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ON THE OSCILLATION OF SOLUTIONS
OF PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS
OF NEUTRAL TYPE

1. Introduction

In the last few years there has been a growing interest in studying the
oscillatory behavior of solutions of parabolic equations with functional argu-
ments. We refer the reader to the papers by Bykov and Kultaev [1}, Kreith
and Ladas {3], Yoshida [6], [7], Mishev and Bainov [4] and Cui {2]. However,
the forced oscillations have been only studied by Yoshida [7].

The purpose of this paper is to extend the work of Yoshida [7] to some
nonlinear neutral parabolic equations with functional arguments of the form

(1) gt-[u(z,t)+§; N(tyu(z, mi(1))] - [a(t)Au(z,t)-{—zJ: a;(t)Au(z, p;(1))]

te(z,t,u(z,t),u(z,0(t))) = f(z,1), (z,t)€x Ry =G,

where I, J are initial segments of natural numbers, A is the Laplacian in

Euclidean n-space R™, Ry = [0,00), @ is a bounded domain in R™ with a

smooth boundary 992.

Now we list a set of assumptions:

(A1) a(t),a;(t),j € J, are nonnegative continuous functions on Ry and
f(z,t) is a continuous function on Q x R,.

(A2) e(z,t,&,m)> 0 for (z,t) € 2 X Ry, £ >0, >0, and
c(z,t,6,m)<0for (z,t) e XX Ry, £<0,7<0.

(As) Ai(?), 7:(2), pi(t) and o(2) are continuous functions on R, with
limy_, o 7i(t) = 00, lim; o pj(t) = 00, imyyoo 0(t) = 00, for 1 € I,
Jj€EJ.
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(A4) c(z,t,&,1) > P(t)e(n) for all (z,t,£,m) € @ X R}, where P and ¢ are
nonnegative functions on Ry and ¢ is convex.

(As) c(z,t,&,m) > b(t)€ for all (z,t,£,7) € X Ry, where b is a nonnegative
continuous functions on R..

Our aim is to establish the conditions under which every (classical) so-
lution u(z,t) of (1) satisfying certain boundary condition is oscillatory on
Q x Ry, in the sense that u(z,t) has a zero on Q X [t, ) for any ¢t > 0.

Sufficient conditions are given for all solutions of some boundary value
problems to be oscillatory in a cylindrical domain. The principal tool em-
ployed is an averaging technique which enables us to establish oscillation
properties in terms of related functional differential inequalities.

We consider three kinds of boundary conditions:

(B1) u=¢ ondQX Ry,
ou
(B2) % = on 9Q x Ry,
ou
(Bs) a—7+;w=0 on 00 X R4,

where ¢, 1, p are continuous on 92 x R,., v denotes the unit exterior normal
vector to 02 and ;2 > 0 on 00 X Ry.
In the domain £ consider the Dirichlet problem
(2) Au(z)+ au(t)=0, z€Q,
(3) u(t) =0, z € 09,
where a = const. It is well known [5] that the smallest eigenvalue a; of the

problem (2), (3) is positive and the corresponding eigenfunction ®(z) can
be chosen so that ®(z) > 0 for z € Q.

2. Oscillation criteria for problem (1)—(B,)
The following lemma is needed for our main results.

LEMMA 2.1. Suppose that (A1)—-(A4) hold and that u(z,t) is a positive
solution of the problem (1)-(By) on Q X [ty,00), to > 0. Then the function

(4) V(t) = Ja }iméi)mi;fla;)dz,

satisfies the following neutral differential inequality
(5) dit[v(t) +> /\i(t)V(Ti))] + o [a(t)V(t) +3 a4tV (p j(t))]
1 J

+ P(t)e(V(a(1))) < F(2)

>0
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where

6) F()=| [ o)de] “[-at) f ¢>g%ds
Q N

-y (1) f¢(w,pj(t))—3q>ds+ [ f(2,)8(z)de
el
J an o0

and ds is the surface integral element on 0f).

Proof. Suppose that u(z,t) is a positive solution of the problem (1)-
(B1) on 2 x[tg, 00), to > 0. Since the condition (A3z) holds, there is a number
t1 > to such that 7;(t) > o, pj(t) > to and o(t) > to fort > t;,i€ I, 5 € J.
By condition (A4) we have

c(z,t,u(z,t),u(z,0(t))) > P(t)p(u(z,o(t))) on QX [t1,00).
Therefore

M o fuwn+ Do Mltte, r(1)] + P(O)¢(u(z,0(1)))

< a(t)Bu(z, ) + ) a;()Au(zp;(t)) + f(z,t) on QX [t1,00).
J

Multiplying (7) by ®(z) and integrating over 2, we obtain

(8) %[ Qf u(a:,t)@(z)dz-{-;,\,-(t) / u(x,r,-(t))@(z)dx]

Q

+P(1) [ e(u(z,0(1)d(z)dz < a(t) [ Aud(x)dz
Q Q

+Y ;1) [ Au(,pi(1)@(2)dz + [ f(z,)®(x)dz, t>t.
J Q Q
It follows from Green’s formula that

Ou 0o
9 Aud = P - y—
(9) éf ud(z)dz 8!; [87(1) ua7]ds+ quA<I>dz

3%
= - f¢—ds-—a1 fu@d:z:, t>1t
v
a0 Q

and

(10) [ Au(z,pi(1)(e)dz = — f¢<x,pj(t>)g—fds
Q 8

- f u(z, pi(t))®(z)dz, t>t;.
Q
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It follows from Jensen’s inequality that

1) [ e(u(z,0(t))@(z)ds

Q
u(z,0(1))®(z)dz
> ((‘! <I>(:zc)da:)c,o(fQ fQ @(tz)dx ), t> .

Combining (6)—(11) and (4) we find that (5) holds. This completes the proof
of the lemma.

THEOREM 2.1. Suppose that (A1)—(A4) hold. Then every solution u of the
problem (1)—(By) is oscillatory on Qx Ry, if the following neutral differential
inequalities

(12) L)+ X M@V )] + o [a@Ve) + X a0V (o)
I J

+ P(t)p(V(a(t))) < F(2)

and
(13) L[V + D M@VE®)] + o[V D) + Y a0V (650)
I J

+ P(t)p(V(a(2))) < F(2)
have eventually no positive solution.

Proof. Suppose the contrary and let u(z,t) be a nonoscillatory solution
of (1)~(B1) which we may assume to be positive on Q x [t1,00) for some
ty > to. It follows from Lemma 2.1 that the function defined by (4) is
eventually an positive solution of (12), which is a contradiction. If « < 0 on
2 X [t1,00), then & = —u is a positive solution of the problem (14)—(15),
where

(14) %[u(m,t) + 3" Ai(yu(z, m(1))]
I
- [a(t)Au(z, t)+ Z a;(t)Au(z, Pj(t))]
J

+ e(z,t,u(z,t),u(z,0(t))) = - f(z,t), (z,t)€qG
and
(15) u=—¢ onddx Ry,
and satisfies the neutral differential inequality (13) with

V()= | [ @] [ u(z,)8()da.
Q Q
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Proceeding as in the first case we arrive at a contradiction. The proof of the
Theorem 2.1 is complete.

THEOREM 2.2. Suppose that assumptions (Aq)—(A4) hold and that A(t)
>0, i € I. Then every solution u of the problem (1)~(By) is oscillatory on
0Q x Ry, if the conditions

t
(16) tlin.}oinf f F(s)ds = —o0
to
and
t
(17) t]i.lgo sup f F(s)ds = 400
to

hold for all sufficiently large tg, where F is defined by (6).

Proof. Suppose that there is a nonoscillatory solution u of the problem
(1)~(B;). Without loss of generality we assume that © > 0 on € X [tg, 00)
for some ¢y > 0. It follows from Lemma 2.1 that the function defined by (4)
satisfies (12) and therefore, we have

(18) %[V(t) +3 /\i(t)V(r;(t))] < F(t), fort>to.
T
Integrating (18) over [tp,t], we get
(19) VO + Y MOV(n®) < V(o) + ) N(t)V(ri(t)) + [ F(s)ds.
I I to

In view of (16) the right-hand side of (19) is not bounded below and hence
V(t)+ 31 Ai(#)V(7i(t)) eventually cannot be positive. This is a contradic-
tion. So the inequality (12) has eventually no positive solution. On the other
hand, in view of the equality

t ¢
tlirgoinf f [-F(s)lds = - tlirx;osup f F(s)ds = -0,
to to
it follows that the inequality (13) cannot eventually have a positive solution.
Thus, the assertion of Theorem 2.2 is true.
THEOREM 2.3. Suppose that the conditions (A;)-(As) and (As) hold and
in addition

0<t-n(t)<T, AN()<0, i€l, and Y A(t)>-L
I
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Then every solution u of the problem (1)—(By) is oscillatory on Q X Ry, if
the conditions

(20) Jim inf f F(s)explai1 A(s) + B(s)]lds = —o0
and
(21) t]ingo sup f F(s)exp[ai1 A(s) + B(s))ds = + o0

ty

hold for all sufficiently large t,, where

s 3

A(s)= [ a(r)dr and B(s)= [ b(r)dr.

0 0

Proof. Suppose the contrary and let « be a nonoscillatory solution of
the problem (1)-(B1). Assume that v > 0 on X [t, 00) for some #5 > 0.
Keeping in view (As) and arguing as in the proof of Lemma 2.1, one can
easily check that the function defined by (4) satisfies the inequality

(22) L[V + MOV ()] +laral) + OV < F0), 1210,
I

where t; > t9 and ¢ is chosen such that V(¢) > 0 and V(7i(t)) > 0 for i € I.
Let

(23) Z@) =V + Y MOV(n(1), t>th.
I
We note that Z(t) < V(¢) for ¢ > t;. It follows from (22) that
—%Z(t) + [oaa(t) + b(2)1Z(t) < F(t), t2>t,

which is equivalent to
Edt_[Z(t) exp(a1 A(t) + B(t))] < F(t)exp(a1 A(t) + B(2)).
Integrating (24) from ¢; to ¢, we have

Z(t)exp(a1 A(t) + B(t)) — Z(t1) exp(an A(t1) + B(t1))

(24)

¢
< f F(s)exp(ay A(s) + B(s))ds.
1
In view of (20), Z(t)exp(a; A(t) + B(t)) is not bounded below and hence
it follows that V/(¢) is unbounded. Thus there exists a sequence {tx}, tx >
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t1 +T, such that V(tx) = maxe, <t<¢, V(t) and that limy_ V (k) = co. We
can choose a t* € {tx} with Z(t*) < 0. On the other hand

Z(t) = V() + LMW ) 2 V) (1+ 3 a) 2 0
I I

which is a contradiction. If u < 0 on Q X [¢p,00), then & = —u is a positive
solution of the problem (14)—(15). It is easily verified that the function
f a(z,t)®(z)dz
V)= 2
[ #(z)dz
Q

satisfies the inequality
LIV + 3 MOV ()] + foalt) + 6OV ) < —F(), ¢ 11
I

Proceeding as in the case u > 0, we again arrive at a contradiction. This
completes the proof of Theorem 2.3.
A special case of the problem (1)-(B;) is the following

(25) 5 [u(z £) + ZA (tu(z, ()] - [Au(a, t)+2a](t)Au(a: pi(t))]
+ C(w,t,U(w,t),U(iv,U(t))) = f(z,1), (x,t) €EQxRy =G

and

(26) vu=0 ondQxR,.

COROLLARY. Suppose that (A;)—-(As) and (As) with b(t) = 0 hold. In
addition, let

0<t-nr(t)<T, MI)<0, i€l, and Y M(t)> -1
I

Then every solution u of the problem (25)—(26) is oscillatory on Q X Ry, if
the conditions

tli}rgoinf f exp(als)[ ff(z,s)@(m)dm]ds:—oo
t Q

and

t
tlirgo sup tf exp(als)[ f f(z,s)@(z)dz]ds = +00
1 Q
hold for all sufficiently large t,.
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Proof. Since A(t) =t, B(t) = 0 and ¢ = 0, the conclusion follows from
Theorem 2.3.

Remark. 1.If A;(t)=0,a;(t)=0,7€ I, j € J and b(t) = 0, Theorem
2.3 and Corollary reduce to Theorem 1 and Corollary in [7], respectively.

3. Oscillation criteria for problem (1)~(B:) and (1)-(Bs)

THEOREM 3.1. Suppose that (A1)—(A4) hold. Then every solution u of
the problem (1)-(B3) is oscillatory on G, if each of the following neutral
differential inequalities

(27) %[V(t) + Z; /\i(t)V(Ti(t))] + P(t)p(V(a(1))) < G(2)
and

(28) %[V(t) + EI: /\,-(t)V(Ti(t))] + P()p(V(a(t))) < -G(2)
have eventually no positive solution, where

(29) 6(0) = grla(t) [ vds+ Y ai(0) [ bleps()s+ [ fle,t)da],
a0 J an Q

2= [ da.
Q

Proof. Suppose that there is a nonoscillatory solution u of the problem
(1)—~(B2) defined on Q x [tg, 00), which we may do to be positive for t5 > 0.
As in the proof of Lemma 2.1 we obtain (7). Integrating (7) over €, we get

4 u(z,t)dz ; u(z, 7 T Jo (=, 0(2))dz
dt[gf (z,t)d +ZI:,\,(t)éf (z,mi(t))d ]+p(t)|g|¢(_f - )

Q

< a(t) f Audz + Eaj(t) f Au(z, pj(t))de + f f(z,t)dz

Q J Q Q
=a(t) [ pds+ Y a;(t) [ ¢(z,pi))ds+ [ f(z,1)dz

a0 J o0 Q

for all (z,t) € Q x [tp,00). We let
1
V(t) = Tl Qf u(z,t)dz, t> 1.

There exists a number ¢; > to such that 7;(t) > tp, 1 € I, o(t) > to, for
t > t1, hence V(t) > 0, V(o(t)) > 0 and V(74(t)) > 0, ¢ € I. Consequently,
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we have
%[V(t) +3 )\i(t)V(Ti(t))] + P()p(V(a(t) < G(1).
I

This implies that V(¢) is an eventually positive solution of (27), which is a
contradiction. If v < 0 on Q X [tp, ), then arguing as before, we arrive at
a contradiction. Thus the proof of Theorem 3.1 is complete.

THEOREM 3.2. Suppose that (A1)—(Ay4) hold and that A\;(t) > 0,1 € I.
Then every solution u of the problem (1)-(B;) is oscillatory on G, if the
conditions

¢
tli*noloinf f G(s)ds = —o0
to
and

t
tan;o sup tf G(s)ds = o0
0

hold for all sufficiently large ty, where G(t) is defined by (29).
The proof is similar to that of Theorem 2.2 and hence is omitted.
THEOREM 3.3. Suppose that (A;)—(A3) and (As) hold and in addition
0<t—r(t)<T, M(t)<0, i€l, and > Mft)> -1l
I

Then every solution u of the problem (1)-(B;) is oscillatory on G, if the
conditions

t
t].im inf f G(s)exp[B(s)]ds = —0
31
and

tlirrgo sup f G(s)exp[B(s)]ds = +o0

ty
hold for all sufficiently large t1, where B(s) = f b(r)dr and G(s) is defined
0

by (29).

Proof. Suppose that there is nonoscillatory solution % of the problem
(1)~(B;) defined on 2 X [tg, 00) which we may do to be positive for t5 > 0.
Using (As) instead of (A4) in the proof of Theorem 3.1, we have

(30) LIV + S M@V +bvi < 6o,
I
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where
1
V(t) = ] [ w(z,tydz, t>tr>to.
Q

Put
Z@) = V() + > MOV(n(), t>tr.
I

Then Z(t) < V(t),t > t1. From (30) it follows that
220+ 6020 < 6, 121,
which is equivalent to

(31) 2 12) explB)] < G(t) explB(L)
Integrating (31) from ¢; to ¢, we obtain

2(t) exp[B(1)] < Z(tr) exp[B(t)] + [ G(s)exp[B(s)lds.

t
Arguing as in the proof of Theorem 2.3, we arrive at a contradiction. This
completes the proof of Theorem 3.3.
Remark. 2. If Aj(t) =0, aj(t) =0, a(t) = 0and b(t) =0 fori € I,
j € J, then Theorem 3.3 reduces to Theorem 2 in [7].

THEOREM 3.4. Suppose that (A1)—(As) and (As) hold and in addition
0<t—m(t) ST, N()<0, i€l, and » M(t)>-1.
1

Then every solution u of the problem (1)-(Bj3) is oscillatory on G, if the
conditions

tli’noloinf tj [{[ f(:z:,s)d$] exp[B(s)lds = —c0

and
¢
t]g& sup f [ g[ f(z, s)dz] exp[B(s)]ds = +o0
t1
hold for all suficiently large t, .

Proof. Let u be a nonoscillatory solution of the problem (1)—(B3) having
no zeros on X [tg, 00) for some g > 0. Assume that v > 0. In view of (As),
we have

(32) %[u(z, 1)+ Z Ai(t)u(z, T,-(t))] + b(t)u(z, )
1
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< a(t)Au(z, 1)+ ) aj()Au(z, pi(t)) + f(z,1)
J

on  x [tg,00) for t; > to. Integrating (32) over Q and taking into account
the condition (B3), we obtain

i[ [ wle e+ 3 () [ u(z,mi())dz| +5(¢t) [ u(z,t)do
I Q

dtQ g

<a(t) [ Au(z,t)ydz+ Y a;(t) [*Au(z,pi(t))dz+ [ f(z,1)de
Q J Q Q

= —a(t) [ puds - ¥ aj(t) [ e, ps()u(z, pi(0)ds + [ f(z,1)de
N J Q

a0

IA

ff(:c,t)dz, t>t.
Q

We note that V(t) = f u(z,t)dz, t > 1o, is positive for all ¢ > ¢;. Hence
Q

L@+ S a@vE] +dove < [ fed.
I Q

The same argument as used in the proof of Theorem 3.3 leads to a contra-
diction.

Remark. 3. If A;(t) =0,4a;(t)=0,i€ 1,5 € J,a(t)=0and b(t) =0,
then Theorem 3.4 reduces to Theorem 3 in [7].
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