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ON GROUPS OF ORDER p" WITH AUTOMORPHISMS
OF ORDER p"2

Let p be a prime and let G be a finite p-group. If ¢ is a p—automorphism
of G then, clearly, its order divides %. In this paper we study the following
question: what is the structure of GG, when the order of ¢ is possibly large.
In [3] V.G. Berkovich classified all finite p—groups G with automorphisms
of order l—g—l. Here we present an alternative approach to this classification
and give a complete description of p—groups possessing automorphisms of

order Jp%—l .

The problem was communicated to the first author by J.G. Berkovich
in a personal correspondence. After writing the paper it appeared however
that the results of [3] and the results of the paper were obtained in {8] in a
slightly weaker form and in a completely different way.

In the first section we note some basic facts and give the alternative
proof of the main result of [3] (Theorem 1). The essential part of the proof
is that for p = 2. In the further considerations the case p > 2 needs also
a different approach than the case p = 2, so we study them separately in
sections two and three respectively.

Throughout the paper terminology and notation will be standard and
follow {1}, [2], [7]-

1. Preliminary results

LEMMA 1. Let H be a normal subgroup of a finite p—group G. Let ¢ €
AutG and H? = H. If ¢ induces the identity on G/H and for every h € H
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R RPh =1
then P is the identity on G.

Proof. In fact, if ¢ € G then g¥ = gh for a suitable h € H. Hence
g¢ = gh“’p—l ...hh=g.

LEMMA 2. Let H be a p—group of order < pP~! and of exponent p. If ¢
is a p—automorphism of H then for every h € H

BT RPR = 1.

Proof. Let K = (¢, H) be a subgroup of the holomorph of H. The
nilpotency class of K is less than p, so K is regular and then for every h € H
we have (ph)? = @PhPcP, where ¢ € K'. But K' C H. Therefore (ph)P = ¢P.
On the other hand (ph)? = goph“"p—] ...h*h. This ends the proof.

Let G be a finite p—group and let H be its subgroup. We say that H
is p—characteristic if there exists a Sylow p—group P of AutG such that
HY = H for all ¢ € P. It is clear that p—characteristic subgroups are
normal in G and all characteristic subgroups are p—characteristic.

LEMMA 3. If G contains a p—characteristic subgroup H of order p*,
k < p, and of exponent p then the exponent of a Sylow p—subgroup of AutG
is not greater than lg—l.

Proof. Let P be a Sylow p—group of AutG fixing H and let A be
a subgroup of P consisting of all automorphisms inducing the identity
on G/H. The natural epimorphism of G onto G/H induces a homomor-
phism of P into Aut(G/H). It is easily seen that A is the kernel of this
homomorphism. By Lemmas 1 and 2 the exponent of A equals p. Hence
exp(P) < p-exp(P/A) <p-|G/H]|.

LemMa 4. ([6], 111.13.10) Let G be a noncyclic p—group. If every abelian
characteristic subgroup of G is cyclic then one of the following cases holds:

a) If p > 2 then G is a central product of an extraspecial p—group B of
ezponent p and a cyclic group Z(G) with Z(B) = % (Z(G)).

b) If p = 2 then

(1) G is extraspecial or

(2) G is of mazimal class (i.e. dihedral, generalized quaternion or semidi-
hedral), or

(3) G is a central product of two groups B and Q with Z(B) = Q:1(Z(Q)),
where B is extraspecial and Q) is either cyclic or of mazimal class.

Let, as in the proof of Lemma 3, P be a Sylow p—subgroup of AutG
and let H be a subgroup of G such that H¥ = H for all ¢ € P. It is clear
that all groups of the sequence H = Hy > Hy > ... > Hp > ..., where
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H;,1 = [P, H;] are p—characteristic as well as all groups of its arbitrary
refinement. Therefore

LEMMA 5. If G contains a p—characteristic subgroup of order > p? and of
exponent p then it contains also such a p— characteristic subgroup of order p?.

LEMMA 6. If G is a noncyclic p—group, p > 2, then G contains a p—
characteristic elementary abelian subgroup of order p?.

Proof. By Lemma 5, we need only to show that G contains a p—char-
acteristic subgroup of order > p? and of exponent p. If the centre of 7;(G) is
not cyclic then such a subgroup obviously exists. If Z(y2(G)) is cyclic then
by ([6], I11.7.8) so is y2(G) and by ([6], 111.10.2) G is regular. But in regular
p—groups the subgroup ©;(G) has exponent p. This ends the proof.

In many places we shall use also the following obvious fact.

LEMMA 7. Let ¢ be a p—automorphism of a group G and let M, N be
different mazimal subgroups which are invariant under the action of . If
the restrictions of ¢ to M and N have orders smaller than k then so is the
order of .

Now we are ready to give an alternative proof of the main result of [3].

THEOREM 1. A p—group G of order p™, n > 1, has an automorphism of
order p"~! if and only if one of the following cases holds:

a) G is of order < p?

b) G is cyclic and p > 2;

c¢) G is a noncyclic group of order §;

d) G is a dihedral 2—group, n > 3;

e) G is a generalized quaternion group, n > 3.

Proof. It is easily seen that all groups listed above have automorphisms
of desired order. We show that there are no other p—groups satisfying this
condition. We shall consider independently the cases p odd and p = 2.

Let us assume first that p is odd. For groups of order p? the theorem is
obviously true. Now assume that |G| > p? and suppose G is not cyclic. So
by Lemma 6 G contains an elementary abelian p—characteristic subgroup
of order p?. By Lemma 3 the exponent of a Sylow p—group of AutG is less
then l%l. A contradiction.

Now let p = 2. By induction on |G| we show that if n > 4 and G has an
automorphism of order 2"~ then G is either dihedral or generalized quater-
nion. Let G be of order 2. If G possesses a characteristic elementary abelian
subgroup H of order 4 and ¢ € AutG is a 2—automorphism then the auto-
morphism @ of G/ H induced by ¢ has order < 2. Since ¢? acts trivially on H
and induces the identity on G/H, by Lemma 1 ¢* = idg. Now assume that
G does not contain a characteristic elementary abelian subgroup of order 4
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and G is not of maximal class. Then, since extraspecial 2—groups have orders
227+1 (G is a central product of a nonabelian group of order 8 and a cyclic
group of order 4 (Lemma 4). Let K; = {z € G : o(z) = 2'},i = 1,2.1t can be
easily shown that each set generates G. If ¢ € AutG has order 8 then in both
sets K; there exist elements z; such that the sets {xfk | k=1,2,...} have 8
elements. But it is not possible as one of the sets K; has less than 8 elements.

Let G be of order 2",n > 4, and let H be a 2-characteristic subgroup of
G of order 2 contained in y2(G). If ¢ is an automorphism of order 2"~ then
the automorphism @ of G/H induced by ¢ has order 2"~2. By induction
G/H is a 2—group of maximal class. Since

G :72(G) = (G/H) : (72(G)/H)| = 4

by ([1],Corollary to Th.3.9.) G is of maximal class, too. Since all maximal
subgroups of the semidihedral group of order 2",n > 4, are characteristic
and then by Lemma 7 this group has no automorphism of order 2771, G is
either dihedral or generalized quaternion.

2. On p—groups of odd order
First we study p—groups G of order > p*, p > 2. It is a little surprising
that this general case needs less effort than the case |G| = p*.

THEOREM 2. Let p be an odd prime and let G be a p—group of order
p™,n > 4. The following conditions are equivalent:

a) G has an automorphism of order p™~?;

b) G contains a cyclic subgroup of order p"~1;

¢) G is cyclic of order p™ or G is a direct product of a cyclic group of
order p"~! and a group of order p or G = (z,y | 2?7 = LyP =1,y ey =
xpn—2+l>.

Proof. The equivalence of the statements b) and c) follows immediately
from ([6],1.14.9). We shall show the equivalence of a) and b).

Since for cyclic groups the statements are clearly true we assume that G
is not cyclic. Now let G has an automorphism of order p"~2. By Lemma 6
G contains an elementary abelian p—characteristic subgroup H of order p?.
Since |G/H| > p* and G/H has an automorphism of order I_f)ﬂ by Theorem
1 G/H must be cyclic. Let £ € G be such that G = (z, H). The automor-
phism of H induced by the conjugation by z is of course of order p, therefore
z? € Z(G) and then we can assume that the subgroup H was chosen such
that ,((z)) C H. This means that (z) is a maximal subgroup of G.

If G contains a maximal cyclic subgroup and is not cyclic itself then
by c) it is generated by two elements z and y with (z) maximal in G and
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y of order p. As it is easily seen the correspondence ¢ — zP*ly — y
determines the automorphism of G of order p™~2.

Now we consider groups of order p*. In our study we use the list of this
groups from [4] (pages 145-146) with the numbering as given, replacing the
letters P,Q, R, S, E respecively by z,y, z,t and 1.

THEOREM 3. If p > 2 then a p—group G of order p* has an automorphism
of order p? if and only if one of the following cases holds:
a) G is abelian of the type (4) or (3,1) or (2,2);
b) G = (z,y| 2% =1,9” = L,y lay = s'+7");
¢) G =(z,yle? =197 =1,y oy = 2'*7);
d) G is abelian of the type (2,1,1) or (1,1,1,1) and p = 3.
e) G =(z,y,2|2°=y* =22 = 1,272z =2,y ey = 2,27 1yz = y);
)G =(zyz|2® =9 =127z = ay,y~ ey = 2%, 27'yz = y,
23 — z_B);
9)G=(z,y,z,t|3=y? =B =3 =1t 2t = 2z, t gyt =y, t 12t =
g,z ez = z,y oy = 2, 27 Vy2 = y);
R) G = (z,y,z|2° =¢® =23 = 1,272z = zy,y~ oy = 2,27 lyz =
z73y).
Proof. By Lemma 3, if G has an automorphism of order p? then G does
not contain a p—characteristic subgroup H of order p® and of exponent p.
In particular |Q;(G)| < p* and by ([6],11.6) G must be a metacyclic group
and only groups (i), (ii), (iii), (vi), (viii) should be considered. First three
groups are abelian and one can easily find for them automorphisms of order
p?. The correspondence

T—z
y—2y

determines a p—automorphism of the group (viii) and symilarly the corre-
spondence

z — gPt1

y—UY
determines a p—automorphism of the groups (vi). Remark that for these
five groups the above is also true when p = 3.

For other groups of order 3* the situation is slighty more complicated.
We prove that the only groups that do not have automorphisms of order 32
are the groups (vii), (x), (xi) and (xii).

Let G be of type (vii). Every p—automorphism ¢ of G fixes Z(G) and
2, (G). The restriction of ¢ to both subgroups have orders 3. But Z(G)1(G)
, hence ¢ is of order 3.
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It is easily seen that for a group G of the type (x) every p—automorphism
¢ of G must act trivially on its Frattini subgroup Actually, in this case
®(G) = G' x G3. Hence for every b € Q;(G) h®’h®h = 1 and then by
Lemma 1 3—automorphisms of G' have order 3.

Assume now that G is of the type (xi) or (xii) that is G = (z,y, z | ¥ =
1L,y2 = L,y lzy = 2%, 27122 = 2y,27lyz = y,2% = 23%), where @ = 0 or
a = 1. Let ¢ be a 3—automorphism of G. Notice that Z(G) = (z®) and
G' = (23, y). Hence ¢(y) = yz®™ and ¢(z) = zaz3'y’ 2. Since 23 = p(z3) =
o(z)? = (zadiyIzF)3 = 23+3k,3% in both cases we have k = 0(mod3) and
then the subgroup (z,y) is invariant under the action of ¢. On the other
hand the subgroup (z3,y, z) is the unique maximal abelian subgroup of G
so it is also invariant. This means that ¢ induces the identity on G/G’. By
Lemma 1 ¢ must have order 3.

Now we show that other groups of order 3% have automorphisms of order
32. For groups of the types (vi) and (viii) the solution is analogous as in the
case p > 3. For groups of the types (xiii),(ix),(xiv) and (xv) we define au-
tomorphisms of order 32 symilarly as in the previous section by indicating
images of generators. We have then

group || = Y z t

(ix) €z | yz° | zy

(xit) [[zz |y z

(xiv) || = Yz zt |ty

(xv) T y 2T
Table 1.

3. On 2—groups

Our study of 2—groups of small order (i.e. of order < 2°) rests upon
explicit computations symilarly as for p—groups of small order for p > 2. In
the end of the section we collect all the needed information about groups
of order 2° leaving computations and the case of smaller 2—groups to the
reader. We begin the study of the general case with some lemmas.

LEMMA 8. If a group G of order 2™, n > 5, has an automorphism of
order 2"~2 then v5(G) is eyclic.

Proof. Suppose by way of contradiction that v,(G) is not cyclic. Then
by ([6],II1.7.8.) Z(y2(G)) is also not cyclic and by Lemma 5 G contains a
2—characteristic elementary abelian subgroup A of order 4, which lies in
72(G). If ¢ € AutG is of order 2"~% then the automorphism @ of G/A in-
duced by ¢ is of order 2”3, Hence by Theorem 1 G/A is of maximal class
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and
IG : 72(G)] = [(G/A) : (72(G)/A)| = |(G/A)[72(G/A)| = 4.

This means by ([1],Corollary of Th.3.9.) that G is of maximal class and then
72(G) is cyclic. This is a contradiction.

LEMMA 9. Let |G| = 2",n > 5, and let A be a 2—characteristic elemen-
tary abelian subgroup of order 4 such that G/A is neither dihedral nor gen-
eralized quaternion. Then for every 2—automorphism ¢ of G o(y) < 2™2.

Proof. By Theorem 1 every automorphism of G/A is of order smaller

than 2773, In particular if ¢ is a 2—automorphism of a group G and 7 is
— n—4

the automorphism of the group G = G/A induced by ¢ then " = dg.

Therefore, as c,o2nmi restricted to A is the identity on A, for every g € G
. n—4 n—3
there exists a € A such that ?* (g) = ga. Hence ¢?" "(g) = g.

Following Blackburn [1], we say that a group G belongs to the class CF(n-
1,n,2)if its class is n-2 and for 2 < i < n—2 |7;(G) : 7i+1(G)| = 2. By D,,, S,
and (), we denote respectively the dihedral, semidihedral and quaternion
2—groups of order 2. By Z, we denote the cyclic group of order n.

LeEMMA 10. If a group G of order 2",n > 5, has an automorphism
of order 2"~% and G is neither cyclic nor of mazimal class then G €
CF(n-1,n,2).

Proof. First assume that G contains a 2—characteristic elementary
abelian subgroup A of order 4. Then by Lemma 9 G/A is either dihedral or
generalized quaternion. Since we can choose A such that ANy, (G) # 1 we get
|G : 72(G)| = 2° and then G/72(G) is elementary abelian or of the type (4,2).
In both cases by ([1],1.5.) |72(G) : 73(G)| = 2 and |7:(G) : 7:4+1(G)| = 2 for
1=1,2,...,n—2. Hence G € CF(n — 1,n,2).

Now we show that there are no other groups satisfying the assumptions.
Assume by the foregoing that G' does not contain a 2—characteristic elemen-
tary abelian subgroup of order 4. Since no group of order 28 is extraspecial
we may assume that if |G| = 26 then G is a central product of D3 and one
of the following four groups: Zy¢, D4, Q4, Sy, or G is the central product of
two copies of D3 and Z4 or the central product of D3,Q3 and Z4 (Lemma
4 and [9],2.2).

If G is the central product of D3 and Zg or a central product of three
mentioned groups then Q2(G) and Q3(Z(G)) are of exponent 4. Hence a
2—characteristic subgroup A such that Q:(Z(G)) C A C Q:(G) and |A :
Q2(Z(G))| = 2 is noncyclic and abelian. If G is one of the reminder groups
then the subgroup H = Cg(72(G)) is characteristic in G and |G : H| = 2.
The subgroup Z(H) is cyclic of order 8 and of course also characteristic. Now
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a 2—characteristic subgroup 4 of G'such that A D Z(H)and |A: Z(H)| =2
is noncyclic and abelian. Hence in all cases we can find a 2—characteristic
noncyclic abelian subgroup A such that Q,(A) is elementary abelian of order
4 and clearly 2—characteristic in G. A contradiction. Therefore |G| > 28.
Assume now that G is either extraspecial or a central product of an ex-
traspecial and a cyclic groups (Lemma 4b). Since the group G = G/Z(G)
is abelian and noncyclic, there exists a 2—characteristic noncyclic subgroup
H = H/Z(G) of G of order 4. The group G = G/H is abelian and |G| =
273 n > 6. Let ¢ € AutG be a 2—automorphism from a Sylow p—subgroup
of AutG preserving H and let % be the 2—automorphism of G induced by
¢. Hence by Theorem 1 2"~ = idg. Since ©*" "> acts trivially on H for
every g € (G there exists h € H such that g“’zn - gh. But exp H < 4, so

n—3
¢ =g

Now let G’ be a central product of an extraspecial 2—group A and a
2—group of maximal class B (Lemma 4b). We consider the group G =
G/Z(G) which is a direct product of the elementary abelian group 4 =
A/Z(G) and the dihedral group B = B/Z(G). Since |A| > 2 there exists a

—characteristic noncyclic subgroup H of order 4 in Z(G) = (A, yn-2(B))
such that v,-2(B) C H. Then by Lemma 9 G does not have a 2—automor-
phism of order 2"~ =3, Hence for every 2—automorphism of G o(p) < 2772,

THEOREM 4. A group G of order 2™,n > 5, has an automorphism of
order 2"~% if and only if one of the following cases holds:

a) G is cyclic;

b) G is of mazimal class;

¢) G = A x B where A is dihedral or generalized quaternion and B is of
order 2;

d) G is a central product of a dihedral 2—group and a cyclic group of
order 4;

e) G =(s,8|st=1,8 =s7%,s2" " = ) or G =(s,s1 | st =1,8f =

2n2

31_1+2n_3,3%n_‘2:1) OTG:<S,81|S —3% 31"'311731 "1)'

Proof. Clearly by the previous results all groups listed in a)-d) have
automorphisms of desired orders. It can be also easily checked that the cor-

respondence

§ —> 881

8§1 — 81
determines the p—automorphisms of the groups e).

Now we show that there are no other 2—groups satisfying this condition.
By Lemma 8 we have to consider only groups of almost maximal class with
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cyclic derived subgroups. All these groups are described in Theorems 5.1,
5.2 and 5.3 of [7]. So if we assume that G is not among ones listed in the
theorem we have:

a) G = A x B where A is semidihedral and B is of order 2;

b) G is one of six groups G of order 2" and class n—2 with 7,(G)/72(G)
cyclic;

)G = (5,8 | st =1,88=s71¥2"7" 277 = 1),

In all these groups we can find two characteristic maximal subgroups
M and N which are neither dihedral nor generalized quaternion which by
Lemma 7 and Theorem 1 will mean that non of these groups have an au-
tomorphism of order 2"~2. With the notation of [7] we have for these cases
respectively:

a‘) M= <3,t’5%>7 N = (317t>;

b) M = 1(G), N = (5, 2(G));

) M = (s5,9(G)), N = (51, ®(G)).

In the end we classify all 2—groups of order 2° with automorphisms of
order 8. There are 51 isomorphism types of groups of order 25. The number-
ing scheme of [5] is used to reference these groups. We obtain the result by
calculating automorphisms with the use of the following two easy lemmas
which we give without proofs.

LEMMA 11. Let H be an abelian 2—characteristic subgroup of a 2—group
G such that H is of the type (2,2), G/H is abelian of the type (4,2) and
H C Z(G). Then G does not have an automorphism of order 8.

LEMMA 12. Let H be an elementary abelian 2—characteristic subgroup
of a 2—group G and let ¢ be a 2—automorphism of G. If the restriction of
@ to H and the automorphism of G/H induced by ¢ have order < 2 then
o(p) < 4.

Table 1 contains all nonabelian groups of order 2°, besides three
2—groups of maximal class, having automorphisms of order 8. We define
automorphisms by indicating images of generators. In the first row there are
given generators of the groups. In first column — the number of a group.

The groups 49-51 are respectively the dihedral, semidihedral and gener-
alized quaternion groups.

Table 3 contains the list of all groups without automorphisms of order 8.
In the first column we have the number of a group G. In the second and the
third there are 2—characteristic subgroups M and N generating G with the
following property: if ¢ is a 2—automorphism of G fixing M and N then the
restrictions of ¢ to both subgroups have order smaller than 8. The fourth
column contains the subgroup H such as in Lemma 11 or 12.



574

C. Baginski, I. Malinowska

group a oy a3 a4 as B |81 | B2 B3
8 azfls | azor 8283 | Baers
9 azas | aszfsy B283 | Bacs
11 asfz | agzay b1 B3al
23, 25 as ago3 Ba
26 a3 asg )
29, 30, 32 ag o403
34 agoy azl asog
35, 40 a:;l ago3 5oy
42 ag as cv‘; ay4
43 ag a9 agazay | asay
47, 48 a9 a4a§ a4a;1

Table 2. Groups of order 2° with automorphism of order 8
group M N H
10 Z(G) {9, a3, 0 (Z(G))) Lemma 7
12 Z(G) Lemma 12
13 21(Z(G)) | Lemma 11
14 (a2, Z(G)) | {a2,a3,21(Z(G))) Lemma 7
15, 16 Q(Z(G)) | Lemma 12
17 Z(@) 21(G) Lemma 7
18 {B1, a%) Lemma 11
19, 20, 21 Q1(Z(G)) | Lemma 11
22 (az,al) Lemma 12
24,27, 28 || (a3, 2(G)) | (a4, 02, Z(G)) Lemma 7
31 (a3, B) (g, a%, B) Lemma 7
33 (a1, a2) Lemma 12
36, 37 (a3, aa) Lemma 12
38 (01421, asz) Lemma 12
41 (03, a%) Lemma 12
39, 44, 45 (a3, a4) {as, cm,a%)i Lemma 7
46 {ay, ag) Lemma 12

Table 3. Groups of order 25 without automorphisms of order 8.
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