}{f(z)} = \frac{g'(z)}{g(z)} + \frac{h'(z)}{h(z)}.$$

Using the well-known estimate for $|h'(z)/h(z)|$ in the class P , we have

$$\operatorname{Re} \frac{e^{i\theta}f'(z)}{f(z)} \geq \operatorname{Re} \frac{e^{i\theta}g'(z)}{g(z)} - \frac{2}{1-|z|^2}.$$

Using (2.9) and setting $z = a + re^{i\theta}$, this yields

$$(2.10) \quad (1-|a+re^{i\theta}|) \operatorname{Re} \frac{e^{i\theta}f'(a+re^{i\theta})}{f(a+re^{i\theta})} \geq \operatorname{Re} \frac{e^{i\theta}(p+(p-2\alpha)|a+re^{i\theta}|^2)}{a+re^{i\theta}} - 2(p+1-\alpha).$$

We now have to require that the right-hand side of (2.10) must be nonnegative, that is

$$(2.11) \quad \operatorname{Re} \left(\frac{p}{r + ae^{-i\theta}} + \frac{(p - 2\alpha)|r + ae^{-i\theta}|^2}{r + ae^{-i\theta}} \right) \geq 2(1 + p - \alpha).$$

If we put

$$(2.12) \quad r + ae^{-i\theta} = x + yi$$

into (2.11), we get

$$(2.13) \quad \frac{px}{x^2 + y^2} + (p - 2\alpha)x \geq 2(1 + p - \alpha).$$

Thus, using the equality

$$(2.14) \quad (x - r)^2 + y^2 = a^2,$$

we obtain

$$(2.15) \quad 2r(p - 2\alpha)x^2 + [p + (p - 2\alpha)(a^2 - r^2) - 4r(1 + p - \alpha)]x + 2(1 + p - \alpha)(r^2 - a^2) \geq 0.$$

Now we require that the inequality (2.15) holds for every $x \in [r - a, r + a]$. Let us denote the quadratic trinomial in the inequality (2.15) by $w(x)$. The determinant Δ of this trinomial is given by

$$\begin{aligned} \Delta &= (p + (p - 2\alpha)(a^2 - r^2) - 4r(1 + p - \alpha))^2 \\ &\quad - 16r(p - 2\alpha)(1 + p - \alpha)(r^2 - a^2) = AB, \end{aligned}$$

where

$$(2.16) \quad \begin{cases} A = (p - 2\alpha)(a^2 - r^2) + p + 4r((1 + p - \alpha) + 4\sqrt{rp(1 + p - \alpha)}) \\ B = (p - 2\alpha)(a^2 - r^2) + p + 4r(1 + p - \alpha) - 4\sqrt{rp(1 + p - \alpha)} \end{cases}.$$

Let $D = \{(a, r) \in R^2 : 0 \leq a < r \leq 1 - a\}$. First we discuss the case $0 \leq \alpha < p/2$. Thus the inequality (2.15) is satisfied for every $x \in [r - a, r + a]$, if one of the following conditions is satisfied:

- 1° $\Delta \leq 0$,
- 2° $\Delta > 0$ and $w(r - a) \geq 0$ and $x_0 \leq r - a$,
- 3° $\Delta > 0$ and $w(r + a) \geq 0$ and $x_0 \geq r + a$,

where

$$(2.17) \quad x_0 = -\frac{(p - 2\alpha)(a^2 - r^2) - 4r(1 + p - \alpha) + p}{4(p - 2\alpha)r}.$$

Ad 1°. Let $\mathcal{B}_1 = \{(a, r) \in D : \Delta \leq 0\}$. Since $A > 0$, the condition $\Delta \leq 0$ is equivalent, by (2.16), to the inequality

$$(2.18) \quad B = (p - 2\alpha)(a^2 - r^2) + p + 4r((1 + p - \alpha) - 4\sqrt{r(1 + p - \alpha)}) \leq 0.$$

Let γ denote the boundary of the set $\tilde{\mathcal{B}}_1 = \{(a, r) \in R^2 ; B \leq 0\}$. But γ is the curve which is tangent to the straight lines $r = a$ and $r = q - a$ at the points $S_1(r_1, r_1)$ and $S_2(r_2, q - r_2)$, respectively, where r_1, r_2, q are defined by (2.1), (2.2) and (2.3), respectively. Moreover γ cuts the straight line $a = 0$ at the points

$$\begin{aligned} r_3 &= \frac{[(1 + p - \alpha + [p(p - 2\alpha)]^{1/2})^{1/2} - (1 + p - \alpha)^{1/2}]^2}{p - 2\alpha}, \\ r_4 &= \frac{[(1 + p - \alpha)^{1/2} - (1 + p - \alpha - [p(p - 2\alpha)]^{1/2})^{1/2}]^2}{p - 2\alpha}, \\ r_0 &= \frac{[(1 + p - \alpha)^{1/2} + (1 + p - \alpha - [p(p - 2\alpha)]^{1/2})^{1/2}]^2}{p - 2\alpha}. \end{aligned}$$

We have $0 < r_3 < r_4 < q$ and $r_0 > q$. Thus

$$\mathcal{B}_1 = \{(a, r) : r_3 \leq r \leq r_4,$$

$$0 \leq a \leq \sqrt{r^2 - (\sqrt{p - 2\sqrt{r(1 + p - \alpha)}})^2 / (p - 2\alpha)}\}.$$

Ad 2°. Let $\mathcal{B}_2 = \{(a, r) \in D : \Delta > 0 \wedge w(r - a) \geq 0 \wedge x_0 \leq r - a\}$. We have $w(r - a) = (r - a)[(p - 2\alpha)(r - a)^2 - 2(1 + p - \alpha)(r - a) + p] = (p - 2\alpha)(r - a)(r - a - q')(r - a - q)$ where q is defined by (2.3) and $q' = p(1 + p - \alpha - \sqrt{(1 - \alpha)^2 + 2p})^{-1}$. Since $q' > 1$ and $0 < q < 1$ hold for $0 \leq \alpha < p/2$, we see that $(r - a)(r - a - q') < 0$ and the inequality $w(r - a) \geq 0$ is true, if

$$(2.19) \quad r \leq a + q.$$

The inequality $x_0 \leq r - a$ may be written in the form

$$(2.20) \quad (p - 2\alpha)a^2 + 3(p - 2\alpha)r^2 - 4(1 + p - \alpha)r - 4(p - 2\alpha)ar + p \geq 0.$$

The hyperbola h_1 , which is the boundary of the set of all pairs $(a, r) \in R^2$ satisfying (2.20), cuts the line $a = r$ at the point S_1 and the line $a = 0$ at the points

$$\begin{aligned} (2.21) \quad r_5 &= \frac{p}{2(1 + p - \alpha) + \sqrt{4(1 + p - \alpha)^2 - 3p^2(1 - 2\alpha)}}, \\ \tilde{r}_5 &= \frac{p}{2(1 + p - \alpha) - \sqrt{4(1 + p - \alpha)^2 - 3p^2(1 - 2\alpha)}}. \end{aligned}$$

We have $r_3 < r_5 < r_4$, $\tilde{r}_5 > q$. Thus, finally, we describe the set

$$\mathcal{B}_2 = \left\{ (a, r) : \begin{cases} 0 \leq a < r & \text{for } 0 \leq r \leq r_3 \\ \sqrt{r^2 - (\sqrt{p} - 2\sqrt{r(1+p-\alpha)})^2/(p-2\alpha)} \leq a < r & \text{for } r_3 < r < r_1 \end{cases} \right\}$$

3°. Let $\mathcal{B}_3 = \{(a, r) \in R : \Delta > 0 \wedge w(r+a) \geq 0 \wedge x_0 \geq r+a\}$. Since

$$\begin{aligned} w(r+a) &= (r+a)[(p-2\alpha)(r+a)^2 - 2(1+p-\alpha)(r+a) + p] \\ &= (p-2\alpha)(r+a)(r+a-q')(r+a-q) \end{aligned}$$

and $(r+a)(r+a-q') < 0$ hold for $a < r \leq 1-a$, we conclude that the inequality $w(r-a) \geq 0$ is true if

$$(2.22) \quad r \leq q-a.$$

The inequality $x_0 \leq r+a$ may be written in the form

$$(2.23) \quad (p-2\alpha)a^2 + 3(p-2\alpha)r^2 - 4(1+p-\alpha)r + 4(p-2\alpha)ar + p \leq 0.$$

The hyperbola h_2 , which is the boundary of the set of all pairs $(a, r) \in D$ satisfying (2.23), cuts the line $a+r=q$ at the point S_2 and the line $a=0$ for $r=r_5$. Thus we determine the set

$$\mathcal{B}_3 = \left\{ (a, r) : \begin{cases} \sqrt{r^2 - (\sqrt{p} - 2\sqrt{r(1+p-\alpha)})^2/(p-2\alpha)} < a \leq q-r & \text{for } r_2 < r < r_4 \\ 0 \leq a \leq q-r & \text{for } r_4 \leq r < q \end{cases} \right\}$$

The union of the sets $\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3$ gives the set \mathcal{B}' . Thus

$$(2.24) \quad \mathcal{B}' \subset B(CS^*(\alpha)) \text{ for } 0 \leq \alpha < p/2.$$

Now let $p/2 < \alpha < p$. Then the inequality (2.15) is satisfied for every $x \in [r-a, r+a]$ if the following conditions are satisfied

$$(2.25) \quad w(r-a) \geq 0 \text{ and } w(r+a) \geq 0.$$

Since

$$\begin{aligned} w(r+a) &= (p-2\alpha)(r+a)(r+a-q')(r+a-q), \\ w(r-a) &= (p-2\alpha)(r-a)(r-a-q')(r-a-q) \end{aligned}$$

and $q' < 0, 0 < q < 1$ hold for $p/2 < \alpha < p$, then the condition (2.25) is

satisfied if

$$(2.26) \quad r - a - q \leq 0.$$

Let $\alpha = p/2$. Taking $\alpha = p/2$ in (2.15) we obtain

$$(2.27) \quad (p - 4r(1 + p/2))x + 2(1 + p/2)(r^2 - a^2) \geq 0.$$

The inequality (2.27) is satisfied for every $x \in [r - a, r + a]$ if $r - a \leq p/(p+2)$ or equivalently (2.26). Thus we obtain

$$(2.28) \quad \mathcal{B}'' \subset B(CS^*(\alpha)) \text{ for } p/2 \leq \alpha < p.$$

Let $0 \leq \alpha < p$. The function $f(z) = \frac{z^p(1-z)}{(1+z)^{2(p-\alpha)+1}}$ belongs to the class $CS_p^*(\alpha)$ and for $z = a + r, \theta = 0, a + r > q$ we have

$$\operatorname{Re} \frac{e^{i\theta} f'(z)}{f(z)} = \frac{p - 2(1 + p - \alpha)(a + r) + (p - 2\alpha)(a + r)^2}{(a + r)(1 - (a + r)^2)} \leq 0,$$

whence by Lemma and Definition 2, we get

$$(2.29) \quad B(CS^*(\alpha)) \subset \mathcal{B}'' \text{ for } 0 \leq \alpha < p.$$

By (2.24) and (2.29) we obtain (2.6). From (2.28) and (2.29) it follows (2.7), which completes the proof.

Remark. Finally let us observe, that taking $a=0$, we obtain the radius of starlikeness for the class $CS_p^*(\alpha)$, while, taking $\alpha = 0$ and $p = 1$, we have the result due to Dziok [2].

References

- [1] H. S. Al-Amiri, *On p -close-to-star function of order α* , Proc. Amer. Math. Soc. 29 (1971), 103–108.
- [2] J. Dziok, *On a starlike problem in the class CS^** , Folia Sci. Univ. Techn. Resoviensis, 16 (1994), 25–32.
- [3] J. Krzyż, M. O. Rede, *The radius of univalence of certain analytic functions*, Michigan Math. J. 11(1964), 157–159.
- [4] S. R. Kulkarni, N. K. Thakare, *The radius of convexity for a certain class of analytic functions*, Math. Student, 46 (1978), 367–373.
- [5] T. H. MacGregor, *Functions whose derivative has positive real part*, Trans. Amer. Math. Soc. 104 (1962), 532–537.
- [6] B. N. Rahmanow, *O zwierzdoobraznych funkcyach*, Diferencial'nye Uravnienija 181 (1975), 137–142.

- [7] K. Sakaguchi, *The radius of convexity for a certain class of regular functions*, J. Nagra Gakugei Univ. Natur. Sci. 12 (1964), 5–8.
- [8] J. Stankiewicz, B. Świtoniak, *Generalized problems of convexity and starlikeness*, Complex Anal. Appl. '85, Sofia 1986.
- [9] B. Świtoniak, *On a starlikeness problem in the class of functions S_α^** , Folia Sci. Univ. Techn. Resoviensis, 14 (1984), 17–27.

INSTITUTE of MATHEMATICS
PEDAGOGICAL UNIVERSSITY OF RZESZÓW
Rejtana 16a
35-310 RZESZÓW, POLAND

Received February 20, 1995.