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ON THE MONOTONIC CONTINUOUS SOLUTIONS 
OF SOME ITERATED EQUATION 

1. Introduction 
On the iterated equation 

( i . i ) f N ( x ) = j ^ A n r ( x ) 
71 = 0 

(where f°(x) = x, fk(x) = fofk~1(x), An G R) some wonderful results have 
been given in [1-4]. In [1], the general continuous solution of fN(x) = x was 
found for any N, and in [2, 3], the general continuous solution f ( x ) was given 
in completely explicitly form. In 1986, P. J. McCarthy [4] studied the more 
general iterated equation (1.1). The purpose of this paper is to prove that 
under suitable conditions equation (1.1) possesses infinitely many solutions 
that are continuous and strictly increasing on a certain interval. 

2. Main result 

T H E O R E M . Suppose that A0 > 0, An > 0 (n = 0 , 1 , . . . , N - 1) and 
J2n=o A-n < 1- Then for arbitrary fixed Xo 6 (0, +oo) the equation (1.1) pos-
sesses infinitely many solutions which are continuous and strictly increasing 
on the interval [0, â o] • 

P r o o f . Take an arbitrary xo G (0, +oo) and let X2,. • •, € 
(AoZo, 2o) satisfy the inequalities 

Xtf-i < XN-2 < • •. < X2 < Xi. 
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We define the sequence {xm} by the recurrence formula 
N-1 

(2.1) xm+N = '¿T Anxm+n, m = 0 , 1 , 2 , . . . . 
n=0 

Put 

D = {{yN-UVN-2,- • • ® G (0,®o],i/n G {AQX,X), 
n = 1,2, ...,N — 1, J/jv—i < VN-2 < . . . < i/2 < 2/i }• 

We shall show that 

(2.2) (xm+N-i , Xm+N—2, • • •, 2-771+2) ®m+l5 ®m 

for m = 0,1,2, 
For m = 0 it is evident. Assume that (2.2) is valid as m > 0, then we 

have 
N-l N-l 

Xo > £7n+jv_l - ^ ] AnXm+Ti-i > ^ ^ AnXm+n 
71=0 71=0 

= Xm+N > A0Xm > AoX m + i > 0. 

By the induction argument this proves (2.2). 
Notice that the sequence {xm} is strictly decreasing and then convergent. 

Let 
lim xm - a. 

m—• oo 

Passing to a limit in the recurrence formula (2.1) we obtain a = Y^n=o A n a . 
Since J2n=o An < 1 we have that a = 0. 

Let fo{x), fi(x),..., / j v — 2 b e arbitrary strictly increasing continuous 
functions defined on the intervals [xi,xq],{x2,X\\, . . . , [xw—i,a;2]? respec-
tively, and satisfying the following conditions: 

fm(xm) = xm+i,m = 0 , 1 , . ..,7V - 2; 

fm-i(»rn) = xm+i,m= 1,2, . . . , N - 1; 

(fN-2°fN-a° • • • °fo{x), /n—3°/n—40 • • • °/o(®), • • •, fl°fo(x), f0(x), x) G D, 
x G (xi,x0). 

Put now 

(2.3) fm+N-l(s) = A j v - iX + Ajv-2/m+Ar-2(a;) + • • • 

+ M f n + l 0 /m+3 0 • • • 0 fm+N-li*) 

+ ¿ l / m + l 0 /m+2 0 • • • 0 fm+N-2(X) 

+ ¿0 fm 0 / m i l 0 • • • 0 
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x G [xm+Ar,xm+AT-i], m = 0,1,2,... 

We shall prove that for every TO the function fm{x) is continuous, strictly 
increasing on the interval [®m+i)®m]> 

( 2 . 4 ) fm{xm) = Xm+1, fm(xm+i) = Xm+2, 

( 2 . 5 ) (frn+N-2 0 fm+N-3 0 • • • 0 fm(x), fm+N-3 0 fm+N-i 0 • • • 0 fm(x), . . . , 

fm+1 0 fm(x), fm(x), x) £ D. 

In fact, for n = 0, it is so by the hypothesis. Let us suppose that it is 
true for k = 0 , 1 , . . . , m -f N — 2. Then the function fm+N-2(x) is invertible 
on the interval [xm+iv,Zm+TV-i], and f~\N_2(x) 6 [xm+N-i,xm+N-2], for 
x e [xm+N, i m + ]v - i ] . From (2.4) and (2.5) it follows that 

fm+N-2(x)> fm+N-3 0 / m + J V - 2 • ' ^ fm+1 0 fm+2 0 • • • 0 /m+AT^C®)» 

fm 0 fm+1 0 • • • 0 fm+N-2(X)) G f o r X $ [«m+JV, ®m+JV-l]- Thus the 
function /m+jv_i(a:) is, by (2.3), defined for x G [xm+iv, zm+Ar-i]. It is 
continuous and strictly increasing on the interval [xm+N, a;m+^r_i]. Further, 

( 2 . 6 ) 0 < xm+N < x < xm+w-i < x0. 

Moreover, according to (2.3) and (2.5) we have 

( 2 . 7 ) X = fmifmHx)) > fm+N—2 © fm+N-3 0 . . . 0 fm+l(x) 

> fm+N-1 0 fm+N—2 0 • • • 0 fm+l(x) 

= AN-lfm+N-2 0 fm+N—3 0 • • • 0 fm+l(x) 

+ ¿N-ifm+N-i 0 fm+N-2 0 fm+N-3 0 • • • 0 fm+l(x) + . . . 

+ Mfm+2 0 fm+3 0 • • • 0 fm+N-2 0 fm+N-2 ° fm+N-3 0 • • • ° fm+l(x) 

+ Alfm+1 0 fm+2 0 • • • 0 fm+N-2 0 fm+N-2 ° fm+N-3 ° • • • ° /m+i(®) 

+ Aofm 0 /m+1 0 • • • 0 /m+N-2 ° fm+N-2 0 • • • 0 /m+l(®) 

= j4/V-l/m+Ar-2 ° fm+N-3 0 • • • 0 /m+l(z) 

+ -^iV—2 fm+N—3 0 fm+N—4 0 • • • 0 /TO+i(£) 

+ • • • + A 2 / m + 1 ( a ; ) + + A o f m ( x ) > A0 f m ( x ) > A0X. 

From relations (2.6) and (2.7) it follows that the point 

(fm+N-1 0 fm+N-2 0 • • • 0 fm+1 (x), fm+N-2 0 fm+N-3 0 . . . 0 fm+1(x), 

• • - , /m+2 0 fm+i(x), f(x),x) £ D for any x £ [x m + 2 , xm+1] 

Therefore, we get by (2.4) 

fm+N-l(xm+N-l) = Atf-lXm+N-l + AN-.2fm+N-2(Xm+N-l) 

+ • • • + A2fm+2 0 fm+3 0 • • • 0 fm+N-2 (Xm+N-1) 
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+ Alfm+1 0 fm+2 0 • " • 0 fm+N-2(X™+N-l) 

+ Aof~1 ofZ+l 0 fm+N-2(Xm+N-l) 

= ^JV-l^m+iV-l + AN-2Xm+N-2 + • • • 

+ A2xm+2 + A-ixm+1 + A0xm = Xm+N, 

fm+N-l(xm+N) = Atf-lXm+N + ^AT-2 fm+N-2(Xm+N) 

+ • • • + A2f~\2 o f-\3 0...0 f~lN_2(xm+N) 

+ Alfm+l 0 fm+2 0 • • • 0 fm+N-2(Xm+N) 

+ A o / m 1 0 / m + 1 0 • • • 0 fm+N-2(xm+N) 

= AjV-l^m+JV + + . . . 
+ A2Xm+3 + A\Xm+2 + AaXm+\ = ^m+jV-l-

Finally, let 

( 0, a: = 0 
(2.8) f(x) = < fm+N-i{x), x G [a;m+Ar,xm+Ar_i], m = 0 ,1 ,2 , . . . , 

I / n ( z ) , x € [a;n+1,a;n], n = 0 ,1 ,2 , . . .,N - 2. 

One we can easily prove that the function f(x) is defined, continuous and 
strictly increasing on the interval [0, xo]. We shall show that it satisfies the 
equation (1.1). 

For an arbitrary x € (0, zo], there exists an m such that x £ ( i m + i , i m ] , 
because of (2.2) and the fact that limn-+ ooXn = 0. Thus f(x) 6 ( x m + i , x m ] , 
f 2 ( x ) £ {xm+3,xm+2\, ..., fN{x) e (xm+N,xm+N-i\. W e h a v e by (2 .3 ) 
and (2.8) that 

f(x) = fm(x). 

Therefore, 

N 

fN(x) = / o / o*... o f{x) 

= fm+N-1 0 fm+N-2 O ... O fm+1 O fm(x) 

= AN-lfm+N-2 O . . . O / m + 1 O fm(x) + A j v - 2 fm+N-3 0 • • • 0 fm(x) 

+ ... + A2fm+1 o fm(x) + Aifm(x) + A0x 

= AN^fN-\x) + AN_2fN~\x) + ... + A2f\x) + A! f(x) + A0x. 

Moreover, we easily see that f(x) satisfies equation (1.1) for x = 0. 
Since xn [n — 1 , . . . , N — 1) and the functions fm(x) (m = 0 , 1 , . . . , N — 

2) can be chosen in infinitely many ways we obtain thus infinitely many 
solutions. The proof of the theorem is finished. 
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