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GEOMETRIC GROUP PRESENTATIONS

Introduction

A group presentation & is said to be geometric (resp. strongly geometric)
iff there are a 3-manifold (resp. a closed 3-marifold) M and a Heegaard dia-
gram H of M such that the presentation of the fundamental group m (M),
associated with H is exactly ®. Many authors — by means of different tech-
niques — have dealt with the question if a group presentation is geometric
(or strongly geometric). The obtained results concern the case in which the
3-manifold M is orientable. More precisely, Neuwirth ([N]) describes an al-
gorithm to decide if a balanced group presentation (i.e. a presentation with
the same number of generators and relators) is strongly geometric. Osborne
and Stevens ([0S;], [OS;]) solve the same problem by means of particular
graphs (the presentation-graphs or P-graphs).

The same result is restated by Montesinos ([Mo]), via branched covering
techniques.

Moreover, Grasselli ([Gr]) gives a combinatorial algorithm to construct
all orientable, compact and connected 3-manifolds, having the standard com-
plex K¢ canonically associated to the presentation ® as a standard spine
([N]); such a standard complex has a unique vertex and its 1-cells (resp.
2-cells) are in one-to-one correspondence with the generators (resp. the re-
lators) of ®. Subsequently, Grasselli and Piccarreta ({GP]) introduce another
combinatorial algorithm to build "normal” crystallizations of all closed, con-
nected, orientable 3-manifolds for which ® up to additions or deletions of
terms either of the form z;z; ! or of the form :vi'lz,-, for some generators
z;’s, in some relations of ® is a presentation of the fundamental group.
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In this work we construct all compact, connected 3-manifolds having a
fixed balanced group presentation ® (up to additions or deletions of terms
either of the form z,-a:,-"l or of the form x{lmi, for some generators z;’s, in
some relations of ®) as a presentation of the fundamental group associated
with a Heegaard diagram. The key-tool of such a construction is the bijoin
- construction ([BG], [Gr], [B]) over a graph canonically associated with ®
and representing a spine of a 3-manifold.

This process allows to obtain a result concerning both the cases, or-
ientable and non orientable, by means of combinatorial tools. Observe that,
since the spines of our construction are not special (in the sense of [Ma]),
the 3-manifold cannot be univocally obtained.

1. Preliminaries

In this paper, all spaces and maps will be supposed to be piecewise-linear
(PL) in the sense of [Gl] or [RS]; moreover, all 3-manifolds will be closed
and connected.

With abuse of language, we shall use the term graph instead multigraph,
whereas the term pseudograph indicates that loops are allowed.

Given a pseudograph I' = (V(T'), E(T')), a generalized coloration on T
is any map v : E(I') — A, = {0,1,...,n}, where A, is said to be the
colour-set.

If B C A,, and B has cardinality equal to h, then I'g denote the sub-
graph (V(T),7~1(B)) and each connected component of I'g will be called
B-residue or h-residue coloured B of I'. If ¢ € A, set € = A, — {c}.

An (n + 1)-dimensional crystallized structure is a pair (T,7), where I’
is a graph, v is a generalized coloration with colour-set A,, and, for each
¢ € Ap, Ty has cliques as connected components. If each clique of I'(.} has
length two, for every ¢ € A,, then (I',7) is said to be an (n + 1)-coloured
graph. In this case, v is a proper coloration of T', i.e. ¥(e) # v(f), for each
pair of adjacent edges of T

An (n + 1)-coloured graph (T',7v) is contracted iff T'; is connected, for
every ¢ € A,. For more details on this argument see [FGG], [BM], [L] and
[LM].

A coloured complex of dimension n is a pair (K,£), K being an n-
dimensional pseudocomplex [HW, p. 49] and ¢ is a vertex-colouring, that
is a map from the set of the vertices of K to A,, whose restriction to each
simplex is injective. If K has exactly (n + 1) vertices, then it is called a
contracted complez (see [Pq], [P2]).

It is well known that to each (n+ 1)-coloured graph (I',7) can be associ-
ated a coloured complex K (T') of dimension n as follows: — for each vertex
v of V(I'), take a n-simplex o(v) and label its vertices by the colours of Ay;
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— for each pair v, w of c-adjacent vertices (¢ € A,) identify the (n—1)-faces
of o(v) and o(w) whose vertices are labelled by €.

Conversely, to each coloured complex K of dimension n, can be associ-
ated an (n+ 1)-coloured graph (I'(K'),y(K)), simply by reversing the above
construction.

Moreover, it is well known that, for each (n + 1)-coloured graph (T',7v),
['(K(T)) =T, whereas K(T'(K)) = K iff the disjoint star of each simplex of
K is strongly connected, in this case K will be called a representable complez
(see [FGG] and its bibliography). Finally, K is contracted iff I is.

The graph I' associated to the complex K is said to represent K.

A contracted (n + 1)-coloured graph representing an n-manifold M is a
crystallization of M. Each connected compact manifold admits crystalliza-
tions (see [P1] and [P5]).

We now recall the bijoin algorithm introduced in [B].

Let (H,({) be a representable (n — 1)-dimensional coloured complex, a
pluri-bijoin over H is an n-dimensional coloured complex (K, ¢), such that
| K| is a quasi-manifold and H can be identified with the subcomplex of K
generated by the vertices of all colours but one, say ¢. If K has h vertices
coloured ¢, then K is said to be an h — bijoin over H and, if h = 1, we
simply call it a bijoin.

Given any oriented pseudograph I' — regular of degree 2n — endowed
with a generalized coloration 4 : E(T') — A,_1, a weight on E = E(T),
relative to the colour ¢ € A,_; isamap w : E — {0,1,2}, with the following
properties:

I — for each ¢ € ¢ and for each e € ¥71(7), w(e) = 1;

II — for each pair of adjacent edges & and f of ¥71(c):

— if &(1) = (0), then (w(€), () € {(1,1), (1,0, (2,0),(0,2), (2, 1)}

—if &(1) = (1), then (w(@),w(f)) € {(0,1),(0,2)};

— i &(0) = £(0), then (w(2),w(})) € {(1,2),(2,0)}.

The triple (T',¥,w) is called an n-dimensional pondered structure if:

a) for each i € Ap_1 — {c}, the connected components of y71(7) are
elementary oriented cycles;

b) the connected components of y~!(c) are elementary cycles, whose
edge-orientation is coherent with respect to the weight w.

Observe that if w(e) = 1, for each e € E, then the triple (T',7,w) is an
oriented structure in the sense of [BG} and [Gr].

To each pondered structure (T, ¥,w), it is canonically associated a crys-
tallized structure (fﬁ), obtained by deleting all loops of I' and by consider-
ing, for each connected component of 7 ~1(z), the clique over the same vertex-
set, with all edges coloured i. Set K(T) = K (f) Obviously, this process
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cannot be univocally inverted: in fact there are many pondered structures
associated with the same crystallized structure. If (T,%,w) is a pondered
structure, the ”bijoin” construction over I' produces an (n + 1)-coloured
graph (B, ) constructed by the following rules:

i— V(B)=V()x{0,1};

ii — for each v € V(T), join (v,0) and (v,1) by an edge e of E(B) and
set B(e) = n;

iii — if € € E and v (resp. w) is its first (resp. second) vertex, then join
(v,h) and (w, k) by an edge e € E(B) so that h < k and h + k = w(e). Set
Ble) = 7(&).

The so obtained graph (B, B) represents an h-bijoin over the (coloured)
complex K (T).

If n = 3, we can state some properties characterizing the h-bijoins
over a 3-dimensional pondered structure representing 3-manifolds. A cy-
cle u, coloured alternately ¢ and 7, of a 3-dimensional pondered structure, is
said to be a generalized weak cycle if: (a) when {¢,j} = A2 — {c}, then
for each pair of adjacent edges e, f it is w(e) = w(f) = 1 and either
e(0) = f(0) or e(1) = f(1); (b) when two adjacent edges e and f of pu,
respectively coloured ¢ and j # ¢, have the same first (resp. second) vertex,
then (w(e), w(£)) € {(1,1), (0, 1)} (resp. (w(€),w()) € {(1, 1),(2, 1)} (¢)
when e(0) = f(1), then (w(e),w(f)) = (2,1) and when e(1) = f(0), then
(@) () = (0, 1) _

In this paper, given a 3-dimensional pondered structure (T',7) (resp.
either a crystallized structure (f,"?) or a h-bijoin (B,f) over (T,%)), we
denote by g;, g; (resp. either g;, g; or g;,g;) the number of the connected
components of T(;; and T; (resp. either of T; and T; or of B; and B;)
respectively, by ¢; the sum of the g;’s, by g the sum of the g;, by v the
number of the vertices of T' and by Gi; the number of the generalized weak
cycles coloured ¢ and j alternately. With the above notations, the following
result holds: if (B, ) is the h-bijoin constructed over (T,%), then (B, f)
represents a closed 3-manifold iff §o1 + go2 + g1z + ¢1 = @2 + h + 2v.

Observe that if B is contracted for each i € A3, the subcomplex of K(B)
constituted by all the i-coloured 2-simplexes is a spine of K (B).

Moreover, recall that as pointed out in [P] if (T',7) is a crystallization
of a 3-manifold M and {¢,7}U {h,k} = A3, the connected components, in
fact cycles of two colours, of I'y; ;3 and I'(y x}, but one, are the classes of
canonical curves of a Heegaard diagram H of M.

It is well known that, give an Heegaard diagram H of a (closed) 3-
manifold M, there is a presentation of 71 (M) canonically associated to H,
whose generators and relators arise from the (two) classes of canonical curves
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of H ([S], [He]); hence the presentation must have the same number of
generators and relators.

Following [G1], we describe how to obtain a presentation of the funda-
mental group of a (closed) 3-manifold M by starting from a crystallization
of M. With the above notations, let {z1,...,z,} be the set of all the con-
nected components of I'y; ;3, but one, and let {y1,...,y,} be the set of all
the connected components of I'yy s}, but one. Choose a fixed vertex and a
running direction for each y,,o = 1,...,g, construct a word r, over the
alphabet {z1,...,2,4} as follows:

start from the fixed vertex, walk along y, in the fixed direction and write
step by step all the meeting generators, with exponent +1 or —1, according
to h or k being the colour of the edge by which you run into the generator.

If ® = (zy,...,25/Rq,...,R,) is any group presentation, it is possible
to define a new presentation A(®) of the same group, as follows:

A(@) = (zl, ceeyTsy $3+1/R;a ey R'Imzs+1>
where the new generator x4 is the trivial one, and if R;, ¢ = 1,...,7,is
a relator of @, say R; = z 2.2 . .z;%, with €1,€9,...,6p € {—1,1}, then

.z,
in A(®) the corresponding relator has the form R} = z; zgj_lmh $ii1

bpr 5,
zsf’H’me‘" Ty, with 6, =0, if €5 # epq1 and 6 = —¢p, otherwise.

For the presentation A(®), set A(z;) the number of the occurrence of the
generator z; and A; the length of the relator R;. Obviously, Y 7_; A(z;) =
>-i-1 Ai; set such a number equal to A.

The presentation A(®) associated to a (balanced) group presentation ®,
with ¢ generators and g relators, is said to be the alternating presentation
associated with ® if: 1) for each relator R; the first esponent €; is +1 and

the last esponent is —1; 2) each relator R. contains neither zj_ﬂlzs 41 Dor
a:sjla:sﬂ, 3)if R; = R}, for each i=1,.. ,g, and R; = za(l) 0(2) z;(lh),

o+
then set R" = ms-}-lma(Z) . a()‘l) a(l) S+1'

2. Seminormal crystallizations

We recall that if (I',v) is an (n 4 1)-coloured graph, ¥ is a subgraph
of T such that V(¥) = {z,y} and z,y are joined by p edges coloured
¢1,...,¢p(1 < p < n), then ¥ is said to be a dipole of type p iff z and y
lie on distinct connected components of I'a, _(c,,....c,}-

Let (I',7) be an (n 4 1)-coloured graph and let fi,...,f, be edges
(coloured with distinct colours ¢y,...,¢p) of E(T') such that: — the graph
(f(cl, v sCp)s ¥(€1,...,Cp)) obtained by deleting fi,..., f, from | TP
has many connected components; — there are two components of
I(e1,-..,¢p), say C° and C?, such that, for each ¢ = 1,...,p, f; has an
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end on C° and the other on C*. Let finally v? (resp. v}!),% =1,...,p the end
of f; lying on C° (resp. on C!). Then we can obtain from (I', ) a new graph
(T',4') by adding a dipole of type n + 1 — p between the edges fi,..., fp, as
follows:

(a) V(I') = V(T) U {=,y};

(b) delete the edges fi,..., fp;

(c) join & and y by n 4+ 1 — p distinct edges coloured by distinct colours

of Ay, — {e1,...,¢p};

(d) join z (tesp. y) with v? (resp. v}) by an edge coloured ¢;,i = 1,...,p.

The inverse process is called ”to cancel a dipole” of type n 4 1 — p.

It is well known (see [FG]) that if ' represents an n-manifold M, then
I represents again the same n-manifold.

If €@ is a {0, 1}-coloured 2-residue (in fact a cycle) of a crystallization

(T',7), then {v,(-a),i =1,...,%(a)}, denote the set of the vertices of €(®),

DEFINITION 1. A crystallization (I',v) of a 3-manifold M is said to
be (0, 1, p)-seminormal, p € {2, 3} iff there exists an ordering €(®, ¢ . |
¢(%) of the connected components of (0,1} with the properties:

a— vgi), .. "”53)—1’ i=1,...,s,are p-adjacent with vertices of €¢(®) and

the vertices 'Dgl) and T)E(sz), which are p-adjacent with the vertices vil) and

vg(sg) respectively, are 0- (or 1-)adjacent;

b — vg(iz) and v§i+1),i =1,...,8 — 1, are p-adjacent;

¢ — for each vertex v of €(°), there is a label i (i € {1,2,...,5}), such
that the vertex v’, p-adjacent with v, lies on €(9;

We shall call base component (resp. internal components) of I' the con-
nected component ¢(®) (resp. the connected components €(1), ..., Q(s)).

PROPOSITION 1. For each 3-manifold M, there is a crystallization (T',~y)
which is (0,1, p)-seminormal.

Proof. In the following we mean {p,q} = {2,3} and {a,b} = {0,1}.
Let (I',v') be any crystallization of M with g (0, 1)-coloured cycles. If, on
some {0, 1}-coloured cycles of I there are two vertices z and y joined by a
p-coloured edge f, then:

i)if 9 = {z, y} is a proper 2-dipole, involving colours a and p, then cancel
it from I";

ii) otherwise, called e an edge of IV which is a-coloured and which lies
on the same {a, p}-coloured component as f, then add a 2-dipole involving
colours b and ¢ between e and f. Repeat the process in order to eliminate
all the pairs of p-adjacent vertices lying on the same {0, 1}-component.
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Choose now two {0, 1}-coloured cycles of I'" with the property that there
are at least a vertex of the first and a vertex of the second which are
p-adjacent. Label these two components by C'(® and by C'M), Let now
C'®) be a {0, 1}-coloured component other than C’(®) and C'(}) having a

vertex v'(lz) p-adjacent with a vertex v’gzl)) of C'M) by means of an edge

¢. Moreover, C'(?) has p-coloured edges €;,¢€3,. .., which are p-consecutive
([BDG])and &; lies on the same {a, p}-coloured cycle as an edge of C'(%).

Note that the existence of such a domponent is assured, since C'™ has
surely edges lying on {a,p}-coloured cycles involving edges of C'® and
having length more than 4. Moreover, label by €; the p-coloured edges joining
vertices of C'(?) and C'() other than ¢ and add a 2-dipole involving colours
a and g (resp. b and ¢) between such p-coloured edges €;’s and the suitable
edge of C'(0),

Label now by C'® a {0, 1}-coloured component other than C'(®),C*(1)
and C'® having a vertex p-adjacent with a vertex of C'®) and with the
same properties required to choose C'(2),

As in the case of C'(®), add suitable 2-dipoles to obtain that C'®® and
C'® have exactly two p-adjacent vertices.

One can repeat the process to obtain a (finite) sequence C'(1),. .. C'(9)
of {0, 1}-coloured cycles such that for each i = 1,...,g— 1 there is a unique
pair of p-adjacent vertices lying respectively on C'(9) and on C'(i+1),

If the so obtained graph is none (0, 1, p)-seminormal crystallization of
M, then there is a p-coloured edge 1 joining a vertex of C'(*) and a vertex
of C'"V), withj #i—1,i+1,i=1,...,g and lying on a {a, p}-coloured cycle
involving an a-coloured edge ¢ of C'(®), Add a 2-dipole involving colours b
and g between 9 and ¢. Repeat the process for each pair of edges with the
properties of 1 and ¢ to obtain the required (0, 1, p)-seminormal crystalliza-
tion of M. m

Remark. Since each 3-manifold M admits a (0, 1, p)-normal crystalliza-
tion ([BDG]), then the preceding proposition can be obtained by starting
from such a crystallization I'. Let C1,C?,...,C" be the internal components
of I and denote by ¢;,7 = 1,...,r, one of the p-coloured edges having an
end on C? and lying on the (unique) (1, p)-coloured 2-cell C' of length 4r of
I', then by adding a 2-dipole involving colours 1 and ¢ between ¢; and the
1-coloured edge of C**! lying on C(i = 1,...,7—1), one obtain a seminormal
crystallization of M.

3. The algorithm
Let now & = (X/R) be a group presentation with g generators and g
relators such that there are no bipartition X = X; U X, and no biparti-
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tion R' = R} U R} with A(®) = (X1/R}) * (X2/R}) (where ”*” denotes
the free product of groups). Then it is possible to associate to A(®) a
representable 2-complex as follows: for each relation R.,i = 1,...,g, con-
sider a 2-cell B; whose boundary is subdivided according with the word
corresponding to Ri. Obviously, the relation R} induces a natural order-
ing of the vertices of the boundary of B; and it is natural to label the
edges of @B; by the name of the corresponding generator; moreover, la-
bel by 0 (resp. 1) each vertex of the resulting subdivision lying between
two edges labelled, say, z; and z; with the property that in the corre-
sponding word the generator z; has exponent 1 (resp.-1) and the genera-
tor z; has exponent -1 (resp. 1). From another point (labelled 2) internal
to B;, construct the join on the boundary of B;. Let now K(®) be the
disjoint union of the B;’s and in K(®) label each 2-simplex incident with
an edge labelled z,, with the same label. Since the group G of which &
is a balanced presentation is not a free product, then there is a sequence
Ti,T2,...,Tg of 2-simplexes such that: a. — for each j = 1,...,g, there
is a label i(5),¢(j) = 1,...,g, such that 7; lies in Bjg;); b. — for each
J=1,...,9—1,7; and 7;41 have the same label. Let now K'(®) be the
ball complex obtained from K(®) by identifying all the {0, 1}-coloured edge
with the same label and (pairwise) the {0, 2}-coloured (resp. {1,2}-coloured)
edges of 7; and T;41,2=1,...,9 — 1.

K'(®) is representable and, more precisely, it is represented by the crys-
tallized structure (I's,5s), so defined:

a — for each relator R, (: = 1,2,...,3), let u; be a cycle with edges
alternately coloured 0 and 1 and whose vertices are labelled by the generators
occurring in R}, so that,if Rl = ...z522%/ ..., then in y; the vertices labelled
Ty and zg are joined by a 0-coloured (resp. 1-coloured) edge if e, = —gg =1
(resp. o = —gg = —1).

b — Since the group is not a free product, then there is a sequence
B1y 2, .y phg such that, for each ¢ = 1,...,9—1, there exist two vertices z;
and z;41 of y; and p;4; respectively with the same label. Then identify z;
and z;4; to a unique vertex z; and, if ;(0) (resp. z;(1)) and z;4+1(0) (resp.
z;41(1)) are the vertices 0-adjacent (resp. l-adjacent) to z; and z;;1, join
z;(0) and z,41(0) (resp. z;(1) and z;4+1(1)) by means of a 0-coloured (resp.
a l-coloured) edge.

¢ — consider a 2-coloured clique for each class of vertices labelled by the
same generator.

Note that, by the same construction, the so obtained crystallized struc-
ture has A — g + 1 vertices.

Observe that, if ® is a canonical group presentation, then the above
construction works again, since in this case A(®) is simply obtained via
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condition 3) of the definition; hence K’'(®) and K'(A(®)) are combinatori-

ally equivalent.
Note that, if G5 (resp. p) denotes the number of connected components

of (Te ) (resp. of any pondered structure (I's, ¥ ) associated with (fq,ﬁq,))
and by writing ¢ instead {i}, then, for each ¢ € Ay, it results:

—Go=01=go=01=(A—29+2)/%
—g2 = g2 = g + 1 (the generator’s number);
-9;=G;=1;
hence x(Te) = 1iff §5 +§; = 2iff G5 = §; = L.

From now on, we consider the pondered structures associated to I'g
with the following property (property (SN)): each 0- and 1-coloured edge
becomes weight 1 and it is assigned an orientation to each of such cycles so
that the vertex 2;( = 1,...,g) lies on two different generalized weak cycles;
obviously under these hypotesis it is:

—go1 =g+ 1.
Let (B, 3) be the (h—) bijoin constructed on any pondered structure I's
with the property (SN) associated to I'y, then we can state the following:
PROPOSITION 2. With the above notations, (B, ) is a crystallization of
a (closed) 3-manifold M iff: gio = A\/2—-g+ 1, fori = 0,1 and h = 1;
moreover, in this case, (B, ) is a seminormal crystallization of M.

Proof. If (B, B) is a crystallization of a (closed) 3-manifold, then f‘;, is
a spine of M, hence g3 = g; = 1 and the result is an easy calculation on the
Euler characteristic.
Conversely, if 12 =A/2—g+1,fori=0,1and h = 1, then for i = 0,1
and j such that {¢,;7} = {0,1}, we obtain:
X(By)=gp2+9g3+93—-(A~g+1)=gp+gi+e-(A-g+1)
=gpt@+1)+(A/2-g+1)-(A-g+1)=2=2g;
moreover, X(B;) = go1+ 903+ 913 —(A—g+1) =g +Go+ g1 —(A—g+1) =
(g+1)+2(A/2—g+ 1)~ (A —g+1)=2; finally,
X(Bs)=gontgo2tgi2—(A—g+1)=gon+ o2+ gz~ (A—g+1)
=(g+1)+2(0/2-g+1)-(A-g+1)=2=2h.
Since h = 1,(B, 3) is contracted and hence a crystallization of M.
Moreover, for the same ”bijoin” algorithm, applied to T's, in B there are
g+ 1 (0, 1)-coloured cycles C©, C(W, .. C9) corresponding to the cycles

€0,¢',...,¢9 of Ty, such that all the vertices, less the two (resp. less the
one) of the components C(?), ..., C(9=1) (resp. C() and C(9)) arising from
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the vertices 21,...,2,-1 of I's, are 3-adjacent to vertices of the component
C® and the vertices (z;,0) and (2i41,1),i = 1,...,9 — 1, are 3-adjacent.
Hence (B, 3) is a (0.1;3)-seminormal crystallization of M. =

Remark. If H is an Heegaard diagram of a closed connected 3-manifold
M and ® is the presentation of w1 (M) associated with T', then ® is again
the presentation associated with the crystallization (I',y) of M obtained
from H via the construction described in [G;] by respect (say) to the pair
{7,7} of colours of I'. The above algorithm applied to ® produces a semi-
normal crystallization (I',4") of M which is obtained from (T, ) by adding
2-dipoles involving colours h,k, with k € {i,5} and k € Az — {3, j}; hence
the Heegaard diagram associated with I is obtained from H by means of
isotopic transformations.
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