

Stanislaw Midura

ON SOLUTIONS OF SYSTEMS OF FUNCTIONAL
 EQUATIONS DETERMINING SOME SUBSEMIGROUPS
 OF THE GROUP L_6^1

1. Let \mathbb{R} be the set of real numbers, and $\mathbb{R}_0 = \mathbb{R} \setminus \{0\}$. In the set $\mathbb{R}_0 \times \mathbb{R}^5$ we introduce the following operation

$$\begin{aligned}
 (1.1) \quad & \langle y_1, y_2, y_3, y_4, y_5, y_6 \rangle \cdot \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle = \\
 & = \langle y_1 x_1, y_1 x_2 + y_2 x_1^2, y_1 x_3 + 3y_2 x_1 x_2 + y_3 x_1^3, y_1 x_4 + y_4 x_1^4 + \\
 & + 4y_2 x_1 x_3 + 6y_3 x_1^2 x_2 + 3y_2 x_2^2, y_1 x_5 + y_5 x_1^5 + 10x_1^3 x_2 y_4 + \\
 & + 15x_1 x_2^2 y_3 + 10x_1^2 x_3 y_3 + 10x_2 x_3 y_2 + 5x_1 x_4 y_2, y_1 x_6 + y_6 x_1^6 + \\
 & + 6y_2 x_1 x_5 + 15y_2 x_2 x_4 + 10y_2 x_3^2 + 15y_3 x_1^2 x_4 + 60y_3 x_1 x_2 x_3 + \\
 & + 20y_4 x_1^3 x_3 + 45y_4 x_1^2 x_2^2 + 15y_5 x_1^4 x_2 \rangle.
 \end{aligned}$$

The set $\mathbb{R}_0 \times \mathbb{R}^5$ with the operation (1.1) is a group, which is denoted by L_6^1 (cf. [2]).

It is known that the right hand side of (1.1) expresses the derivatives of order n , $n = 1, \dots, 6$, for some composed function $f(t) = F(\phi(t))$ by means of the derivatives y_1, \dots, y_6 respectively of the order $1, \dots, 6$ of the exterior function $F(u)$ ($y_i = \frac{d^i F(u)}{du^i}$) and the derivatives x_1, \dots, x_6 of the order $1, \dots, 6$ of the inner function $\phi(t)$ ($x_i = \frac{d^i \phi(t)}{dt^i}$).

In the first part of the paper we shall deal with the determination of subsemigroups of the group L_6^1 , in which three parameters are functions of the others or some others.

In the second and third part of the paper we determine subsemigroups of the group L_6^1 in which four parameters are functions of the others.

In the paper [12] there were determined subsemigroups of the group L_6^1 in which the last parameter is a function of the others or some of the others. Subgroups or subsemigroups of the groups L_s^1 , $s = 2, 3, 4, 5$, were determined by means of functional equations in the paper from [2] to [15] besides [6].

Let f, g, h be functions mapping $\mathbb{R}_0 \times \mathbb{R}^2$ into reals. Let us denote

$$(1.2) \quad \mathbf{P}_{456} = \{ \langle x_1, x_2, x_3, f(x_1, x_2, x_3), g(x_1, x_2, x_3), h(x_1, x_2, x_3) \rangle : \\ x_1 \in \mathbb{R}_0, x_2, x_3 \in \mathbb{R} \}.$$

The set \mathbf{P}_{456} is closed with respect to the operation (1.1) if and only if for any x_1, x_2, x_3 and y_1, y_2, y_3

$$\begin{aligned} & \langle y_1, y_2, y_3, f(y_1, y_2, y_3), g(y_1, y_2, y_3), h(y_1, y_2, y_3) \rangle \cdot \\ & \langle x_1, x_2, x_3, f(x_1, x_2, x_3), g(x_1, x_2, x_3), h(x_1, x_2, x_3) \rangle = \\ & = \langle y_1 x_1, y_1 x_2 + y_2 x_1^2, y_1 x_3 + 3y_2 x_1 x_2 + y_3 x_1^3, y_1 f(x_1, x_2, x_3) + \\ & + f(y_1, y_2, y_3) x_1^4 + 4y_2 x_1 x_3 + 6y_3 x_1^2 x_2 + 3y_2 x_2^2, y_1 g(x_1, x_2, x_3) + \\ & + g(y_1, y_2, y_3) x_1^5 + 10x_1^3 x_2 g(y_1, y_2, y_3) + 15x_1 x_2^2 y_3 + 10x_1^2 x_3 y_3 + \\ & + 10x_2 x_3 y_2 + 5x_1 f(x_1, x_2, x_3) y_2, y_1 h(x_1, x_2, x_3) + h(y_1, y_2, y_3) x_1^6 + \\ & + 6y_2 x_1 g(x_1, x_2, x_3) + 15y_2 x_2 f(x_1, x_2, x_3) + 10y_2 x_3^2 + \\ & + 15y_3 x_1^2 f(x_1, x_2, x_3) + 60y_3 x_1 x_2 x_3 + 20x_1^3 x_3 f(y_1, y_2, y_3) + \\ & + 45x_1^2 x_2^2 f(y_1, y_2, y_3) + 15x_1^4 x_2 g(y_1, y_2, y_3) \rangle \in \mathbf{P}_{456}. \end{aligned}$$

Hence and by the definition of \mathbf{P}_{456} get that the functions f, g, h satisfy the following system of functional equations

$$(1.3) \quad f(y_1 x_1, y_1 x_2 + y_2 x_1^2, y_1 x_3 + 3y_2 x_1 x_2 + y_3 x_1^3) = \\ = y_1 f(x_1, x_2, x_3) + f(y_1, y_2, y_3) x_1^4 + 4y_2 x_1 x_3 + 6y_3 x_1^2 x_2 + 3y_2 x_2^2,$$

$$(1.4) \quad g(y_1 x_1, y_1 x_2 + y_2 x_1^2, y_1 x_3 + 3y_2 x_1 x_2 + y_3 x_1^3) = \\ = y_1 g(x_1, x_2, x_3) + x_1^5 g(y_1, y_2, y_3) + 10x_1^3 x_2 g(y_1, y_2, y_3) + \\ + 15x_1 x_2^2 y_3 + 10x_1^2 x_3 y_3 + 10x_2 x_3 y_2 + 5x_1 y_2 g(x_1, x_2, x_3),$$

$$(1.5) \quad h(y_1 x_1, y_1 x_2 + y_2 x_1^2, y_1 x_3 + 3y_2 x_1 x_2 + y_3 x_1^3) = \\ = y_1 h(x_1, x_2, x_3) + x_1^6 h(y_1, y_2, y_3) + 6y_2 x_1 g(x_1, x_2, x_3) + \\ + 15y_2 x_2 f(x_1, x_2, x_3) + 10y_2 x_3^2 + 15y_3 x_1^2 f(x_1, x_2, x_3) + \\ + 60y_3 x_1 x_2 x_3 + 20f(y_1, y_2, y_3) x_1^3 x_3 + 45x_1^2 x_2^2 f(y_1, y_2, y_3) + \\ + 15g(y_1, y_2, y_3) x_1^4 x_2.$$

In [3] (Theorem 1) it was proved that the equation (1.3) has no solutions. Therefore the system (1.3)–(1.5) has no solutions, and the group \mathbf{L}_6^1 has no subsemigroups of the form \mathbf{P}_{456} .

Denote

$$(1.6) \quad \mathbf{P}_{456}^o = \{ \langle x_1, 0, x_3, F(x_1, x_3), G(x_1, x_3), H(x_1, x_3) \rangle : x_1 \in \mathbb{R}_0, x_3 \in \mathbb{R} \}.$$

The set \mathbf{P}_{456}° is closed with respect to (1.1) if and only if the functions F, G, H satisfy the following system of functional equations. (One can obtain it from (1.3)–(1.5) putting $x_2 = y_2 = 0$ in $F(x_1, x_3) := f(x_1, 0, x_3)$, $G(x_1, x_3) := g(x_1, 0, x_3)$, $H(x_1, x_3) := h(x_1, 0, x_3)$).

$$(1.7) \quad F(x_1 y_1, y_1 x_3 + y_3 x_1^3) = y_1 F(x_1, x_3) + x_1^4 F(y_1, y_3),$$

$$(1.8) \quad G(x_1 y_1, y_1 x_3 + y_3 x_1^3) = y_1 G(x_1, x_3) + x_1^5 G(y_1, y_3) + 10x_1^2 x_3 y_3,$$

$$(1.9) \quad H(x_1 y_1, y_1 x_3 + y_3 x_1^3) = y_1 H(x_1, x_3) + x_1^6 H(y_1, y_3) + \\ + 15y_3 x_1^2 F(x_1, x_3) + 20F(y_1, y_3) x_1^3 x_3.$$

In view of Theorem 2 from [3] the general solution of the equation (1.7) is a family of functions of the form

$$(1.10) \quad F(x_1, x_3) = p(x_1^4 - x_1),$$

where p is an arbitrary real number.

By Lemma 1 in [9] it follows that the general solution of the equation (1.8) is a family of functions of the form

$$(1.11) \quad G(x_1, x_3) = k(x_1^5 - x_1) + 5 \frac{x_3^2}{x_1}.$$

where k is an arbitrary real number.

If in (1.9) we substitute (1.10), we obtain

$$(1.12) \quad H(x_1 y_1, y_1 x_3 + y_3 x_1^3) = y_1 H(x_1, x_3) + x_1^6 H(y_1, y_3) + \\ + 15y_3 x_1^2 p(x_1^4 - x_1) + 20p(y_1^4 - y_1) x_1^3 x_3.$$

If in (1.12) we put $x_1 = 1$ and $y_3 = 0$, then we get

$$(1.13) \quad H(y_1, y_1 x_3) = y_1 H(1, x_3) + H(y_1, 0) + 20p(y_1^4 - y_1) x_3.$$

Next setting $y_1 = 1$ and $x_3 = 0$ in (1.12) we have

$$(1.14) \quad H(x_1, y_3 x_1^3) = H(x_1, 0) + x_1^6 H(1, y_3) + 15y_3 x_1^2 p(x_1^4 - x_1),$$

and setting $x_3 = y_3 = 0$ in (1.12) we get

$$(1.15) \quad H(x_1 y_1, 0) = y_1 H(x_1, 0) + x_1^6 H(y_1, 0).$$

By Theorem 1 in [2] it follows that the general solution of (1.15) is a family

$$(1.16) \quad H(x_1, 0) = l(x_1^6 - x_1),$$

where l is an arbitrary real number.

If in (1.12) we put $x_1 = y_1 = 1$, then we get

$$(1.17) \quad H(1, x_3 + y_3) = H(1, x_3) + H(1, y_3).$$

From the last equality it follows that the function

$$(1.18) \quad \phi(x) := H(1.x)$$

is additive.

If in (1.13) we assume $u_3 = y_1 x_3$ ($x_3 = \frac{u_3}{y_1}$) then due to (1.16) and (1.18) we get

$$(1.19) \quad H(y_1, u_3) = y_1 \phi\left(\frac{u_3}{y_1}\right) + l(y_1^6 - y_1) + 20p(y_1^3 - 1)u_3.$$

If in (1.14) we set $u_3 = y_3 x_1^3$ ($y_3 = \frac{u_3}{x_1^3}$) and $x_1 = y_1$, then in view of (1.16) and (1.18) we have

$$(1.20) \quad H(y_1, u_3) = l(y_1^6 - y_1) + y_1^6 \phi\left(\frac{u_3}{y_1^3}\right) + 15u_3 p(y_1^3 - 1).$$

Note that the left hand sides of (1.19) and (1.20) are equal, and so are the right hand sides. Hence

$$(1.21) \quad y_1 \phi\left(\frac{u_3}{y_1}\right) + 20p(y_1^3 - 1)u_3 = y_1^6 \phi\left(\frac{u_3}{y_1^3}\right) + 15p(y_1^3 - 1)u_3.$$

Let us consider the above equality only for y_1 from the set of rational numbers. From this and from the fact that ϕ is additive it follows that (1.21) takes the form

$$(1.22) \quad \phi(u_3) + 20p(y_1^3 - 1)u_3 = y_1^3 \phi(u_3) + 15p(y_1^3 - 1)u_3.$$

Therefore

$$\phi(u_3)(y_1^3 - 1) = 5p(y_1^3 - 1)u_3.$$

By the above equality it follows that

$$(1.23) \quad \phi(u_3) = 5pu_3.$$

Hence (1.19) takes the form

$$(1.24) \quad H(x_1, x_3) = 5px_3 + l(x_1^6 - x_1) + 20p(x_1^3 - 1)x_3$$

It is easily checked that every function of the form (1.24) satisfies the equation (1.12).

We then proved

LEMMA 1. *The general solution of the equation (1.12) is a family of functions of the form (1.24), where l is a real number.*

THEOREM 1. *The general solution of the system (1.7)–(1.9) is a family of triples of the form*

$$F(x_1, x_3) = p(x_1^4 - x_1),$$

$$G(x_1, x_3) = k(x_1^5 - x_1) + 5\frac{x_3^2}{x_1},$$

$$H(x_1, x_3) = l(x_1^6 - x_1) + 5px_3 + 20p(x_1^3 - 1)x_3,$$

where p, k, l belong to reals.

THEOREM 1'. Unique subsemigroups of the group \mathbf{L}_6^1 of the form \mathbf{P}_{456}^o are the sets

$$\left\{ \left\langle x_1, 0, x_3, p(x_1^4 - x_1), k(x_1^5 - x_1) + 5\frac{x_3}{x_1}, l(x_1^6 - x_1) + 5px_3 + 20p(x_1^3 - 1)x_3 \right\rangle : \right. \\ \left. x_1 \in \mathbb{R}_0, x_3 \in \mathbb{R} \right\},$$

where p, k, l are reals.

2. By f, g, h, H we denote functions such that $f, g, h, H : \mathbb{R}_0 \times \mathbb{R} \rightarrow \mathbb{R}$.

Denote

$$(2.1) \quad \mathbf{P}_{2456} = \{ \langle x_1, f(x_1, x_3), x_3, g(x_1, x_3), h(x_1, x_3), H(x_1, x_3) \rangle : \\ x_1 \in \mathbb{R}_0, x_3 \in \mathbb{R} \}.$$

Analogously as in the case of \mathbf{P}_{456} one proves that the set \mathbf{P}_{2456} is closed with respect to the operation (1.1) if and only if the functions f, g, h, H verify the following system of functional equations

$$(2.2) \quad f(y_1 x_1, y_1 x_3 + 3x_1 f(x_1, x_3) f(y_1, y_3) + y_3 x_1^3) = \\ = y_1 f(x_1, x_3) + f(y_1, y_3) x_1^2,$$

$$(2.3) \quad g(y_1 x_1, y_1 x_3 + 3x_1 f(x_1, x_3) f(y_1, y_3) + y_3 x_1^3) = \\ = y_1 g(x_1, x_3) + x_1^4 g(y_1, y_3) + 4f(y_1, y_3) x_1 x_3 + \\ + 6y_3 x_1^2 f(x_1, x_3) + 3f(y_1, y_3) f^2(x_1, x_3),$$

$$(2.4) \quad h(y_1 x_1, y_1 x_3 + 3x_1 f(x_1, x_3) f(y_1, y_3) + y_3 x_1^3) = \\ = y_1 h(x_1, x_3) + x_1^5 h(y_1, y_3) + 10x_1^3 f(x_1, x_3) g(y_1, y_3) + \\ + 15x_1 f^2(x_1, x_3) y_3 + 10x_1^2 x_3 y_3 + 10x_3 f(x_1, x_3) f(y_1, y_3) + \\ + 5x_1 g(x_1, x_3) f(y_1, y_3),$$

$$(2.5) \quad H(y_1 x_1, y_1 x_3 + 3x_1 f(x_1, x_3) f(y_1, y_3) + y_3 x_1^3) = \\ = y_1 H(x_1, x_3) + x_1^6 H(y_1, y_3) + 6x_1 f(y_1, y_3) h(x_1, x_3) + \\ + 15f(x_1, x_3) f(y_1, y_3) g(x_1, x_3) + 10x_3^2 f(y_1, y_3) + \\ + 15x_1^2 y_3 g(x_1, x_3) + 60y_3 x_1 x_3 f(x_1, x_3) + 20x_1^3 x_3 g(y_1, y_3) + \\ + 45x_1^2 f^2(x_1, x_3) g(y_1, y_3) + 15x_1^4 f(x_1, x_3) h(y_1, y_3).$$

In virtue of Theorem 1 in [9] the general solution of the system (2.2)–(2.4) are the family of triples of functions

$$(2.6) \quad f(x_1, x_3) = 0,$$

$$(2.7) \quad g(x_1, x_3) = p(x_1^4 - x_1),$$

$$(2.8) \quad h(x_1, x_3) = k(x_1^5 - x_1) + 5 \frac{x_3^2}{x_1},$$

where k and p are arbitrary real constants.

If in (2.5) we substitute (2.6), (2.7) and (2.8) then we get

$$(2.9) \quad H(y_1 x_1, y_1 x_3 + y_3 x_1^3) = y_1 H(x_1, x_3) + x_1^6 H(y_1, y_3) + \\ + 15 x_1^2 y_3 p (x_1^4 - x_1) + 20 x_1^3 x_3 p (y_1^4 - y_1)$$

Which is actually the equation (1.12).

It follows by Lemma 1 that the general solution of (2.9) constitutes a family of functions of the form

$$(2.10) \quad H(x_1, x_3) = l(x_1^6 - x_1) + 20p(x_1^3 - 1)x_3 + 5px_3$$

where l is arbitrary real.

THEOREM 2. *The general solution of the system (2.2)–(2.5) is a family of quadruples of functions (2.6)–(2.8) and (2.10), where p, k and l are arbitrary real numbers.*

THEOREM 2'. *Unique subsemigroups of the group \mathbf{L}_6^1 of the form \mathbf{P}_{2456} are sets of the form*

$$\left\{ \left\langle x_1, 0, x_3, p(x_1^4 - x_1), k(x_1^5 - x_1) + 5 \frac{x_3}{x_1}, l(x_1^6 - x_1) + 20p(x_1^3 - 1)x_3 + 5px_3 \right\rangle : \right. \\ \left. x_1 \in \mathbb{R}_0, x_3 \in \mathbb{R} \right\},$$

where p, k and l are arbitrary real numbers.

3. Let us denote

$$(3.1) \quad \mathbf{P}_{1456} = \{ \langle f_1(x_2, x_3), x_2, x_3, f_4(x_2, x_3), f_5(x_2, x_3), f_6(x_2, x_3) \rangle : \\ x_2, x_3 \in \mathbb{R} \},$$

where $f_1 : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_o$, $f_k : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ for $k = 4, 5, 6$.

Analogously as in case \mathbf{P}_{456} one shows that \mathbf{P}_{1456} is closed with respect (1.1) if and only if the functions f_1, f_4, f_5 and f_6 satisfy the system of functional equations:

$$(3.2) \quad f_1(x_2 f_1(y_2, y_3) + y_2 f_1^2(x_2, x_3), x_3 f_1(y_2, y_3) + \\ + 3x_2 y_2 f_1(x_2, x_3) + y_3 f_1^3(x_2, x_3)) = f_1(x_2, x_3) f_1(y_2, y_3),$$

$$(3.3) \quad f_4(x_2 f_1(y_2, y_3) + y_2 f_1^2(x_2, x_3), x_3 f_1(y_2, y_3) + \\ + 3x_2 y_2 f_1(x_2, x_3) + y_3 f_1^3(x_2, x_3)) = f_1(y_2, y_3) f_4(x_2, x_3) + \\ + f_4(y_2, y_3) f_1^4(x_2, x_3) + 4y_2 f_1(x_2, x_3) x_3 + 6y_3 x_2 f_1^2(x_2, x_3) + 3y_2 x_2^2,$$

$$\begin{aligned}
(3.4) \quad & f_5(x_2 f_1(y_2, y_3) + y_2 f_1^2(x_2, x_3), x_3 f_1(y_2, y_3) + \\
& + 3x_2 y_2 f_1(x_2, x_3) + y_3 f_1^3(x_2, x_3)) = f_5(x_2, x_3) f_1(y_2, y_3) + \\
& + f_5(y_2, y_3) f_1^5(x_2, x_3) + 10 f_1^3(x_2, x_3) x_2 f_4(y_2, y_3) + \\
& + 15 f_1(x_2, x_3) x_2^2 y_3 + 10 x_3 y_3 f_1^2(x_2, x_3) + 10 x_2 x_3 y_2 + \\
& + 5 f_1(x_2, x_3) y_2 f_4(x_2, x_3), \\
(3.5) \quad & f_6(x_2 f_1(y_2, y_3) + y_2 f_1^2(x_2, x_3), x_3 f_1(y_2, y_3) + \\
& + 3x_2 y_2 f_1(x_2, x_3) + y_3 f_1^3(x_2, x_3)) = f_1(y_2, y_3) f_6(x_2, x_3) + \\
& + f_6(y_2, y_3) f_1^6(x_2, x_3) + 6 y_2 f_1(x_2, x_3) f_5(x_2, x_3) + \\
& + 15 y_2 x_2 f_4(x_2, x_3) + 10 y_2 x_3^2 + 15 y_3 f_1^2(x_2, x_3) f_4(x_2, x_3) + \\
& + 60 y_3 x_2 x_3 f_1(x_2, x_3) + 20 x_3 f_1^3(x_2, x_3) f_4(y_2, y_3) + \\
& + 45 x_2^2 f_1^2(x_2, x_3) f_4(y_2, y_3) + 15 x_2 f_1^4(x_2, x_3) f_5(y_2, y_3).
\end{aligned}$$

Let us consider the system (3.2)–(3.5) in the class of functions

$$(3.6) \quad \text{functions } f_1(\bullet, 0), f_1(0, \bullet) \text{ are continuous.}$$

Under the above assumptions in view of Theorem 4 from [7] the system (3.2)–(3.3) has no solutions. Therefore one has

THEOREM 3. *In the class of functions (3.6) the system (3.2)–(3.5) does not have any solutions.*

THEOREM 3'. *There are no subsemigroups of the group L_1^6 of the form \mathbf{P}_{1456} in the set of functions satisfying the assumption (3.6).*

Let us denote

$$(3.7) \quad \mathbf{P}_{1456}^o = \{(F_1(x_3), 0, x_3, F_4(x_3), F_5(x_3), F_6(x_3)) : x_3 \in \mathbb{R}\},$$

where $F_i : \mathbb{R} \rightarrow \mathbb{R}$ for $i = 4, 5, 6$ and $F_1 : \mathbb{R} \rightarrow \mathbb{R}_0$.

The set \mathbf{P}_{1456}^o is closed with respect to the operation (1.1) if and only if the functions F_1, F_4, F_5 and F_6 verify the following system of functional equations (one can obtain it from (3.2)–(3.5) putting $x_2 = y_2 = 0$ and $F_i = f_i$ for $i = 1, 4, 5, 6$).

$$(3.8) \quad F_1(x_3 F_1(y_3) + y_3 F_1^3(x_3)) = F_1(x_3) F_1(y_3),$$

$$(3.9) \quad F_4(x_3 F_1(y_3) + y_3 F_1^3(x_3)) = F_1(y_3) F_4(x_3) + F_4(y_3) F_1^4(x_3),$$

$$\begin{aligned}
(3.10) \quad & F_5(x_3 F_1(y_3) + y_3 F_1^3(x_3)) = F_5(x_3) F_1(y_3) + F_5(y_3) F_1^5(x_3) + \\
& + 10 x_3 y_3 F_1^2(x_3),
\end{aligned}$$

$$\begin{aligned}
(3.11) \quad & F_6(x_3 F_1(y_3) + y_3 F_1^3(x_3)) = F_1(y_3) F_6(x_3) + F_6(y_3) F_1^6(x_3) + \\
& + 15 y_3 F_1^2(x_3) F_4(x_3) + 20 x_3 F_1^3(x_3) F_4(y_3).
\end{aligned}$$

Consider the system (3.8)–(3.11) in the class of functions verifying the assumptions

$$(3.12) \quad \text{function } F_1 \text{ is continuous,}$$

(3.13) function F_4 is continuous at at least one point.

By (3.12) and Theorem 1 in [5] it follows that a unique solution of (3.8) is a constant function

$$(3.14) \quad F_1(x_3) = 1.$$

In view of (3.14) the equation (3.9) takes the form

$$(3.15) \quad F_4(x_3 + y_3) = F_4(x_3) + F_4(y_3).$$

The general solution of (3.15) in the class of functions satisfying (3.13) is a family of functions of the form

$$(3.16) \quad F_4(x_3) = cy_3,$$

where c is an arbitrary real number.

In view of (3.14), the equation (3.10) assumes the form

$$(3.17) \quad F_5(x_3 + y_3) = F_5(x_3) + F_5(y_3) + 10x_3y_3.$$

Let us consider

$$(3.18) \quad F(x + y) = F(x) + F(y) + bxy,$$

where $F : \mathbb{R} \rightarrow \mathbb{R}$ is an unknown function, and $b \in \mathbb{R}$.

It is easily checked that if F satisfies (3.18) then the function

$$\phi(x) = F(x) - \frac{b}{2}x^2$$

is additive. Each function of the form

$$(3.19) \quad F(x) = \phi(x) + \frac{b}{2}x^2,$$

where ϕ is an arbitrary additive function verifies (3.18).

We have shown

LEMMA 2. *The general solution of the equation (3.18) is a family of functions of the form (3.19) where ϕ is an additive function.*

In the general solution of the equation (3.17) is a family of functions of the form

$$(3.20) \quad F_5(x_3) = \phi(x_3) + 5x_3^2,$$

where ϕ is an additive function.

Substituting (3.14), (3.16) in (3.11) we get

$$(3.21) \quad F_6(x_3 + y_3) = F_6(x_3) + F_6(y_3) + 35cx_3y_3.$$

It follows by Lemma 2 that the general solution of (3.21) is a family of functions of the form

$$(3.22) \quad F_6(x) = \psi(x) + 17,5x^2,$$

where ψ is an additive function.

We have proved

THEOREM 4. *The general solution of the system (2.8)–(2.11) in the function class (3.12) and (3.13) is a family of quadruples of functions of the form (3.14), (3.16), (3.20), (3.22), where c is an arbitrary real constant, and ϕ, ψ are arbitrary additive functions.*

THEOREM 4'. *Unique sets of the form (3.7) closed with respect to (1.1) in the class of functions satisfying (3.12) and (3.13) are the sets*

$$\{(1, 0, x_3, cx_3, \phi(x_3) + 5x_3^2, \psi(x_3) + 17.5x_3^2) : x_3 \in \mathbb{R}\},$$

where c is a constant, and ϕ, ψ are additive functions.

4. Denote

$$(4.1) \quad \mathbf{P}_{1356} = \{ \langle f_1(x_2, x_4), x_2, f_3(x_2, x_4), x_4, f_5(x_2, x_4), f_6(x_2, x_4) \rangle : x_2, x_4 \in \mathbb{R} \}.$$

where $f_l : \mathbb{R}^2 \rightarrow \mathbb{R}$ for $l = 3, 5, 6$, $f_1 : \mathbb{R}^2 \rightarrow \mathbb{R}_0$.

Similarly as in case of the set P_{456} one proves that the set \mathbf{P}_{1356} are closed with respect to (1.1) if and only if the functions f_1, f_3, f_5 and f_6 verify the system of functional equations:

$$(4.2) \quad f_1(x_2 f_1(y_2, y_4) + y_2 f_1^2(x_2, x_4), x_4 f_1(y_2, y_4) + y_4 f_1^4(x_2, x_4) + 4y_2 f_1(x_2, x_4) f_3(x_2, x_4) + 6f_3(y_2, y_4) f_1^2(x_2, x_4) x_2 + 3y_2 x_2^2) = f_1(x_2, x_4) f_1(y_2, y_4),$$

$$(4.3) \quad f_3(x_2 f_1(y_2, y_4) + y_2 f_1^2(x_2, x_4), x_4 f_1(y_2, y_4) + y_4 f_1^4(x_2, x_4) + 4y_2 f_1(x_2, x_4) f_3(x_2, x_4) + 6f_3(y_2, y_4) f_1^2(x_2, x_4) x_2 + 3y_2 x_2^2) = f_1(y_2, y_4) f_3(x_2, x_4) + 3y_2 x_2 f_1(x_2, x_4) + f_3(y_2, y_4) f_1^3(x_2, x_4),$$

$$(4.4) \quad f_5(x_2 f_1(y_2, y_4) + y_2 f_1^2(x_2, x_4), x_4 f_1(y_2, y_4) + y_4 f_1^4(x_2, x_4) + 4y_2 f_1(x_2, x_4) f_3(x_2, x_4) + 6f_3(y_2, y_4) f_1^2(x_2, x_4) x_2 + 3y_2 x_2^2) = f_1(y_2, y_4) f_5(x_2, x_4) + f_1^5(x_2, x_4) f_5(y_2, y_4) + 10f_1^3(x_2, x_4) x_2 y_4 + 15f_1(x_2, x_4) x_2^2 f_3(y_2, y_4) + 10f_1^2(x_2, x_4) f_3(x_2, x_4) f_3(y_2, y_4) + 10x_2 y_2 f_3(x_2, x_4) + 5y_2 x_4 f_1(x_2, x_4),$$

$$(4.5) \quad f_6(x_2 f_1(y_2, y_4) + y_2 f_1^2(x_2, x_4), x_4 f_1(y_2, y_4) + y_4 f_1^4(x_2, x_4) + 4y_2 f_1(x_2, x_4) f_3(x_2, x_4) + 6f_3(y_2, y_4) f_1^2(x_2, x_4) x_2 + 3y_2 x_2^2) = f_1(y_2, y_4) f_6(x_2, x_4) + f_6(y_2, y_4) f_1^6(x_2, x_4) + 6y_2 f_1(x_2, x_4) f_5(x_2, x_4) + 15y_2 x_2 x_4 + 10y_2 f_3^2(x_2, x_4) + 15f_1^2(x_2, x_4) f_3(y_2, y_4) x_4 + 60x_2 f_3(y_2, y_4) f_1(x_2, x_4) f_3(x_2, x_4) + 20f_1^3(x_2, x_4) f_3(x_2, x_4) y_4 + 45x_2^2 f_4(y_2, y_4) f_1^2(x_2, x_4) + 15x_2 f_1^4(x_2, x_4) x_2 f_5(y_2, y_4).$$

Let us consider (4.2)–(4.5) under the assumptions

(4.6) functions $f_1(0, \cdot), f_1(\cdot, 0)$ are continuous,

(4.7) function $f_3(0, \cdot)$ is continuous at a point.

In view of Theorem 3 in [9] the system (4.2)–(4.4) under the assumptions (4.6)–(4.7) has no solutions. Hence the following holds true.

THEOREM 5. *The system (4.2)–(4.5) in the class satisfying (4.6) and (4.7) has no solutions.*

THEOREM 5'. *The group L_6^1 has no subsemigroups of the form (4.1) in the class of functions satisfying (4.6) and (4.7).*

Now we are concerned with the determination of subsemigroups of the group L_6^1 of the form

$$(4.8) \quad P_{1356}^0 = \{(F_1(x_4), 0, F_3(x_4), x_4, F_5(x_4), F_6(x_4)) : x_4 \in \mathbb{R}\}.$$

where $F_i : \mathbb{R} \rightarrow \mathbb{R}$ for $i = 3, 5, 6$, $f_1 : \mathbb{R} \rightarrow \mathbb{R}_0$.

The set P_{1356}^0 is closed with respect to (1.1) if and only if the functions F_1, F_3, F_5, F_6 satisfy the following system of functional equations (with results from (4.2)–(4.5) by putting $x_2 = y_2 = 0$, $x_4 = x$, $y_4 = y$, and $F_i(x) = f_i(0, x)$ for $i = 1, 3, 5, 6$).

$$(4.9) \quad F_1(xF_1(y) + yF_1^4(x)) = F_1(x)F_1(y),$$

$$(4.10) \quad F_3(xF_1(y) + yF_1^4(x)) = F_1(y)F_3(x) + F_1^3(x)F_3(y),$$

$$(4.11) \quad F_5(xF_1(y) + yF_1^4(x)) = F_1(y)F_5(x) + F_1^5(x)F_5(y) + 10F_1^2(x)F_3(x)F_3(y),$$

$$(4.12) \quad F_6(xF_1(y) + yF_1^4(x)) = F_1(y)F_6(x) + F_1^6(x)F_6(y) + 15F_1^2(x)F_3(y)x + 20F_1^3(x)F_3(x)y,$$

Let us consider (4.9)–(4.12) in the class of functions satisfying

(4.13) F_1 is continuous,

(4.14) F_3 is continuous at at least one point.

By (4.13) and Theorem 1 in [5] one has that a unique solution of the equation (4.9) is a constant function

$$(4.15) \quad F_1(x) = 1.$$

Then (4.10) takes the form

$$(4.16) \quad F_3(x + y) = F_3(x) + F_3(y).$$

A solution of the equation (4.16) in the class (4.14) is a family of functions of the form

$$(4.17) \quad F_3(x) = dx,$$

where d is any real.

Substituting (4.15) and (4.17) in (4.11) we have

$$(4.18) \quad F_5(x+y) = F_5(x) + F_5(y) + 10d^2xy.$$

In view of Lemma 2 the general solution of (4.18) is a family of functions of the form

$$(4.19) \quad F_5(x) = a_1(x) + 5d^2x^2,$$

where a_1 is an additive function.

If we substitute (4.17) in (4.12) we get

$$(4.20) \quad F_6(x+y) = F_6(x) + F_6(y) + 35dxy.$$

By Lemma 2 the general solution of (4.20) is a family of functions of the form

$$(4.21) \quad F_6(x) = a_2(x) + 17,5dx^2,$$

where a_2 is an additive function.

Observe that under the assumptions (4.13) and (4.14) we solved the system (4.9)–(4.12) similarly as (3.8)–(3.11) under the assumptions (3.12) and (3.13).

We then have

THEOREM 6. *The general solution of the system (4.9)–(4.12) in the class of functions satisfying (4.13), (4.14) is a family of functional quadruples (4.15), (4.17), (4.19) and (4.21), where $d \in \mathbb{R}$ and a_1, a_2 are additive functions.*

THEOREM 6'. *Unique sets of the form (4.8) closed with respect to the operation (1.1) in the class of functions satisfying (4.13) and (4.14) are the sets*

$$\{(1, 0, dx, x, a_1(x) + 5d^2x^2, a_2(x) + 17,5dx^2) : x \in \mathbb{R}\},$$

where d is a constant, and a_1, a_2 are additive functions.

References

- [1] J. Aczél, S. Gołęb, *Remarks on one parameter subsemigroups of the affine group and their homo- and isomorphism*, Aequationes Math. 4 (1970), 1–11.
- [2] S. Midura, *Sur la détermination de certain sous-groupes du groupe L_4^1 , a l'aide d'équations fonctionnelles*, Dissertationes Math. 105 (1973), 1–34.
- [3] S. Midura, *O rozwiązań równań funkcyjnych wyznaczających pewne podpółgrupy grupy L_4^1* , Rocznik Naukowo Dydaktyczny WSP w Rzeszowie 4/32 (1977), 49–58.
- [4] W. Kędzierski, *O rozwiązań układu równań funkcyjnych wyznaczających pewne podpółgrupy grupy L_4^1 i L_5^1* , Rocznik Naukowo Dydaktyczny WSP w Rzeszowie 6/50, 51–62.

- [5] M. Sablik, P. Urban, *On solutions of the equations $f(xf(x)^k + yf(x)^l) = f(x)f(y)$* , Demonstratio Math. 18 (1985), 863–867.
- [6] N. Brillouet, J. Dhombres, *Equations fonctionnelles et recherche de sous-groupes*, Aequationes Math. 31 (1986), 253–293.
- [7] S. Midura, *Sur les solutions des équations fonctionnelles qui déterminent certains sous-demi-groupes a deux parametres du groupe L_4^1* , Demonstratio Math. 23 (1990), 69–81.
- [8] S. Midura, *Sur les solutions des équations fonctionnelles qui déterminent certains sous-demi-groupes a deux parametres du groupe L_4^1* , Aequationes Math. 39 (1990), 288–289; Reports of Meeting Twenty-sixth International Symposium on Functional Equations, April 28 – May 3, 1988, Sant Feliu de Guixols, Catalonia, Spain.
- [9] S. Midura, *On the solutions of functional equations determining some two-parameters subsemigroups of the group L_5^1* , Zeszyty Nauk. Wyższej Szkoły Pedagogicznej w Rzeszowie, Matematyka 1 (1990), 123–124.
- [10] S. Midura, J. Zygo, *On subsemigroups of group L_5^1* , Zeszyty Naukowe Wyższej Szkoły Pedagogicznej w Rzeszowie, Matematyka 1 (1990), 109–122.
- [11] S. Midura, *Sur la détermination de certains sous-demi-groupes du groupe L_5^1* , Aequationes Math. 43 (1992), 275–276; Reports of Meeting The Twenty-ninth International Symposium on Functional Equations, June 3–10, 1991, Acadia University Volville, Nova Scotia, Canada.
- [12] S. Midura, *On subsemigroups of the group L_6^1* , Zeszyty Naukowe Politechniki Rzeszowskiej 101, Matematyka, Fizyka 14 (1992), 67–81.
- [13] S. Midura, *On subgroups of the group L_5^1* , Demonstratio Math. 27 (1994), 133–144.
- [14] S. Midura, *Sur certains sous-demi-groupes a un parametre du groupe L_4^1* , Aequationes Math. 47 (1994), 283–284; Reports of Meeting The Thirty-first International Symposium on Functional Equations, August 22–August 28, 1993, Debrecen, Hungary.
- [15] J. Brzdek, *Subgroups of the group L_n^1 and functional equations*, Demonstratio Math. 27 (1994), 23–30.

DEPARTMENT OF ANALYSIS
AND METHODS OF ECONOMICAL CALCULATION
UNIVERSITY OF MARIA CURIE-SKŁODOWSKA
BRANCH IN RZESZÓW, POLAND

INSTITUTE OF MATHEMATICS
PEDAGOGICAL UNIVERSITY
ul. Rejtana 16 A
35-310 RZESZÓW, POLAND

Received January 12, 1995.