

Ismat Beg, Abdul Latif, Tahira Yasmeen Minhas

SOME FIXED POINT THEOREMS
 IN TOPOLOGICAL VECTOR SPACES

1. A fixed point theorem for nonself mappings

Let A be a subset of a sequentially complete Hausdorff locally convex topological vector space E (over the field \mathfrak{R}) with calibration Γ . By the terminology of R.T. Moore [6], a calibration Γ for E means a collection of continuous seminorms p on E which induce the topology of E . Let f, g be nonself mappings from A into E . Let a_p, b_p, c_p, d_p and e_p be nonnegative real numbers such that $a_p + b_p + c_p + d_p + e_p < 1$ and for any x, y in A , and $p \in \Gamma$

$$(1) \quad p(f(x) - g(y)) \leq a_p p(x - y) + b_p p(x - f(x)) \\ + c_p p(y - g(y)) + d_p p(x - g(y)) + e_p p(y - f(x)).$$

Włodarczyk [9] proved that f has a unique fixed point if $f = g$. In this section, we prove that f, g have a unique common fixed point if $b_p = c_p$ and $d_p = e_p$. When $f = g$, because of $p(x - y) = p(y - x)$, one can, without loss of generality, assume $b_p = c_p$ and $d_p = e_p$. So our result generalizes the result of Włodarczyk [9]. Since our Theorem includes Theorem 3.3 of Włodarczyk [9], it also includes the corresponding theorems in: Hardy and Rogers [2], Goebel, Kirk and Shimi [1], Kannan [4], Nova [7] and Wong [10].

DEFINITION. Let $\Gamma_0 \subset \Gamma$, $\Gamma_0 \neq \{0\}$. A subset A of E is said to be of *type* Γ_0 with respect to $x_0 \in A$, if the inequality $p(y) \leq p(x)$, for some $x \in A - x_0$ and for all $p \in \Gamma_0$ implies that $y \in A - x_0$.

THEOREM 1. *Let E be a sequentially complete Hausdorff locally convex topological vector space with calibration Γ , let A be a subset of E and let $f : A \rightarrow E$, $g : A \rightarrow E$ be two nonself mappings. Assume A is of type Γ_0 ($\Gamma_0 \subset \Gamma$), with respect to $x_0 \in A$, f and g satisfy (1), such that a_p, b_p, c_p, d_p, e_p are non-negative real-valued functions on $E \times E$ for $p \in \Gamma$. If*

$$(i) \quad \gamma \equiv \sup_{x,y \in E} \{a_p(x, y) + b_p(x, y) + c_p(x, y) + 2d_p(x, y)\} < 1; \text{ for } p \in \Gamma.$$

- (ii) $b_p \equiv c_p, d_p \equiv e_p$ for $p \in \Gamma$,
- (iii) $f(x_0) - x_0 \in \frac{1-a_p-b_p-c_p-2d_p}{1-c_p-d_p}(A - x_0)$, for all $p \in \Gamma_0$,
- (iv) $(g \circ f)(x_0) - x_0 \in \frac{1-a_p-b_p-c_p-2d_p}{1-c_p-d_p}(A - x_0)$ for all $p \in \Gamma_0$, where a_p, b_p, c_p and d_p are evaluated at (x, y) .

Then $x_n \rightarrow u$, and u is the fixed point of f or g in A . If both f and g have fixed points, then each of f, g has a unique fixed point and these two fixed points coincide.

Proof. Let the sequence $\{x_n\}$ be defined as follows

$$x_{2n+1} = f(x_{2n}), \quad x_{2n+2} = g(x_{2n+1}), \quad n = 0, 1, 2, \dots$$

We show that $x_n \in A$, $n \in \mathbb{N}$. Indeed, since A is of type Γ_0 , the set $A - x_0$ is balanced and, since $\frac{1-a_p-b_p-c_p-2d_p}{1-c_p-d_p} < 1$, $p \in \Gamma_0$, then

$$\begin{aligned} f(x_0) - x_0 &\in \frac{1-a_p-b_p-c_p-2d_p}{1-c_p-d_p}(A - x_0) \subset (A - x_0), \\ g(x_1) - x_0 &\in \frac{1-a_p-b_p-c_p-2d_p}{1-c_p-d_p}(A - x_0) \subset (A - x_0), \end{aligned}$$

for all $p \in \Gamma_0$. Consequently, $f(x_0) = x_1 \in A$, i.e., $x_n \in A$ for $n = 0, 1$. Suppose it is true for $n = k$. We show that it is true for $n = k + 1$.

CASE I. For x_{2n+1} , where $n = k + 1$,

$$(2) \quad p(x_{2(k+1)+1} - x_0) = p(x_{2k+3} - x_0) \leq \sum_{m=0}^{2k+2} p(x_{m+1} - x_m).$$

If m is even then for all $p \in \Gamma$,

$$\begin{aligned} p(x_{m+1} - x_m) &= p(f(x_m) - g(x_{m-1})) \\ &\leq a_p p(x_m - x_{m-1}) + b_p p(x_m - f(x_m)) + c_p p(x_{m-1} - g(x_{m-1})) \\ &\quad + d_p p(x_m - g(x_{m-1})) + e_p p(x_{m-1} - f(x_m)) \\ &= a_p p(x_m - x_{m-1}) + b_p p(x_m - x_{m+1}) + c_p p(x_{m-1} - x_m) \\ &\quad + d_p p(x_m - x_m) + e_p p(x_{m-1} - x_{m+1}) \\ &\leq (a_p + c_p + e_p)p(x_{m-1} - x_m) + (b_p + e_p)p(x_m - x_{m+1}). \end{aligned}$$

It implies,

$$p(x_{m+1} - x_m) \leq \frac{a_p + c_p + e_p}{1 - b_p - e_p} p(x_m - x_{m-1}).$$

Also,

$$\begin{aligned} p(x_m - x_{m-1}) &= p(f(x_{m-2}) - g(x_{m-1})) \\ &\leq a_p p(x_{m-2} - x_{m-1}) + b_p p(x_{m-2} - f(x_{m-2})) \\ &\quad + c_p p(x_{m-1} - g(x_{m-1})) + d_p p(x_{m-2} - g(x_{m-1})) + e_p p(x_{m-1} - f(x_{m-2})) \end{aligned}$$

$$\begin{aligned}
&= a_p p(x_{m-2} - x_{m-1}) + b_p p(x_{m-2} - x_{m-1}) + c_p p(x_{m-1} - x_m) \\
&\quad + d_p p(x_{m-2} - x_m) + e_p p(x_{m-1} - x_{m-1}) \\
&\leq (a_p + b_p + d_p)p(x_{m-2} - x_{m-1}) + (c_p + d_p)p(x_{m-1} - x_m), \quad \text{for all } p \in \Gamma.
\end{aligned}$$

It further implies,

$$p(x_m - x_{m-1}) \leq \frac{a_p + b_p + d_p}{1 - c_p - d_p} p(x_{m-1} - x_{m-2}).$$

Using (ii), we get,

$$p(x_{m+1} - x_m) \leq \left(\frac{a_p + b_p + d_p}{1 - c_p - d_p} \right)^2 p(x_{m-1} - x_{m-2})$$

for all $p \in \Gamma$.

So by induction, we obtain,

$$(3) \quad p(x_{m+1} - x_m) \leq \left(\frac{a_p + b_p + d_p}{1 - c_p - d_p} \right)^m p(x_1 - x_0).$$

Similarly, if m is odd,

$$p(x_{m+1} - x_m) \leq \left(\frac{a_p + b_p + d_p}{1 - c_p - d_p} \right)^m p(x_1 - x_0).$$

Therefore,

$$\begin{aligned}
p(x_{2(k+1)+1} - x_0) &\leq \sum_{m=0}^{2k+2} p(x_{m+1} - x_m) \\
&\leq \sum_{m=0}^{2k+2} p(x_{m+1} - x_m) \left(\frac{a_p + b_p + d_p}{1 - c_p - d_p} \right)^m p(x_1 - x_0) \\
&= \frac{1 - \left(\frac{a_p + b_p + d_p}{1 - c_p - d_p} \right)^{2k+3}}{1 - \left(\frac{a_p + b_p + d_p}{1 - c_p - d_p} \right)} p(x_1 - x_0) \\
&\leq \frac{1 - c_p - d_p}{1 - a_p - b_p - c_p - 2d_p} p(x_1 - x_0) \quad \text{for all } p \in \Gamma.
\end{aligned}$$

Since A is of type Γ_0 with respect to x_0 , hence

$$x_{2(k+1)+1} - x_0 \in A - x_0 \quad \text{and so} \quad x_{2(k+1)+1} \in A.$$

CASE II. For x_{2n+2} , where $n = k + 1$,

$$P(x_{2(k+1)+2} - x_0) = p(x_{2k+4} - x_0) \leq \sum_{m=0}^{2k+3} p(x_{m+1} - x_m).$$

Using (3), we get,

$$\begin{aligned} p(x_{2(k+1)+2} - x_0) &\leq \sum_{m=0}^{2k+3} \left(\frac{a_p + b_p + d_p}{1 - c_p - d_p} \right)^m p(x_1 - x_0), \\ &\leq \frac{1 - c_p - d_p}{1 - a_p - b_p - c_p - 2d_p} p(x_1 - x_0), \end{aligned}$$

since $a_p + b_p + d_p < 1 - c_p - d_p$.

Since A is of type Γ_0 with respect to x_0 , therefore $x_{2(k+1)+2} \in A$. By the induction argument $x_n \in A$, $(\forall)n \in \mathbb{N}$.

The inequality (3), implies that $\{x_n\}$ is a Cauchy sequence. Hence it converges to some point u in E . Without loss of generality, we can assume that $x_{n+1} \neq x_n$ for each n , either $x_{2n-1} \neq u$ for infinitely many n or $x_{2n} \neq u$ for infinitely many n . By the symmetry we may assume that $x_{2n} \neq u$ for infinitely many n . Thus there is a subsequence $\{k(n)\}$ of $\{n\}$ such that $x_{2k(n)} \neq u$ for each n .

For any $n \geq 1$ and all $p \in \Gamma$ we have

$$\begin{aligned} (4) \quad p(u - f(u)) &\leq p(u - x_{2k(n)}) + p(x_{2k(n)} - f(u)) \\ &= p(u - x_{2k(n)}) + p(g(x_{2k(n)-1}) - f(u)). \end{aligned}$$

Now, $p(f(u) - g(x_{2k(n)-1})) \leq a_p p(u - x_{2k(n)-1}) + b_p p(u - f(u)) + c_p p(x_{2k(n)-1} - g(x_{2k(n)-1})) + d_p p(u - g(x_{2k(n)-1})) + e_p p(x_{2k(n)-1} - f(u)) = a_p p(x_{2k(n)-1} - u) + b_p p(u - f(u)) + c_p p(x_{2k(n)-1} - x_{2k(n)}) + d_p p(u - x_{2k(n)}) + e_p p(x_{2k(n)-1} - f(u)) \leq \gamma \max\{p(x_{2k(n)-1} - u), p(u - f(u)), p(x_{2k(n)-1} - x_{2k(n)}), p(u - x_{2k(n)}), p(x_{2k(n)-1} - f(u))\} \leq \gamma p(f(u) - u)$ as n is sufficiently large.

Thus

$$(5) \quad p(f(u) - g(x_{2k(n)-1})) \leq \gamma p(f(u) - u).$$

Since $\gamma < 1$. So $f(u) = u$.

Further we have to show that $u \in A$. But

$$\begin{aligned} p(u - x_0) &= p(\lim_m x_m - x_0) = \lim_m p(x_m - x_0) \\ &\leq \lim_m \sum_{i=0}^{m-1} p(x_{i+1} - x_i) = \lim_m \sum_{i=0}^{m-1} p(x_{i+1} - x_i) \left(\frac{a_p + b_p + d_p}{1 - c_p - d_p} \right)^i p(x_1 - x_0) \end{aligned}$$

for all $p \in \Gamma$ (using 3). So, by passing to the limit,

$$p(u - x_0) \leq \frac{1 - b_p - d_p}{1 - a_p - b_p - c_p - 2d_p} p(x_1 - x_0)$$

for all $p \in \Gamma$. Since A is of type Γ_0 with respect to x_0 , so $u \in A$. Hence u is the fixed point of f in A . If u, v are the fixed points of f and g respectively,

such that $u \neq v$, then $p(u-v) = p(f(u)-g(v)) \leq (a_p + 2d_p)p(u-v) < p(u-v)$ for all $p \in \Gamma$, what is a contradiction. So $u = v$.

2. A Meir-Keeler type fixed point theorem

In 1969, Meir and Keeler [5] obtained a remarkable generalization of the Banach's results. Park and Bae [8] extended the Meir-Keeler theorem to two commuting maps by adopting Jungck's method. Consequently, a number of new results in this line followed. Recently, Hicks and Kubicek [3] and Włodarczyk [9] studied fixed point theorems in locally convex topological vector spaces. In This section a Meir-Keller type fixed point theorem for a pair of maps on locally convex topological vector spaces is given.

THEOREM 2. *Let E be a sequentially complete Hausdorff locally convex topological vector spaces with calibration Γ . Consider two mappings f, g from E into E satisfying a condition: for any given $\epsilon > 0$, there exists $\delta > 0$ such that the inequality*

$$\epsilon \leq p(x-y) < \epsilon + \delta \text{ implies } p(f(x)-g(y)) < \epsilon \text{ for all } p \in \Gamma.$$

If at least one of f and g is continuous then f or g has a fixed point. If both f and g have fixed points, then each of them has a unique fixed point and these two points coincide.

Proof. Fix $x_0 \in E$ and define $\{x_n\}$ by $x_{2n+1} = f(x_{2n})$, $x_{2n+2} = g(x_{2n+1})$. Then $\{x_n\}$ is a Cauchy sequence. Indeed, if otherwise, then there exists $\epsilon > 0$, such that $\limsup p(x_m - x_n) > 2\epsilon$, for all $p \in \Gamma$. By hypothesis, there exists $\delta > 0$, such that,

$$(7) \quad \epsilon \leq p(x-y) < \epsilon + \delta \text{ and so } p(f(x)-g(y)) < \epsilon \text{ for all } p \in \Gamma.$$

Replace δ by $\delta' = \min\{\delta, \epsilon\}$. Firstly, we show that $\lim p(x_n - x_{n+1}) \downarrow 0$, $(\forall)p \in \Gamma$. Let $C_n = p(x_n - x_{n+1})$. Since from (6) C_n , is a decreasing sequence, then (6) fails for $C_{m+1}, p \in \Gamma$, where C_m is chosen less than $\epsilon + \delta$. Hence

$$(8) \quad \lim_n C_n \downarrow 0 \text{ for all } p \in \Gamma.$$

By (8), we can find an M so that $C_M < \delta'/3$. Pick $m, n > M$, so that

$$(9) \quad p(x_m - x_n) > 2\epsilon, \quad p \in \Gamma, \quad |p(x_m - x_j) - p(x_m - x_{j+1})| \leq C_j < \frac{\delta'}{3}$$

for all $p \in \Gamma$.

Since $C_m < \epsilon$ and $p(x_m - x_n) > \epsilon + \delta'$, for all $p \in \Gamma$, therefore there exists an integer $j \in [m, n]$ with $\epsilon + \frac{2\delta'}{3} < p(x_m - x_j) < \epsilon + \delta'$, for all $p \in \Gamma$. Indeed from (9), $p(x_m - x_{j+1}) - C_j \leq p(x_m - x_j)$. It gives, $\epsilon + \delta' - \frac{\delta'}{3} = \epsilon + \frac{2\delta'}{3} < p(x_m - x_j)$. Also $p(x_m - x_j) < \epsilon + \delta'$ for all $p \in \Gamma$. Hence

$\epsilon + \frac{2\delta'}{3} < p(x_m - x_j) < \epsilon + \delta'$. Using (7), we conclude that for all m and j ,

$$\begin{aligned} p(x_m - x_j) &\leq p(x_m - x_{m+1}) + p(x_{m+1} - x_{j+1}) + p(x_{j+1} - x_j) \\ &\leq C_m + \epsilon + C_j < \frac{2\delta'}{3} + \epsilon, \quad \text{for all } p \in \Gamma. \end{aligned}$$

Hence it is a contradiction. So $\{x_n\}$ is a Cauchy sequence. Since E is sequentially complete, $\{x_n\}$ converges to some point $x \in E$. Thus $f(x_{2n}) \rightarrow x$ and $g(x_{2n+1}) \rightarrow x$. If f is continuous, then

$$f(x) = f(\lim_{n \rightarrow \infty} g(x_{2n+1})) = \lim_{n \rightarrow \infty} f(x_{2n+2}) = x.$$

So x is a fixed point of f . Let u and v be the fixed points of f and g respectively such that $u \neq v$. Then by using (7), we have that $p(u - v) = p(f(u) - g(v)) < p(u - v)$, for all $p \in \Gamma$, a contradiction. Therefore $u = v$.

COROLLARY 3. *Let E be a sequentially complete Hausdorff locally convex topological vector space with calibration Γ . Let f be a mapping from E into E satisfying: for given $\epsilon > 0$, there exists $\delta > 0$ such that the condition $\epsilon \leq p(x - y) < \epsilon + \delta$ implies $p(f(x) - f(y)) < \epsilon$, for all $p \in \Gamma$. Then f has a unique fixed point.*

COROLLARY 4. *Let E be a sequentially complete Hausdorff locally convex topological vector space with calibration Γ . Let f be a surjective mapping from E into E satisfying a condition: for given $\epsilon > 0$, there exists $\delta > 0$ such that, the inequality*

$$(10) \quad p(x - y) < \epsilon \quad \text{implies } \epsilon \leq p(f(x) - f(y)) < \epsilon + \delta,$$

for all $p \in \Gamma$.

Then f has a unique fixed point.

P r o o f. We shall show that f is a one-to-one mapping. Indeed, let $x \neq y$ and $p(x - y) < \epsilon$ but $f(x) = f(y)$. Using (10), we obtain $0 \leq p(x - y) < p(f(x) - f(y)) = 0$, $p \in \Gamma$, what is impossible.

Let g be the inverse of f . Then (10) becomes $p(g(x) - g(y)) < \epsilon$, whenever $\epsilon \leq p(x - y) < \epsilon + \delta$. By Corollary (3), g has the unique fixed point u . Thus $g(u) = u = f(g(u)) = f(u)$. So u is the unique fixed point of f .

Acknowledgement. The authors are thankful to the learned referee whose criticism and suggestions has improved the contents of the paper.

References

[1] K. Goegel, W.A. Kirk and T.N. Shimi, *A fixed point theorem in uniformly convex spaces*, Boll. Un. Mat. Ital., 4 (7) (1973), 63–75.

- [2] G. Hardy and T. Roger, *A generalization of a fixed point theorem of Reich*, Canad. Math. Bull., 16 (1973), 201–206.
- [3] T.L. Hicks and J.D. Kubicek, *Nonexpansive mappings in locally convex spaces*, Canad. Math. Bull., 24 (1977), 455–461.
- [4] R. Kannan, *Some results on fixed points II*, Amer. Math. Monthly, 76 (1969), 405–408.
- [5] A. Meir and E. Keeler, *A theorem on contraction mappings*, J. Math. Anal. Appl., 28 (1969), 326–329.
- [6] R.T. Moore, *Banach algebra of operators on locally convex spaces*, Bull. Amer. Math. Soc., 75 (1969), 68–73.
- [7] L.G. Nova, *Fixed point theorems for some discontinuous operators*, Pacific J. Math., 123 (1986), 189–196.
- [8] S. Park and J.S. Bae, *Extensions of a fixed point theorem of Meir and Keeler*, Ark. Math., 19 (1981), 223–228.
- [9] K. Włodarczyk, *New extension of Banach contraction principle to locally convex spaces and applications*, Proc. Konink. Nederl. Akad. 91 (1974), 265–276.
- [10] C.S. Wong, *Fixed point theorems for generalized nonexpansive mappings*, J. Austral. Math. Soc., 18 (1974), 265–276.

I. Beg

DEPARTMENT OF MATHEMATICS, KUWAIT UNIVERSITY,

P.O.Box 5969

SAFAT 13060 KUWAIT

A. Latif

DEPARTMENT OF MATHEMATICS, GOMAL UNIVERSITY,

D.I.KHAN, PAKISTAN,

T.Y. Minhas

PAK EDUCATION ACADEMY,

DUBAI, U.A.E.

Received January 6, 1995.

