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OF P A R A B O L I C PARTIAL DIFFERENTIAL EQUATIONS 

OF N E U T R A L T Y P E 

1. Introduction 

In the last few years there has been a growing interest in studying the 
oscillatory behavior of solutions of parabolic equations with functional argu-
ments. We refer the reader to the papers by Bykov and Kultaev [1], Kreith 
and Ladas [3], Yoshida [6], [7], Mishev and Bainov [4] and Cui [2]. However, 
the forced oscillations have been only studied by Yoshida [7]. 

The purpose of this paper is to extend the work of Yoshida [7] to some 
nonlinear neutral parabolic equations with functional arguments of the form 

a(t)Au(x,t) + y^aj(t)Au(x,pj(t)) 
I J 

+c(x,t,u(x,t),u(x,a(t))) = f ( x , t ) , ( x , t ) G ft x R+ = G, 

where /, J are initial segments of natural numbers, A is the Laplacian in 
Euclidean n-space Rn,R.= [0, oo), ft is a bounded domain in Rn with a 
smooth boundary dil. 

Now we list a set of assumptions: 
(Ai) a(t),aj(t),j G J, are nonnegative continuous functions on and 

f(x,t) is a continuous function on ft x .#+. 
( A 2 ) c(x,t,Ç,T})> 0 for ( x , t ) 6 ft x R + , £ > 0, tj > 0, a n d 

c ( x , t , i , v ) < 0 for ( * , 0 € ft x R+, £ < 0, t] < 0. 

(A3) A i ( t ) , Ti(t), pi(t) and a(t) are continuous functions on R+ with 
lim^oo Ti(t) - 00, limt_K>oPj(i) = 00, l im t _ 0 0 a(i) = 00, for i G I, 
j e J. 

« m 
u(x, + K(t)u(x, Ti(t)) 

Key words and phrases: neutral parabolic equation, boundary value problem, oscilla-
tion. 
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(A4) c(x,t,£,rf) > P(t)(p(rj) for all (x, T]) 6 ft x R+, where P and (p are 
nonnegative functions on R+ and <p is convex. 

(A5) c(x,t,£, tj) > b(t)£ for all (x,t,£, r}) G ft xR+, where b is a nonnegative 
continuous functions on R+. 

Our aim is to establish the conditions under which every (classical) so-
lution u(x,t) of (1) satisfying certain boundary condition is oscillatory on 
ft X R+, in the sense that u(x, t) has a zero on ft x [t, 00) for any t > 0. 

Sufficient conditions are given for all solutions of some boundary value 
problems to be oscillatory in a cylindrical domain. The principal tool em-
ployed is an averaging technique which enables us to establish oscillation 
properties in terms of related functional differential inequalities. 

We consider three kinds of boundary conditions: 

(Bx) u = (p on d£lxR+, 
ftu 

(B2) = ^ ondSlxR+, 
u 7 

0u 
(B3) — + nu = 0 on df t x R+, 

where (p, ip, ¡1 are continuous on 80. X i?+ , 7 denotes the unit exterior normal 
vector to df t and // > 0 on dil x R+. 

In the domain ft consider the Dirichlet problem 

(2) A u ( x ) + au(t) = 0, a: G ft, 

(3) u(t) = 0, x <E d£l, 

where a = const. It is well known [5] that the smallest eigenvalue of the 
problem (2), (3) is positive and the corresponding eigenfunction can 
be chosen so that > 0 for x € ii. 

2. Oscillation criteria for problem (1)—(Bi) 
The following lemma is needed for our main results. 

LEMMA 2.1. Suppose that (AI)-(A4) hold and that u(x,t) is a positive 
solution of the problem (l)-(Bi) on ft x [fo,oo), to > 0. Then the function 

in u(x,t)$(x)dx 
<4) " W = ' ' > 0 

satisfies the following neutral differential inequality 

A 
dt ( 5 ) i + £ + «1 k m t ) + E « j w n p i ( O ) 

j 
+ P(tMV(o(t))) < F(t) 
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where 

ds (6) F(t) = [ J *(*)</*] [ - « (0 J ^ 
n 90 ^ 

J f{x,t)$(x)dx 

j dQ ^ 9fi 
and ds is the surface integral element on d f l . 

P r o o f . Suppose that u(x,t) is a positive solution of the problem (1)-
(Bi) on f i x [/o, oo), to > 0. Since the condition (A3) holds, there is a number 
t\ > to such that Tj(t) > to, Pj(t) > to and a(t) > to for t > ti, i G I, j G J. 
By condition (A4) we have 

c ( x , t , u ( x , t ) , u ( x , a ( t ) ) ) > P(t)ip(u(x,o{t))) on 0 X [ii,oo). 

Therefore 
d 

(x, t ) + Y , A 1(t)u(x, T,-(i))] + P(t)<p(u(x, a(t))) (V 
dt 

< a(t)Au(x,t) + ^ 2 a j ( t ) A u ( x p j ( t ) ) + f ( x , t ) on fi x [ii,oo). 

Multiplying (7) by and integrating over fl, we obtain 
d 

(8) 
dt 

f u(x,t)$(x)dx + Y ^ i ( t ) J u(x,Ti(t))$(x)dx 

fi / f i 

+P(t) J <p(u(x,a(t)))$(x)dx < a(t) J Au$(x)dx 

fi fi 

+ Y a j ( t ) f Au(x,pj(t))$(x)dx+ J f ( x , t ) $ ( x ) d x , t > h . 
J fi 

It follows from Green's formula that 

(9) J Au$(x)dx = J 

a fi 

du <9$ 
ds+ J uA$dx 

r 
4>—ds ~ a1 J u$dx, t > ti 

9fi 
and 

(10) f A u ( x , P j ( t ) ) $ ( x ) d x = - f <j>(x,Pj(t))^ds 

fi an 7 

- ai J u ( x , p j ( t ) ) $ ( x ) d x , t > t i . 
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It follows from Jensen's inequality that 

( 1 1 ) f <p(u(x,<r(t)))$(z)dx 

Combining (6)—(11) and (4) we find that (5) holds. This completes the proof 
of the lemma. 

THEOREM 2.1. Suppose that (AI)-(A4) hold. Then every solution u of the 
problem (1)-(B\) is oscillatory on f l x R + , if the following neutral differential 
inequalities 

(12) ~ W ( t ) + J 2 + k o n o + E « ¿ ( o n ^ o ) 

+ P(t)<p(V(a(t)))<F(t) 

and 

(13) - [f(/) + J2 + «1 k / ) ^ ( i ) + £ aj(t)V(Pj(t)) 
J J L J 

+ P{t)v{V(a{t)))<F(t) 

have eventually no positive solution. 

Proof . Suppose the contrary and let u(x,t) be a nonoscillatory solution 
of ( l ) - (Bi ) which we may assume to be positive on 0 X [ii,oo) for some 
¿1 > to. It follows from Lemma 2.1 that the function defined by (4) is 
eventually an positive solution of (12), which is a contradiction. If u < 0 on 
Q, x [¿i,oo), then û = — u is a positive solution of the problem (14)-(15), 
where 

Ô (14) — [«(*,<)+ £A i(0»(s,r i(/))] 

- \a(t)Au(x,t) + y^a,j(t)Au(x,pj(t)) 

+ c(x,t,u(x,t),u(x,a(t))) = -f(x,t), (x,t) G G 

and 

(15) u = ~4> on dQ, x 

and satisfies the neutral differential inequality (13) with 

V(t)= [ J $(x)dx 1 f u(x,t)$(x)dx. 
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Proceeding as in the first case we arrive at a contradiction. The proof of the 
Theorem 2.1 is complete. 

THEOREM 2 .2 . Suppose that assumptions (Aj)-(A4) hold and that Aj(f) 

> 0, i G I- Then every solution u of the problem ( l ) - (Bi ) is oscillatory on 
80, x R+, if the conditions 

t 
(16) lim inf J F(s)ds = -oo 

to 

and 
t 

(17) lim sup J F(s)ds — +oo 
~>°° to 

hold for all sufficiently large to, where F is defined by (6). 

P r o o f . Suppose that there is a nonoscillatory solution u of the problem 
(l) - (Bi) . Without loss of generality we assume that u > 0 on il x [io5oo) 
for some to > 0. It follows from Lemma 2.1 that the function defined by (4) 
satisfies (12) and therefore, we have 

(18) jt [F(i) + £ A < ( W i ( 0 ) ] < F(t), for t > t0. 

Integrating (18) over [io,i], we get 
t 

(19) V(t) + Y/\i(t)V(Ti(t))<V(to) + 1£xi(t0)V(Ti(to))+ J F(s)ds. 
I I to 

In view of (16) the right-hand side of (19) is not bounded below and hence 
V(t) + 1 Xi(t)V(Ti(t)) eventually cannot be positive. This is a contradic-
tion. So the inequality (12) has eventually no positive solution. On the other 
hand, in view of the equality 

f t 
lim inf f [ -F(s)]ds = - lim sup f F(s)ds = -oo, 

t—• oo J t-*oo J 
to io 

it follows that the inequality (13) cannot eventually have a positive solution. 
Thus, the assertion of Theorem 2.2 is true. 

THEOREM 2 . 3 . Suppose that the conditions ( A i ) - ( A a ) and ( . ¿ 5 ) hold and 
in addition 

0 <t- Ti(t) < T, A i(t) < 0 , i£ / , and J T A ¿(f) > - 1 . 
/ 
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Then every solution u of the problem (1)-(B±) is oscillatory on Q X R+, if 
the conditions 

t 
(20) lim inf f F(s)exp[a1A(s) + B(s)]ds = -oo 

t—too ** 
<1 

and 
t 

(21) lim sup f F(s)exv[ceiA(s) +B(s)]ds =+oo 
t—* OO J 

11 
hold for all sufficiently large t\, where 

s s 

A(s) = J a(r)dr and B(s) = J b(r)dr. 

P r o o f . Suppose the contrary and let u be a nonoscillatory solution of 
the problem (l)-(Bi) . Assume that u > 0 on il x [ i o 0 0 ) for some to > 0. 
Keeping in view (A5) and arguing as in the proof of Lemma 2.1, one can 
easily check that the function defined by (4) satisfies the inequality 

(22) ^ [y(i) + J ^ ( ^ ( 7 , ( 0 ) ] + [a l f l(i) + 4(i)]V(<) < F(i), t>tu 

where ti > to and t is chosen such that V(t) > 0 and V(rt(t)) > 0 for i € I. 
Let 

(23) Z(t) = V(t) + £ \i(t)V(Ti(t)), t>h. 
1 

We note that Z(t) < V(t) for t > h. It follows from (22) that 

jtZ(t) + [aia(i) + b{i))Z{t) < F{t), t>h, 

which is equivalent to 

(24) j t[Z{t) exp ( a i A ( t ) + B(t))] < F(t) exp ( a i A ( t ) + B(t)). 

Integrating (24) from t\ to t, we have 

Z(i)exp(«iA(i) + B(t)) - Z{t1)exp(a1A(t1) + B{h)) 
t 

< J F(s)exp(a1A{s) + B(s))ds. 
11 

In view of (20), Z(t) exp(a1 A(t) + B(t)) is not bounded below and hence 
it follows that V(t) is unbounded. Thus there exists a sequence {¿fc}, /k > 
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ti + T, such that V(tk) = max ( l< t< ( t V(t) and that limfc^oo V(tk) = oo. We 
can choose a t* 6 {tk} with Z(t*) < 0. On the other hand 

Z(t*) = V ( f * ) + Y , W W n i f ) > V ( f ) ( l + £ Xi(t*]) > 0 

I i 

which is a contradiction. If u < 0 on fi x [io, oo), then û = -u is a positive 
solution of the problem (14)-(15). It is easily verified that the function 

J u(x,t)$(x)dx 
n 

J $(x)dx 

satisfies the inequality 

Jt [ n o + £ MO^MO)] + [«io(0 + Kt))V(t) < - F ( t ) , t > t r . 

Proceeding as in the case u > 0, we again arrive at a contradiction. This 
completes the proof of Theorem 2.3. 

A special case of the problem ( l ) - (Bi) is the following 

(25) + £*.•(*)«(*> ^(i))] - [Ati( i , i ) + 2 ° j ( i ) M i C » / » j ( 0 ) 

and 

(26) 

+ c{x,t,u(x,t),u{x,a(t))) = f { x , t ) , ( x , t ) £ i l x R+ = G 

u = 0 on dQ, x R+. 

COROLLARY. Suppose that (Ai)-(Aa) and (A5) with b(t) = 0 hold. In 
addition, let 

0 < t - Ti(t) < T, \t(T) < 0 , i € I , and ] T A,-(f) > - 1 . 

Then every solution u of the problem (25)-(26) is oscillatory on ii x if 
the conditions 

t 

and 

lim inf / exp(ai^) I fix, s)$(x)dx 
t—>00 J I J 11 ÎÎ 

t 
l̂im sup J exp(ai5)[ J f(x,s)$(x)dx 

ds = —oo 

ds = +oo 
ii o 

hold for all sufficiently large t\. 
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P r o o f . Since A(t) = t, B(t) = 0 and <f> = 0, the conclusion follows from 
Theorem 2.3. 

R e m a r k . 1. If A,-(<) = 0, aj(t) = 0 ,i€ I , j € J and b(t) = 0, Theorem 
2.3 and Corollary reduce to Theorem 1 and Corollary in [7], respectively. 

3. Oscil lat ion cr i te r ia for p rob lem (1) - (B2) and ( l ) - ( B 3 ) 

T H E O R E M 3 . 1 . Suppose that (AI)-(A4) hold. Then every solution u of 

the problem (1)-(B2) is oscillatory on G, if each of the following neutral 

differential inequalities 

(27) j t [F(i) + £ A ^ M i ) ) ] + P { t ) v { V { e { t ) ) ) < G(t) 

and 

(28) j t [ V ( t ) + £ A t( / )F(r t(0)] + P(t)<p{V{o{t))) < - G ( t ) 

have eventually no positive solution, where 

(29) G ( 0 = T^|[a(i) J Hs + ^ a j i t ) J i ; ( x , P j ( t ) ) d s + f f ( x , t ) d x 

' ' an J an n 

|il| = f dx. 

Q 

P r o o f . Suppose that there is a nonoscillatory solution u of the problem 
(1)—(B2) defined on fi x [fo, 00), which we may do to be positive for to > 0. 
As in the proof of Lemma 2.1 we obtain (7). Integrating (7) over Q, we get 

Jt{ J + 5 > ( i ) J u(x,T,•(*))&] + u { x ' a { t ) ) d x 

i n ^ J dx n 

< a ( t ) J Audx + Y ^ j t ) J A u ( x , p j ( t ) ) d x + J f { x , t ) d x 

n J n n 

= a ( t ) J ifrds + Y \ J(T) f i > ( x , P j ( t ) ) d s + J f ( x , t ) d x 

an J an n 
f o r a l l ( x , t ) £ fl X [t0,oo). W e l e t 

V ( t ) = J u ( x , t ) d x , t > t 0 . 

There exists a number ti > t0 such that T((t) > to, i G I, o(t) > to, for 
t > t i , hence V ( t ) > 0, V ( a ( t ) ) > 0 and V(r t(i)) > 0, i £ J . Consequently, 



On the oscillation of solutions 611 

we have 

i [ n o + E m + p ( t M v ( a m < G(t). 

This implies tha t V(t) is an eventually positive solution of (27), which is a 
contradiction. If u < 0 on f i x [io,oo), then arguing as before, we arrive at 
a contradiction. Thus the proof of Theorem 3.1 is complete. 

T H E O R E M 3 . 2 . Suppose that ( A I ) - ( A 4 ) hold and that Aj ( t ) > 0 , i G I. 
Then every solution u of the problem (1)-(B2) is oscillatory on G, if the 
conditions 

t 
lim inf / G(s)ds = —oo 
t—too J 

to 
and 

t 

lim sup J* G(s)ds - +oo 
^^ to 

hold for all sufficiently large to, where G(t) is defined by (29). 

The proof is similar to tha t of Theorem 2.2 and hence is omit ted. 

T H E O R E M 3 . 3 . Suppose that ( A i ) - ( A a ) and (As) hold and in addition 

0 < / - Ti(t) < T, X i(t) < 0 , i e l , and A,-(i) > - 1 . 
i 

Then every solution u of the problem ( 1 ) - ( B 2 ) is oscillatory on G, if the 
conditions 

and 

lim inf f G(s)exp[B(s)]ds = - o o 
t—• OO J 

lim sup I G(s) exp[5(s)]d5 = +oo t—•OO J 

hold for all sufficiently large ii, where B(s) = J* b(r)dr and G(s) is defined 

by (29). 

P r o o f . Suppose tha t there is nonoscillatory solution u of the problem 
(1)—(B2) defined on i i x [io, 00) which we may do to be positive for to > 0. 
Using (A5) instead of (A4) in the proof of Theorem 3.1, we have 

(30) jt [V(i) + £ A,-(<)Vfr(0)] + b(t)V(t) < G(t), 
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where 
1 r 

V(t) = |o| J u(x,t)dx, t > tj > to. 
' ' u 

Put 
Z(t) = V(t) + \i(t)V(Ti(t)), t > U. 

i 
Then Z(t) < V(t), t>t i- From (30) it follows that 

jtZ{t) + b(t)Z(t) < G(t), t>tu 

which is equivalent to 

(31) jt[Z(t) exp[5(i)]] < G(t) exp[2?(t)]. 

Integrating (31) from ¿i to t, we obtain 
t 

Z(t) exp[5(i)} < Z(h) exp[5(ia)] + J G(s) exp[B(s)]ds. 
h 

Arguing as in the proof of Theorem 2.3, we arrive at a contradiction. This 
completes the proof of Theorem 3.3. 

R e m a r k . 2. If A¿(i) = 0, aj(t) = 0, a(t) = 0 and b(t) = 0 for i G I, 
j € J, then Theorem 3.3 reduces to Theorem 2 in [7]. 

THEOREM 3.4. Suppose that (Ai)-(Aa) and (A5) hold and in addition 

0 < t - Ti(t) < T, \i(t) < 0 , iel, and ^ A¿(f) > - 1 . 
1 

Then every solution u of the problem (1)-(B3) is oscillatory on G, if the 
conditions 

* r 

lim inf I / f(x,s)dx exp[B(s)]ds ——00 
t—+00 J 1 J <i n 

and 
t 

^lim sup J J* f(x,s)dx exp[i?(s)]<is = + 0 0 
h n 

hold for all sufficiently large t\. 

P r o o f . Let u be a nonoscillatory solution of the problem (l)-(Ba) having 
no zeros on fi x [io, 00) for some io > 0. Assume that u > 0. In view of (A5), 
we have 

A 

(32) — [u(z, + 2 A<(0«(*> r<(0)] + b(t)u(x, t) 
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< a(t)Au(x, 0 + X ) ° i ( 0 P j ( 0 ) + /(*> 0 
j 

on Î2 x [¿o, oo) for /i > i0. Integrating (32) over Q and taking into account 
the condition (B3 ) , we obtain 

f f u(x,Ti(t))dx +6(i) J* tt(®,i)«i® 
q / n n 

< a(i) f Au(x,t)dx + ^ a j ( t ) f'Au(x,pj(t))dx + f f(x,t)dx 

n J n a 

=-a(t) J /mds - Y a,j(t) J p,(x,pj(t))u(x,pj(t))ds + J f(x,t)dx 
dQ J an n 

< f f(x,t)dx, t>h. 
Q 

We note that F ( i ) = J* u(x,t)dx, t > ¿oi is positive for all i > <i. Hence 
fi 

j [ y ( t ) + 2 A,-(i)nT-i(0)] + mv(t) < f /(x, t)dx. 

i n 

The same argument as used in the proof of Theorem 3.3 leads to a contra-
diction. 

R e m a r k . 3. If A , ( t ) = 0, aj(t) = 0, i e I, j € J, a(t) = 0 and b(t) = 0, 
then Theorem 3.4 reduces to Theorem 3 in [7]. 
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