

Dănuț Marcu

A NOTE ON TREES COLOURING

In this paper, we show that the number of k -colouring S of a tree with n vertices is equal to $S(n - 1, k - 1)$ for all $n, k \geq 2$, where $S(\cdot, \cdot)$ denotes the Stirling numbers of the second kind.

Let $T = (V, E)$ be a tree (e.g., see [1]), with V ($|V| = n$) the set of vertices and E the set of edges. A k -colouring of T is a partition of V into k classes, such that two vertices belonging to the same class are not adjacent. We denote by $C(T, n, k)$ the number of k -colourings of T , where $n, k \geq 2$. The main result of this note is the following

THEOREM. $C(T, n, k) = S(n - 1, k - 1)$, for all $n, k \geq 2$.

P r o o f. Clearly, $C(T, n, n) = C(T, n, 2) = 1$ for $n \geq 2$, and $C(T, n, k) = 0$ for $k > n$. We shall prove the theorem by induction on n . Obviously, for $n = 2$, the theorem is true. So, suppose that it is true for any tree with at most $n - 1$ vertices. Thus, we have

$$(1) \quad C(T, n, k) = S(n - 2, k - 2) + (k - 1) \cdot S(n - 2, k - 1).$$

Indeed, T contains at least a vertex $v \in V$ of degree one, so that $T - v$, obtained from T by deleting v , is a tree with $n - 1$ vertices. Let A be the set of k -colourings of T for which v is single in a class of the partition. Thus, $|A| = S(n - 2, k - 2)$, that is, the number of $(k - 1)$ -colourings of $T - v$. On the other hand, let B be the set of k -colourings of T for which v appears in a class together with other vertices of T . Obviously, the set of $C(T, n, k)$ colourings of T can be written as the union of A and B . Since v is adjacent to a single vertex of T , it follows that v can be added to exactly $k - 1$ classes of a k -colouring of a tree with $n - 1$ vertices. Thus, B contains $(k - 1) \cdot S(n - 2, k - 1)$ colourings, by induction hypothesis.

From [2], we have

$$(2) \quad \begin{cases} S(p+1, m) = S(p, m-1) + m \cdot S(p, m), \\ S(p, 1) = S(p, p) = 1. \end{cases} \quad \text{and}$$

Hence, from (1) and (2), we obtain $C(T, n, k) = S(n-1, k-1)$, the theorem being proved.

References

- [1] C. Berge, *Graphes et Hypergraphes*. Dunod, Paris, 1970.
- [2] I. Tomescu, *Introduction to Combinatorics*, Collet's (Publishers) Ltd., London and Wellingborough, 1975.

Str. Pasului 3, Sect. 2,
70241-BUCHAREST, ROMANIA

Received January 9, 1995.