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SOME FIXED POINT THEOREMS
IN TOPOLOGICAL VECTOR SPACES

1. A fixed point theorem for nonself mappings

Let A be a subset of a sequentially complete Hausdorff locally convex
topological vector space E (over the field ) with calibration T'. By the
terminology of R.T. Moore [6], a calibration I' for E means a collection of
continuous seminorms p on E which induce the topology of E. Let f, g be
nonself mappings from A into E. Let a,, b,, ¢, d, and e, be nonnegative
real numbers such that a, + b, + ¢, +d, + e, < 1 and for any z,y in A4, and
pel

(1) p(f(z) — 9(9)) < app(z — y) + byp(z — f(z))
+ ¢pp(y ~ 9(y)) + dpp(z — 9(v)) + epp(y — ().

Wiodarczyk [9] proved that f has a unique fixed point if f = g. In this
section, we prove that f,g have a unique common fixed point if b, = ¢, and
d, = e,. When f = g, because of p(z — y) = p(y — z), one can, without
loss of generality, assume b, = ¢, and d, = e,. So our result generalizes
the result of Wlodarczyk [9]. Since our Theorem includes Theorem 3.3 of
Wlodarczyk [9], it also includes the corresponding theorems in: Hardy and
Rogers [2], Goebel, Kirk and Shimi [1], Kannan [4], Nova (7] and Wong [10].

DEFINITION. Let I'g C T, Ty # {0}. A subset A of E is said to be of type
I'o with respect to zg € A, if the inequality p(y) < p(z), for some z € A—1z
and for all p € Iy implies that y € A — 2.

THEOREM 1. Let E be a sequentially complete Hausdorff locally conver
topological vector space with calibration T, let A be a subset of E and let f :
A— FE,g: A— E be two nonself mappings. Assume A is of type I'g (I'g C
I'), with respect to xo € A, f and g satisfy (1), such that ap, by, c,,dp, e, are
non-negative real-valued functions on E X E for pe I'. If

(i) 7 = sup, yeglap(z, y)+bp(z,y)+cp(z,y) +2dy(z,y)} < 1; forpe T.
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(ii) by = cp,dp =€ for pe T,

(iii) f(zo) — @0 € =25=2=%=2% (4 — &), for all p € Ty,

(iv) (90 f)(mo) — w0 € *=25=2=%=2%2(A — x,) for all p € To, where
ap, by, ¢p and d, are evaluated at (z,y).

Then z, — u, and u is the fized point of f or g in A. If both f and g
have fized points, then each of f,g has a unique fized point and these two

fized points coincide.
Proof. Let the sequence {z,} be defined as follows
Tont1 = f(T2n), Tant2 = 9(22n41), n=0,1,2,...

We show that 2, € A, n € R. Indeed, since A is of type I'g, the set 4 — z;
is balanced and, since 1ap—bp—cp=2dp 1, p € I'g, then

1—cp,—dp
l—a, —b,—c,—2d
f(zo) —zo € 9~ Op ~ % p(A —z9) C (A — zp),
1-¢,—dp
l-—a,—b,—c, -2d
g(z1) —z0 € I "0~ Cp P(A - z¢) C (A - 20),

1—c¢,—4dp

for all p € Ty. Consequently, f(zo) = z; € A, ie., 2, € Afor n = 0,1.
Suppose it is true for n = k. We show that it is true for n = k + 1.
Cask 1. For 9,41, where n = k + 1,
2k+2

(2) P($2(k+1)+1 - $0) = P($2k+3 - ilfo) < Z P($m+1 - mm)-

m=0
If m is even then for all p € T,
P(Emy1 — Tm) = p(f(2m) — 9(Tm-1))
< app(Tm — Tm—1) + bpp(@m — f(Zm)) + oP(Tm-1 — 9(Tm_1))
+ dpp(Tm — 9(Tm-1)) + epP(Tm—1 — f(Zm))
= apP(Tm — Tm—1) + 0pp(Tm — Tmp1) + pP(Tm-1 ~ Tm)
+ dpp(Tm — Tm) + €pP(Tm-1 — Tmi1)
<(apteptep)p(Tm-1—2m) + (bp + €p)p(Tm ~ Tms1)-
It implies,

P(Tmyr = Tm) < Gpteptep

=1 bp _ ep p(xm - zm—l)-

Also,

P(Tm = Tm-1) = P(f(&m-2) — 9(Tm-1))
< app(Tm-2 — Tm-1) + bpP(Tm—2 = f(Tm-2))
+ cpp(mm—l - g(zm—l)) + dpp(wM—Z - g(mm—l)) + epp(zm—l - f(zm—Z))
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= app(zm—2 - mm—l) + bpp(zm—2 - zm—l) + cpp(zm-l - xm)
+ dpp(mm—2 — Tm) + epp(zm-—l - zm—l)
<(ap+bp+dp)p(zm—2 — Tm-1) + (cp + dp)p(Tm_1 — Tm), forall peT.
It further implies,
< % +b,+d

Ep(Tmt — Tm—2).

p(zm_zm—l)_ l—c. —d
P 4

Using (ii), we get,

a, +b,+d 2
P(Tmy1 — Tm) < (w) P(Tme1 — Tm—2)

forall pel.
So by induction, we obtain,

3) P(Emsr — m) < (

Similarly, if m is odd,

ap + b, + d,
1-c¢,—d,

)mp(xl — o).

ap+b,+d,\™
P(Tmt1 — Tm) < (f_c—p_dp) p(z1 — 20)-
p ~ Up
Therefore,
2k+2
P(Takt1)41 — T0) < Y P(Tmi1 — Tm)
m=0
2k+2 m
a, +b,+d
<Y p(@mtr — $m)(1p_—cp_d—p) p(z1 ~ o)
m=0 P p
1- <aP +b,+ dp)2k+3
1—c,—d,
1-— ap + by, + dp S
1—¢c,—d,

1—¢,—dp
- l—ap—bp_cp__dep(zl_xo) forall peT.

Since A is of type I'q with respect to z, hence
Ta(k+1)+1 — To € A—2¢ and so T2(k+1)+1 € A.
Cask II. For z2p,49, where n = k + 1,

2k+3
P(zz(k+1)+2 —20) = p(T2k44 — zo) < Z P(zm+1 - zm)-

m=0
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Using (3), we get,

2k+3 m
ap+b, +d
P(@3(k+1)42 = 20) < 1;0 (W) p(z1 = o),
1-cp—d,
cp— 2d,,p(zl ~ o),

T 1-ap—b,—-
since ap + b, +dp <1 — ¢, —dp.

Since A is of type Iy with respect to o, therefore zy(x11)42 € A. By the
induction argument z, € A, (V)n € N.

The inequality (3), implies that {z,} is a Cauchy sequence. Hence it
converges to some point u in E. Without loss of generality, we can assume
that ,41 # 2, for each n, either 22,1 # u for infinitely many n or 5, # u
for infinitely many n. By the symmetry we may assume that z,, # u for
.infinitely many n. Thus there is a subsequence {k(n)} of {n} such that
Tak(n) # u for each n.

For any n > 1 and all p € T’ we have

(4) pu— f(w)) < p(u — Tar(ny) + P(T2(n) — f(1))
= p(u — Tax(ny) + P(9(T2k(n)-1) — f(u)).

Now, p(f(u) — g(Z2k(n)-1)) < @pp(u — Tog(ny—1) + bpp(u — f(u)) +
cpP(Zak(n)-1 — 9(Tak(n)—-1)) + dpP(u — 9(Z2k(n)=1)) + €pP(Tak(ny—1 — f(¥)) =
apP(T2k(ny—1 —u) +bpp(u— f(u))+cpp(Tak(n)—1 — Tak(n) ) + dpp(t — Tai(n)) +
epp(xﬂc(n)——l - f(u)) < ’Yma'x{p(‘TZk(n)—-l - u),p(u - f(u)),p($2k(n)_1 -
Zok(n) ) P(¥ — Tak(n)), P(Tak(n)-1 — f(u))} < vp(f(u) — u) as n is sufficently
large.

Thus

(5) p(f(u) = 9(zak(n)-1)) < vP(f(u) — u).

Since v < 1. So f(u) = u.
Further we have to show that u € A. But

p(u—zo) = p(liglnzm —Zp) = ]j;lnp(zm —29)

m—1 m—1 a, + b + d 7
< ﬁnlln 12_: P(xi+1 - wi) = li,gl ; P($i+1 - 371‘)(—1]%_—65_—(1:’) P($1 - $0)
for all p € ' (using 3). So, by passing to the limit,
1-b,—d
- < p p —
p(u = 20) < l1—ap—>5bp—cp,— 2dpp(w1 %)

for all p € T'. Since A is of type I'y with respect to zp, so v € A. Hence u is
the fixed point of f in A. If u, v are the fixed points of f and g respectively,
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such that u # v, then p(u—v) = p(f(uv)—g(v) < (ap+2d,)p(u—v) < p(u—v)
for all p € I', what is a contradiction. So u = v.

2. A Meir-Keeler type fixed point theorem

In 1969, Meir and Keeler [5] obtained a remarkable generalization of the
Banach’s results. Park and Bae {8] extended the Meir-Keeler theorem to two
commuting maps by adopting Jungck’s method. Consequently, a number
of new results in this line followed. Recently, Hicks and Kubicek [3] and
Wiodarczyk [9] studied fixed point theorems in locally convex topological
vector spaces. In This section a Meir-Keller type fixed point theorem for a
pair of maps on locally convex topological vector spaces is given.

THEOREM 2. Let E be a sequentially complete Hausdorff locally convex
topological vector spaces with calibration T'. Consider two mappings f, g from
E into E satisfying a condition: for any given ¢ > 0, there exits § > 0 such
that the inequality

e<p(z—y)<e+ b implies p(f(z) — g(y)) < € for allp e T.

If at least one of f and g is continuous then f or g has a fired point. If
both f and g have fized points, then each of them has a unique fized point
and these two points coincide.

Proof. Fix 29 € E and define {z,} by z2nt1 = f(220), Tongs =
9(Z2n+1)- Then {z,} is a Cauchy sequence. Indeed, if otherwise, then there
exists € > 0, such that lim sup p(z,, — z,) > 2¢, for all p € T'. By hypothesis,
there exits § > 0, such that,

(1) e<plz—y)<e+6 andsop(f(z)—g(y)) <eforalpel.

Replace 6 by ¢’ = min{é, €}. Firstly, we show that lim p(z,, — Zn41) | 0,
(V)p € . Let C, = p(n—2p41)- Since from (6) C,, is a decreasing sequence,
then (6) fails for C41,p € T', where Cy, is chosen less than € + 6. Hence

(8) EmC, |0 forall pel.
n
By (8), we can find an M so that Cp < 6§'/3. Pick m,n > M, so that
6/
(9) p(zm—70)>2, peT, |p(am — 2j) = p(Tm ~ 2j41)| < Ci< 3

for all pe T.

Since C,,, < € and p(zy, — z,) > € + §', for all p € T, therefore there
exists an integer j € [m,n] with € + -2%' <p(zm—zj)<e+é',foralpel.
Indeed from (9), p(zm — zj41) — Cj < p(Tm — ;). It gives, € + §' — %I =
€+ Zsi < p(xm — ;). Also p(zm — z;) < €+ ¢ for all p € . Hence
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€+ %i' < p(zm — ;) < €+ & Using (7), we conclude that for all m and j,
P(zm = 25) < P(Tm — Tmt1) + P(Tmt1 — Tj1) + P(Tj41 — T5)
26’
<Cr+e+(C;< —§—+€, forallpeT.

Hence it is a contradiction. So {z,} is a Cauchy sequence. Since FE is
sequentially complete, {,} converges to some point z € E. Thus f(z;,) —
z and g(z2n41) — . If fis continuous, then

f(:l:) = f(nlinéo g(z2n+l)) = nlLIIéo f(1172n+2) =z

So z is a fixed point of f. Let u and v be the fixed points of f and ¢
respectively such that v # v. Then by using (7), we have that p(u — v) =
p(f(u) — g(v)) < p(u — v), for all p € T, a contradiction. Therefore u = v.

COROLLARY 3. Let E be a sequentially complete Hausdorff locally convez
topological vector space with calibration T'. Let f be a mapping from E into
E satisfying: for given € > 0, there exists § > 0 such that the condition
e<p(z—y) < e+ 6 implies p(f(z) - f(y)) <€, forallp € . Then f has a
unique fized point.

COROLLARY 4. Let E be a sequentially complete Hausdorff locally convez
topological vector space with calibrationI'. Let f be a surjective mapping from
E into E satisfying a condition: for given € > 0, there ezxists § > 0 such that,
the inequality

(10) p(z —y) < e implies € < p(f(z) — f(y)) < e+,

forallpeT.
Then f has a unique fized point.

P roof. We shall show that f is a one-to-one mapping. Indeed, let z # y
and p(z — y) < e but f(z) = f(y). Using (10), we obtain 0 < p(z — y) <
p(f(z) - f(y)) =0, p € I', what is impossible.

Let g be the inverse of f. Then (10) becomes p(g(z)—g(y)) < ¢, whenever
e < p(z —y) < €+ 6. By Corollary (3), g has the unique fixed point u. Thus
g(u) = u = f(g(u)) = f(u). So u is the unique fixed point of f.
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