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GEOMETRIC GROUP PRESENTATIONS 

Introduction 
A group presentation $ is said to be geometric (resp. strongly geometric) 

iff there are a 3-manifold (resp. a closed 3-manifold) M and a Heegaard dia-
gram H of M such that the presentation of the fundamental group tti(M), 
associated with H is exactly Many authors — by means of different tech-
niques — have dealt with the question if a group presentation is geometric 
(or strongly geometric). The obtained results concern the case in which the 
3-manifold M is orientable. More precisely, Neuwirth ([N]) describes an al-
gorithm to decide if a balanced group presentation (i.e. a presentation with 
the same number of generators and relators) is strongly geometric. Osborne 
and Stevens ([OSi], [OS2]) solve the same problem by means of particular 
graphs (the presentation-graphs or P-graphs). 

The same result is restated by Montesinos ([Mo]), via branched covering 
techniques. 

Moreover, Grasselli ([Gr]) gives a combinatorial algorithm to construct 
all orientable, compact and connected 3-manifolds, having the standard com-
plex ii $ canonically associated to the presentation $ as a standard spine 
([N]); such a standard complex has a unique vertex and its 1-cells (resp. 
2-cells) are in one-to-one correspondence with the generators (resp. the re-
lators) of Subsequently, Grasselli and Piccarreta ([GP]) introduce another 
combinatorial algorithm to build "normal" crystallizations of all closed, con-
nected, orientable 3-manifolds for which $ up to additions or deletions of 
terms either of the form XiX~l or of the form x~~lx%) for some generators 
Xj's, in some relations of $ is a presentation of the fundamental group. 
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In this work we construct all compact, connected 3-manifolds having a 
fixed balanced group presentation $ (up to additions or deletions of terms 
either of the form x i x j 1 or of the form x~ lxi , for some generators Xi s, in 
some relations of $) as a presentation of the fundamental group associated 
with a Heegaard diagram. The key-tool of such a construction is the bijoin 
- construction ([BG], [Gr], [B]) over a graph canonically associated with $ 
and representing a spine of a 3-manifold. 

This process allows to obtain a result concerning both the cases, or-
ientable and non orientable, by means of combinatorial tools. Observe that, 
since the spines of our construction are not special (in the sense of [Ma]), 
the 3-manifold cannot be univocally obtained. 

1. Preliminaries 
In this paper, all spaces and maps will be supposed to be piecewise-linear 

(PL) in the sense of [GÌ] or [RS]; moreover, all 3-manifolds will be closed 
and connected. 

With abuse of language, we shall use the term graph instead multigraph, 
whereas the term pseudograph indicates that loops are allowed. 

Given a pseudograph T = (V(T), _E(T)), a generalized coloration on T 
is any map 7 : i?(r) — A n = {0 ,1 , . . . , n}, where A n is said to be the 
colour-set. 

If B C A„, and B has cardinality equal to h, then Tb denote the sub-
graph (V(r) , *y~1(B)) and each connected component of Tb will be called 
5-residue or /i-residue coloured B of T. If c E A n , set c = A n — {c}. 

An (n + 1)-dimensional crystallized structure is a pair ( r , 7), where F 
is a graph, 7 is a generalized coloration with colour-set A n , and, for each 
c G A„,T { c } has cliques as connected components. If each clique of T ^ j has 
length two, for every c € A n , then (T,7) is said to be an (71 -(- 1 ̂ -coloured 
graph. In this case, 7 is a proper coloration of T, i.e. 7(e) 7 ( / ) , for each 
pair of adjacent edges of I\ 

An (n + l)-coloured graph (T,7) is contracted iff Tg is connected, for 
every c E A„. For more details on this argument see [FGG], [BM], [L] and 
[LM]. 

A coloured complex of dimension n is a pair (K, £), K being an ri-
dimensionai pseudocomplex [HW, p. 49] and £ is a vertex-colouring, that 
is a map from the set of the vertices of K to A„, whose restriction to each 
simplex is injective. If K has exactly (n + 1) vertices, then it is called a 
contracted complex (see [Pi], [P2])-

It is well known that to each (n+ l)-coloured graph ( r , 7 ) can be associ-
ated a coloured complex A'(r) of dimension n as follows: — for each vertex 
v of F ( r ) , take a n-simplex a(v) and label its vertices by the colours of A n ; 
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— for each pair v, w of c-adjacent vertices (c G A„) identify the (re- l)-faces 
of a(v) and cr(w) whose vertices are labelled by c. 

Conversely, to each coloured complex K of dimension re, can be associ-
ated an (n+1)-coloured graph ( r ( A ' ) , 7 ( / i ' ) ) , simply by reversing the above 
construction. 

Moreover, it is well known that, for each (re + l)-coloured graph ( r , 7 ) , 
T(K(T)) = T, whereas K(T(K)) = K iff the disjoint star of each simplex of 
K is strongly connected, in this case K will be called a representable complex 
(see [FGG] and its bibliography). Finally, K is contracted iff T is. 

The graph T associated to the complex K is said to represent K. 
A contracted (re + l)-coloured graph representing an n-manifold M is a 

crystallization of M. Each connected compact manifold admits crystalliza-
tions (see [Pi] and [P2]). 

We now recall the bijoin algorithm introduced in [B]. 
Let (H, ( ) be a representable (n — l)-dimensional coloured complex, a 

pluri-bijoin over H is an re-dimensional coloured complex (K, £), such that 
| A'| is a quasi-manifold and H can be identified with the subcomplex of K 
generated by the vertices of all colours but one, say c. If K has h vertices 
coloured c, then K is said to be an h - bijoin over H and, if h = 1, we 
simply call it a bijoin. 

Given any oriented pseudograph f — regular of degree 2re — endowed 
with a generalized coloration 7 : -E(f) —>• A„_ i , a weight on E — E(t), 
relative to the colour c £ A n _ i is a map u : E —• {0,1,2}, with the following 
properties: 

I — for each i € c and for each e 6 /f~1( i) , u(e) = 1; 
II — for each pair of adjacent edges e and / of 7 - 1 ( c ) : 
- if e ( l ) = / (0) , then (w(e) ,«( / ) ) G {(1,1), (1,0), (2,0), (0,2), (2,1)}; 
- if e ( l ) = / (1) , then (w(c),w(/)) G {(0,1), (0,2)}; 
- if c(0) = / ( 0 ) , then (a;(c),w(/)) G {(1,2), (2,0)}. 
The triple ( r , 7 ,w) is called an re-dimensional pondered structure if: 
a) for each i G A„_i — {c}, the connected components of 7 - 1 ( i ) are 

elementary oriented cycles; 
b) the connected components of 7 - 1 ( c ) are elementary cycles, whose 

edge-orientation is coherent with respect to the weight u . 
Observe that if u;(e) = 1, for each e G E, then the triple (r ,7 ,u;) is an 

oriented structure in the sense of [BG] and [Gr]. 
To each pondered structure (r ,7,u;) , it is canonically associated a crys-

tallized structure ( r , 7 ) , obtained by deleting all loops of f and by consider-
ing, for each connected component of 7 _ 1 ( i ) , the clique over the same vertex-
set, with all edges coloured i. Set K(f) = K(T). Obviously, this process 
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cannot be univocally inverted: in fact there are many pondered structures 
associated with the same crystallized structure. If (r,7,u>) is a pondered 
structure, the "bijoin" construction over f produces an (n + l)-coloured 
graph (B, f3) constructed by the following rules: 

i — V{B) = V(F) x {0,1}; 
ii — for each v G V(r), join (v, 0) and (v, 1) by an edge e of E(B) and 

set /3(e) = n; 
iii — if e G E and v (resp. w) is its first (resp. second) vertex, then join 

(v, h) and (w, k) by an edge e G E(B) so that h < k and h + k = u>(e). Set 
(3(e) = 7(e). 

The so obtained graph (B,/3) represents an /¿-bijoin over the (coloured) 
complex / i ' ( f) . 

If n = 3, we can state some properties characterizing the /i-bijoins 
over a 3-dimensional pondered structure representing 3-manifolds. A cy-
cle fi, coloured alternately i and j , of a 3-dimensional pondered structure, is 
said to be a generalized weak cycle if: (a) when = A2 — {c}, then 
for each pair of adjacent edges e, / it is u>(e) = w(/) = 1 and either 
e(0) = /(0) or e(l) = /(1); (b) when two adjacent edges e and / of /¿, 
respectively coloured c and j ^ c, have the same first (resp. second) vertex, 
then (u(e)Mf)) € {(1,1), (0,1)} (resp. (w(e),w(/)) G {(1,1), (2,1)}); (c) 
when e(0) = /(1), then (w(e),w(/)) = (2,1) and when e(l) = /(0), then 
( W ( e ) , W ( / ) ) = ( 0,1). 

In this paper, given a 3-dimensional pondered structure ( r ,7 ) (resp. 
either a crystallized structure ( r ,7) or a /i-bijoin (B,(3) over ( f ,7) ) , we 
denote by gi, g-{ (resp. either gi, or gi,gi) the number of the connected 
components of f{j} and f j (resp. either of T, and Tj or of Bi and B5) 
respectively, by q\ the sum of the gCs, by q2 the sum of the g^, by v the 
number of the vertices of f and by <7̂  the number of the generalized weak 
cycles coloured i and j alternately. With the above notations, the following 
result holds: if (B,f3) is the h-bijoin constructed over ( f ,7) , then (B,(3) 
represents a closed 3-manifold iff gm + 502 + 9\2 + qi = #2 + h + 2v. 

Observe that if B is contracted for each i G A3, the subcomplex of K(B) 
constituted by all the ¿-coloured 2-simplexes is a spine of K(B). 

Moreover, recall that as pointed out in [P2] if ( I \7 ) is a crystallization 
of a 3-manifold M and {i,j} U {h, k} = A3, the connected components, in 
fact cycles of two colours, of T ^ j } and but one, are the classes of 
canonical curves of a Heegaard diagram H of M. 

It is well known that, give an Heegaard diagram H of a (closed) 3-
manifold M, there is a presentation of TTI(M) canonically associated to H, 
whose generators and relators arise from the (two) classes of canonical curves 
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of H ([S], [He]); hence the presentation must have the same number of 
generators and relators. 

Following [Gi], we describe how to obtain a presentation of the funda-
mental group of a (closed) 3-manifold M by starting from a crystallization 
of M. With the above notations, let { x i , . . . , x g } be the set of all the con-
nected components of r^ - j} , but one, and let {j / i , . . - ,yg} be the set of all 
the connected components of r ^ ^ j , but one. Choose a fixed vertex and a 
running direction for each ya,a = 1 construct a word ra over the 
alphabet , . . . , xg} as follows: 

start from the fixed vertex, walk along ya in the fixed direction and write 
step by step all the meeting generators, with exponent + 1 or —1, according 
to h or k being the colour of the edge by which you run into the generator. 

If $ = ( i i , . . . , xs/Ri,..., Rr) is any group presentation, it is possible 
to define a new presentation of the same group, as follows: 

= ( x 1 , . . . , x 3 , x s + 1 / R [ , . . . , R ' r , x s + 1 ) 

where the new generator is the trivial one, and if Ri, i = 1 , . . . , r , is 
a relator of say Ri = x ^ x ^ . . . X*', with £1,62, • • • ,£P G { - 1 , 1 } , then 
in A($) the corresponding relator has the form R[ = z ^ z f + i ^ x s + i . . . 
x i + ^ " Z s + d = 0, if £h i £h+i and 6h = -£h otherwise. 

For the presentation set X(xi) the number of the occurrence of the 
generator a a n d A; the length of the relator R\. Obviously, £^¿=1 = 

A¿; set such a number equal to A. 
The presentation associated to a (balanced) group presentation 

with g generators and g relators, is said to be the alternating presentation 

associated with $ if: 1) for each relator Ri the first esponent £\ is + 1 and 
the last esponent is - 1 ; 2) each relator R[ contains neither x^^xj^ nor 

3 ) i f Ri = f o r e a c h i = !> • • • a n d Ri = xt(\)xa(2) • 

then set R" = xt+ix
a(2) • • •xa(\1)xt(i)xs+i-

2. Seminormal crystallizations 
We recall that if (T,7) is an (n -f l)-coloured graph, $ is a subgraph 

of T such that V^fl) = {x,y} and x,y are joined by p edges coloured 
c i , . . . , c p ( l < p < n), then •& is said to be a dipole of type p iff x and y 

lie on distinct connected components of r^n_{Cl) . . . jCp}. 
Let ( r , 7 ) be an (n + l)-coloured graph and let / i , . . . , / p be edges 

(coloured with distinct colours c l 5 . . , , c p ) of £ ( r ) such that: — the graph 
cP),7(ci> • • ->cp)) obtained by deleting / i , . . . , / p from r{Cli...)Cp} 

has many connected components; — there are two components of 
r ( C l , . . . , C p ) , say C° and C 1 , such that , for each i = fi has an 
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end on C° and the other on Cl. Let finally (resp. vj), i = 1 , . . . , p the end 
of fi lying on C° (resp. on C 1 ) . Then we can obtain from (F, 7) a new graph 
( r ' , 7') by adding a dipole of type n + 1 - p between the edges / 1 , . . . , fp, as 
follows: 

(a) F ( r ' ) = n r ) u {*,</}; 
(b) delete the edges fi,...,fp', 
(c) join x and y by n + 1 — p distinct edges coloured by distinct colours 

of A„ - {c i , . . . ,cp}; 
(d) join x (resp. y) with v° (resp. vj) by an edge coloured C{, i = 1 , . . . , p. 
The inverse process is called "to cancel a dipole" of type n + 1 — p. 
It is well known (see [FG]) that if T represents an n-manifold M, then 

T' represents again the same n-manifold. 
If is a {0, l}-coloured 2-residue (in fact a cycle) of a crystallization 

( r , 7 ) , then {v\a\i = 1 , . . . , i (a )} , denote the set of the vertices of 

D E F I N I T I O N 1 . A crystallization ( T , 7) of a 3-manifold M is said to 
be (0, l,p)-seminormal, p 6 {2,3} iff there exists an ordering (J^1),... , 

of the connected components of r^o,i} with the properties: 

a — . . •, i — 1, - - •, s, are p-adjacent with vertices of <£(°) and 

the vertices and , which are p-adjacent with the vertices and 

respectively, are 0- (or l-)adjacent; 

b — and i = 1 , . . . , s — 1, are p-adjacent; 

c — for each vertex v of there is a label i (i G {1 ,2 , . . . ,5}), such 
that the vertex v', p-adjacent with v, lies on ; 

We shall call base component (resp. internal components) of T the con-
nected component <£(°) (resp. the connected components (£(*),..., (£(s)). 

P R O P O S I T I O N 1 . For each 3-manifold M, there is a crystallization ( T , 7) 
which is (0,1 ,p)-seminormal. 

P r o o f . In the following we mean {p, q} = {2,3} and {a, b} — {0,1}. 
Let ( r ' , 7 ' ) be any crystallization of M with g (0, l)-coloured cycles. If, on 
some {0, l}-coloured cycles of T' there are two vertices x and y joined by a 
p-coloured edge / , then: 

i) if 1? = {x, y} is a proper 2-dipole, involving colours a and p, then cancel 
it from r ' ; 

ii) otherwise, called e an edge of T' which is a-coloured and which lies 
on the same {a,p}-coloured component as / , then add a 2-dipole involving 
colours b and q between e and f . Repeat the process in order to eliminate 
all the pairs of p-adjacent vertices lying on the same {0, l}-component. 
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Choose now two {0, l}-coloured cycles of T' with the property that there 
are at least a vertex of the first and a vertex of the second which are 
p-adjacent. Label these two components by C ' ^ and by Let now 
C' ( 2 ) be a {0, l}-coloured component other than C / ( 0 ) and C"(1) having a 
vertex v ' ^ p-adjacent with a vertex v ' t(i) C ' ^ by means of an edge 

e. Moreover, C h a s p-coloured edges £1,62, • • which are p-consecutive 
([BDG])and £1 lies on the same {a,p}-coloured cycle as an edge of C ' ^ . 

Note that the existence of such a component is assured, since C h a s 
surely edges lying on {a, p}-coloured cycles involving edges of C'^ and 
having length more than 4. Moreover, label by £i the p-coloured edges joining 
vertices of C a n d C"^ other than e and add a 2-dipole involving colours 
a and q (resp. b and q) between such p-coloured edges £j's and the suitable 
edge of C'(°K 

Label now by C,(~3) a {0, l}-coloured component other than C" ( 0 ) ,C / ( 1 ) 

and C'W having a vertex p-adjacent with a vertex of C a n d with the 
same properties required to choose C ' ^ . 

As in the case of C ' ( 2 \ add suitable 2-dipoles to obtain that C ' ^ and 
C 'W have exactly two p-adjacent vertices. 

One can repeat the process to obtain a (finite) sequence . . . , C ' ^ 
of {0, l}-coloured cycles such that for each i = 1 , . . . ,g - 1 there is a unique 
pair of p-adjacent vertices lying respectively on C ' ^ and on 

If the so obtained graph is none (0, l,p)-seminormal crystallization of 
M, then there is a p-coloured edge ip joining a vertex of C'^ and a vertex 
of C'M, with j ^ i — 1, z + 1, i = 1, • • •, <7 and lying on a {a, p}-coloured cycle 
involving an a-coloured edge <fi of Add a 2-dipole involving colours b 
and q between -0 a n d <f>. Repeat the process for each pair of edges with the 
properties of ip and <f> to obtain the required (0, l,p)-seminormal crystalliza-
tion of M. • 

R e m a r k . Since each 3-manifold M admits a (0, l,p)-normalcrystalliza-
tion ([BDG]), then the preceding proposition can be obtained by starting 
from such a crystallization I \ Let C 1 , C 2 , . . . , Cr be the internal components 
of T and denote by £{,i = 1 , . . . , r , one of the p-coloured edges having an 
end on Cl and lying on the (unique) (l,p)-coloured 2-cell C of length 4r of 
T, then by adding a 2-dipole involving colours 1 and q between e, and the 
1-coloured edge of Ct+1 lying o n C ( i = 1 , . . . , r — 1), one obtain a seminormal 
crystallization of M. 

3. T h e algorithm 
Let now $ = (X/R) be a group presentation with g generators and g 

relators such that there are no bipartition X = X\ U X2 and no biparti-
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tion R' = R[ U R'2 with A($) = (Xi/R[) * (X2/R'2) (where "*" denotes 
the free product of groups). Then it is possible to associate to a 
representable 2-complex as follows: for each relation R\,i = 1 ,...,g, con-
sider a 2-cell Bi whose boundary is subdivided according with the word 
corresponding to R[. Obviously, the relation R[ induces a natural order-
ing of the vertices of the boundary of Bi and it is natural to label the 
edges of dBi by the name of the corresponding generator; moreover, la-
bel by 0 (resp. 1) each vertex of the resulting subdivision lying between 
two edges labelled, say, X{ and Xj with the property that in the corre-
sponding word the generator xi has exponent 1 (resp.-l) and the genera-
tor Xj has exponent -1 (resp. 1). From another point (labelled 2) internal 
to Bi, construct the join on the boundary of Bi. Let now be the 
disjoint union of the J3,'s and in ii'($) label each 2-simplex incident with 
an edge labelled xa, with the same label. Since the group G of which $ 
is a balanced presentation is not a free product, then there is a sequence 
Ti, 72 , . . . , r 5 of 2-simplexes such that: a. — for each j = l,...,g, there 
is a label i(j),i(j) — l,...,g, such that Tj lies in B ^ y b. — for each 
j = l,...,g — l,Tj and Tj+1 have the same label. Let now A r'($) be the 
ball complex obtained from iv'(<f>) by identifying all the {0, l}-coloured edge 
with the same label and (pairwise) the {0,2}-coloured (resp. {1,2}-coloured) 
edges of Tj and Tj+i,? = 1 , . . . , <7 — 1. 

is representable and, more precisely, it is represented by the crys-
tallized structure (T$,7$), so defined: 

a — for each relator R'i (J, = 1 , 2 , . . . , 5 ) , let //j be a cycle with edges 
alternately coloured 0 and 1 and whose vertices are labelled by the generators 
occurring in R\, so that, if R[ = ... x£

a
a x£^ ..., then in yn the vertices labelled 

xa and xp are joined by a 0-coloured (resp. 1-coloured) edge if ea = — £¡3 = 1 
(resp. = - e p = - 1 ) . 

b — Since the group is not a free product, then there is a sequence 
Hi, /i2, • • •, Hg such that, for each i = 1,.. .,g — I, there exist two vertices Xi 
and Xi+1 of /i, and Hi+1 respectively with the same label. Then identify Xi 
and Xi+i to a unique vertex Zi and, if £¿(0) (resp. £¿(1)) and Xj+i(0) (resp. 
a;,-|-i(l)) are the vertices 0-adjacent (resp. 1-adjacent) to x, and Xi+1, join 
£¿(0) and £¿-1-1(0) (resp. £¿(1) and £j+ i( l)) by means of a 0-coloured (resp. 
a 1-coloured) edge. 

c — consider a 2-coloured clique for each class of vertices labelled by the 
same generator. 

Note that, by the same construction, the so obtained crystallized struc-
ture has A — g + 1 vertices. 

Observe that, if $ is a canonical group presentation, then the above 
construction works again, since in this case is simply obtained via 
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condition 3 ) of the definition; hence J T ( $ ) and J T ( A ( $ ) ) are combinatori-

ally equivalent. 

Note that, if g s (resp. g s ) denotes the number of connected components 

of (resp. of any pondered structure (f<j>,7$) associated with ( r $ , 7 $ ) ) 

and by writing i instead { ¿ } , then, for each i G A2, it results: 

-go = 9i = 9o = 9i = - 29 + 2)/2; 
~92 = 92 = 9 + 1 (the generator's number); 

-9i = h = 

hence x ( f * ) = 1 iff % + 9i = 2 iff % = 9{ = 1. 

From now on, we consider the pondered structures associated to 
with the following property (property ( S N ) ) : each 0- and 1-coloured edge 
becomes weight 1 and it is assigned an orientation to each of such cycles so 
that the vertex Zi(i = 1 , . . . ,g) lies on two different generalized weak cycles; 
obviously under these hypotesis it is: 

-<7oi = 9 + 1-

Let {B,(3) be the (h—) bijoin constructed on any pondered structure f $ 

with the property ( S N ) associated to TJ , then we can state the following: 

PROPOSITION 2. With the above notations, (B,(3) is a crystallization of 

a (closed) 3 -mani fo ld M i f f : gi2 = A/2 — g + 1, for ¿ = 0,1 and h — 1; 
moreover, in this case, (B,/3) is a seminormal crystallization of M. 

P r o o f . If ( B , ( j ) is a crystallization of a (closed) 3-manifold, then is 
a spine of M , hence <75 = g j = 1 and the result is an easy calculation on the 
Euler characteristic. 

Conversely, if 512 = A/2 - g + 1, for i = 0 ,1 and h = 1, then for i = 0 ,1 
and j such that {i, j } = { 0 , 1 } , we obtain: 

x(Bi) = gj2 + 923 + 9j3 - { X - g + l ) = gj2 + 9j + h - (A - g + 1) 

= 9j2 + ( g + l ) + (A/2 - g + 1) - (A - g + 1) = 2 = 2 $ ; 

moreover, x{B{) = 9oi +503 +£13 - ( A - g +1) = g01 +g0 +gi - ( A - g +1) = 

(«7 + 1) + 2(A/2 - g + 1) - (A - g + 1) = 2; finally, 

X(B3) = 9oi + 902 + 912 - (A - g + 1) = <701 + 502 + 9i2 ~ (A - 9 + 1) 

= (g + 1) + 2(A/2 - g + 1) - (A - g + 1) = 2 = 2h. 

Since h = l,(B,/3) is contracted and hence a crystallization of M. 

Moreover, for the same "bi jo in" algorithm, applied to f $ , in B there are 
g + 1 (0, l )-coloured cycles C ^ C ^ , . . corresponding to the cycles 
<£°, <£ x , . . . , <£9 of such that all the vertices, less the two (resp. less the 
one) of the components . . . , C ( 3 _ 1 ) (resp. C ( 1 ) and C ( f l ) ) arising f rom 
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the vertices z\,.. •, zg-\ of are 3-adjacent to vertices of the component 
and the vertices (z,-,0) and (zi+i,l),i = 1 ,...,g — 1, are 3-adjacent. 

Hence (B,/3) is a (0.1;3)-seminormal crystallization of M. • 

R e m a r k . If H is an Heegaard diagram of a closed connected 3-manifold 
M and $ is the presentation of xi(M) associated with T, then $ is again 
the presentation associated with the crystallization (T, 7 ) of M obtained 
from H via the construction described in [G2] by respect (say) to the pair 

j} of colours of T. The above algorithm applied to $ produces a semi-
normal crystallization ( r ' , 7 ' ) of M which is obtained from ( T , 7 ) by adding 
2-dipoles involving colours h,k, with h 6 and k £ A3 - {i, j}\ hence 
the Heegaard diagram associated with T' is obtained from H by means of 
isotopic transformations. 
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