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ON A STARLIKENESS PROBLEM FOR CERTAIN CLASS
OF MULTIVALENT ANALYTIC FUNCTIONS

1. Introduction

Let P(a), 0 < a < 1, denote the class of functions h, with A(0) = 1
regular in K = K(0,1), where K(a,r) = {z : |z — a| < r}, and satisfying
the condition Reh(z) > a for z € K, and let P(0) = P.

Let S, , where p is a positive integer, denote the class of functions f of
the form

(1.1) f(z) =22 + Z a"z", zeK,
n=p+1
regular and p-valent in K. In particular, S; = S is the class of univalent
functions.
We shall also use the following well known notations

zf'(2)
f(z)
for the p-valent starlike functions of order o, 0 < a < p, and

Scz{feS:Re(1+z]{,’2(z§)) >0, zEK}

S;(a)z{feSp:Re >a,z€I(}

for the class of convex functions.

DEFINITION 1. The function f of the form (1.1), regular in K, belongs
to the class CS;(a) of a-close-to-star functions if there exists a function

g € S;(a) such that Re g—((%) > 0 for z € K. Especially, denote C5*(a) =

CSi(a),CS* = CS*(0).

1994 Mathematics Subject Classification: 30C45.
Key words: close-to-star functions, multivalent functions.



622 J. Dziok

The class C'S*(a) was investigated by Al-Amiri [1], Kulkarni and Tha-
kare [4], Sakaguchi [7], KrzyZz and Rade [3], MacGregor [5] and others.
Let A denote a subclass of the class of functions regular in K.

DEFINITION 2. Let B(.A) denote the set of all pairs (|a|,7), where a € K,
la] < r <1 - |a|, such that any function f € A maps the disk K(a,r) onto
a domain starlike with respect to the origin.

Putting a = 0, we obtain the radius of starlikeness for the class A.

The set B(A) was determined for A = $* by Rahmanow [6], for A =
§*(e), §¢ by Stankiewicz and Switoniak [8], for A = S by Switoniak [9] and
for A = CS* by Dziok [2].

In this paper we determined the set B(CS;(a)) for the a-close-to-star
functions.

The following lemma is useful for our main result.

LeMMaA [9]. Let f be a regular function in K,a € K, |a] <7 < 1-|a].
It maps the disk K(a,r) onto a domain starlike with respect to the origin if
and only if

einl(a + reie)

(2 U

>0 for0<6<2I.

2. Main results
THEOREM. Let f € CS;(a), where p is a positive integer and a is a real
number, 0 < a <p. Let

| <7 for0<r<n
={(|a|a7'): {IaIS\/T2— 2 (VP—24/r(1+p-a))?/(p—- 2a)forr1<r<r2}

la| <g—r forrs <r<ygq
where
(2.1) r = 4(1—+’;_—a),
(2.2) ro=p(l+p-—a)l+p—a++/(1-a)+2p)72,
(2.3) g=p(l+p-a+/(1-a)+2p)7",
(2.4) B" = {(lal,r):]a] <r < g~ |a}

and let us put

!
(2.5) B= {B for0 < a<p/2

B" forp/2<a<p’
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If (|a|,r) € B, then the function f maps the disk K(a,r) onto a domain
starlike with respect to the origin.

The result is sharp for p/2 < a < p, and for 0 < a < p/2 the set B can
not be larger than B”. It means that

(2.6) B' C B(CS3(a)) C B" for 0 < o < p/2,
(2.7) B(CSy(a)) = B" for p/2 < a < p.

Proof. Let z = a + re?¥, 0 < # < 2II. Since the function e~ f(e'*z),
8 € R, z € K, belongs to the class C'S;(a) together with the function f, we
may assume without the loss of generality that a is real and nonnegative.

Let f € CSy(c). Thus there exists a function g € S;(a) which satisfies

the £ ((:; = h(z), where h € P, or equivalently

(2.8) f(2) = 9(2)h(2).
Because g € 5;(a), therefore %(%1 € P(a/p). Since the domain of variabil-
ity of the functional A in the class P(a/p) is known, we have
2(z) o o\ 1+ 22| _ 21— a/p)l2
- \l-- 7| < PN
p9(z) p p/1-|2 1-|2|

Thus, after some calculations, we obtain

Ly Re €09 o g €00 (L= 20/p)l2]?)
(29) (1-1sMReS T >R .

2(1 - a/p).
Logarithmic differentiation of the equality (2.8) gives

f'(2) _ g W)
f(z)  9(z) * h(2)’

Using the well-known estimate for |h'(2)/h(z)| in the class P, we have

eiefl(z) e‘eg’(z) 2
Re > Re — .
flz) = g(z)  1-]2
Using (2.9) and setting 2z = a + re*?, this yields
i6 g1 if
2.1 _ i € f(a+1je )
(210) (1-la+ re)Re HELS

e(p+ (p— 20)|a + re¥|?)

> Re :
a + rei

-2(p+1-a)
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We now have to require that the right-hand side of (2.10) must be nonneg-
ative, that is

p (p—2a)|r + ae™*?
(2.11) Re(r+ae““’ = >2(14+p-—a)
If we put
(2.12) r+ae” =z +yi

into (2.11), we get

(2.13) ;2—’;%+(p—2a)z >2(1+p-a)
Thus, using the equality

(2.14) (x — 1) + 92 = d?,

we obtain

(2.15)

2r(p—20)2% +[p+(p-20)(a® —r*)—4r(14p—a)|z+2(1+p—a)(r? —a?) > 0.

Now we require that the inequality (2.15) holds for every z € [r—a,r+a].
Let us denote the quadratic trinomial in the inequality (2.15) by w(z). The
determinant A of this trinomial is given by

A=(p+(p-2a)(a® -r")—4r(l+p-a))
—167(p - 2a)(1 4+ p — a)(r* — a?) = AB,
where
216) {A= (r—2a)(@® - ) +p+4r(1+p-a)+4y/rp(1+p - ) .
B=(p-2a)(a*—r)+p+ar(l+p-0a)—4y/rp(l+p—a)

Let D = {(a,r) € R?*: 0 < a < r < 1 — a}. First we discuss the case
0 < a < p/2. Thus the inequality (2.15) is satisfied for every « € [r—a,r+a],
if one of the following conditions is satisfied:

1° A <0,

2° A >0and w(r—a)>0and 2o <7 —a,

3°A>0and w(r+a)>0and zg > 7 +a,
where

_(p-20)(@®-r*)—4r(1+p—c)+p

(2.17) Tg = 4(])— 2a)r
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Ad 1°. Let By = {(a,7) € D : A < 0}. Since A > 0, the condition A <0
is equivalent, by (2.16), to the inequality

(2.18) B=(p—2a)(a® =) +p+4ar(l+p—a)-4y/r(l+p—a)<0.

Let v denote the boundary of the set B; = {(a,7) € R?; B < 0}. But 7 is the
curve which is tangent to the straight lines » = @ and r = ¢ —a at the points
S1(r1,71) and S3(r2, ¢—72), respectively, where 7,79, ¢ are defined by (2.1),
(2.2) and (2.3), respectively. Moreover v cuts the straight line a = 0 at the
points

[(L+p—a+[p(p—2a)]/)2 = (1+p- )]’

= p-2a

L _A+p=0)? - (1+p-a-[pp—20)/)!/2

4= p—2a ’

pg o (HP= )2+ (14 p—a—[p(p— 20212
- - 20 '

We have 0 < 73 < r4 < ¢ and 19 >q. Thus
Bl = {(a,r):r3 S ’I‘S T4,

0<a<y/r—(Vp-2/r(L+p—0)/(p-2a)}.

Ad 2°. Let By = {(a,r) € D: A >0Aw(r—a)>0Azo <7 —a}.
We have w(r — a) = (r — a)[(p — 2a)(r — a)? = 2(1 + p — a)(r — a) + p]
= (p— 2a)(r — a)(r —a — ¢')(r — a — q) where ¢ is defined by (2.3) and
¢ =pl+p-a—+/(1-a)>+2p)~!. Since ¢ > 1 and 0 < g < 1 hold
for 0 < a < p/2, we see that (r — a)(r ~ a — ¢') < 0 and the inequality
w(r — a) > 0 is true, if

(2.19) r<a+gq.

The inequality o < 7 — a may be written in the form
(2.20) (p-2a)a® +3(p—20)r —4(14+p—a)r - 4(p—2a)ar +p > 0.

The hyperbola h;, which is the boundary of the set of all pairs (a,r) € R?
satisfying (2.20), cuts the line @ = r at the point Sy and the line a=0 at the
points

_ P
s = ’
21+p-a)+ /41 +p—-0)?-3p*(1-20a)
. P
Ts = .
214+ p~a)—4(1+p—-a)?® -3p*(1 - 2a)

(2.21)
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We have r3 < r5 < 1y, 75 > ¢. Thus, finally, we describe the set

0<a<r for0<r<r; }

By=<(a,r):
\/,,.2_(\/1‘,_21/1(1-{.;;—&) 2/(p—2rx)5a<r forrg<r<n

3°. Let B3 ={(a,r) € R: A>0Aw(r+a)>0Azo>r+a}. Since

w(r+a) = (r+a)[(p—22)(r +a)* —2(1+p— a)(r + a) + p]
=(p-2a)(r+a)(r+a-¢)r+a-q)

and (r 4+ a)(r+a —¢') < 0 hold for a < r < 1 — a, we conclude that the
inequality w(r — a) > 0 is true if

(2.22) r<q-a.
The inequality zo < r 4+ a may be written in the form
(2.23) (p—2a)a® +3(p—2a)r’ —4(1+p—-a)r+4(p—2a)ar +p < 0.

The hyperbola hq, which is the boundary of the set of all pairs (a,r) € D
satisfying (2.23), cuts the line @ + r = ¢ at the point S5 and the line a=0
for r = r5. Thus we determine the set

B3={(a r): {\/TZ_(\/I—’_QVT(1+p—°‘))2/(p_2a)<a$‘1—7" fOrT2<T<T4}

0<a<g—r forry<r<gq

The union of the sets By, By, Bs gives the set B'. Thus
(2.24) B' Cc B(CS*(a)) for 0 < a < p/2.

Now let p/2 < @ <p. Then the inequality (2.15) is satisfied for every
z € [r — a,r + a] if the following conditions are satisfied

(2.25) w(r —a) > 0 and w(r +a) > 0.

Since
w(r+a)=(p-2a)(r+a)(r+a-g)r+a-yg),
w(r~a) = (p~20)(r - a)(r —a~¢)(r —a-g)

and ¢’ < 0,0 < ¢ < 1 hold for p/2 < a < p, then the condition (2.25) is
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satisfied if
(2.26) r—a—q<0.
Let @ = p/2. Taking o = p/2 in (2.15) we obtain
(2.27) (p—4r(1 + p/2))z + 2(1 4 p/2)(r* — a®) > 0.

The inequality (2.27) is satisfied for every z € {r—a,r+a]if r—a < p/(p+2)
or equivalently (2.26). Thus we obtain
(2.28) B" ¢ B(CS5*(a)) for p/2 < a < p.

Let 0 < o < p. The function f(2) = yoddrr

CSy(a)and for z=a+ 7,0 =0,a+r > q we have

belongs to the class

€f'(z) _p-21+p-a)a+r)+(p-2a)atr)’
f(z) (a+7)(1-(at+r)?)

whence by Lemma and Definition 2, we get

Re

<0,

(2.29) B(CS*(a))c B for 0 < a < p.

By (2.24) and (2.29) we obtain (2.6). From (2.28) and (2.29) it follows (2.7),
which completes the proof.

Remark. Finally let us observe, that taking a=0, we obtain the radius
of starlikeness for the class CS;(a), while, taking a = 0 and p = 1, we have
the result due to Dziok [2].
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