

Blagovest Damyanov, Brian Fisher

ON THE NEUTRIX PRODUCT OF DISTRIBUTIONS
 ON C^∞ -MANIFOLDS

Let $\mathcal{D}'(M)$ be the space of distributions on a smooth m -manifold M , each defined by a collection of ‘compatible’ ordinary distributions (components) given on the charts of some C^∞ -atlas on M . Here we extend the definition of the neutrix distribution product, based on van der Corput’s notion of neutrix limits, onto the space $\mathcal{D}'(M)$. We prove two theorems concerning the existence of the neutrix distribution product in the space $\mathcal{D}'(M)$ under different hypotheses for the neutrix product of the components.

1. Recall first the definition we accept of generalized functions (distributions) on an arbitrary smooth m -dimensional real manifold, which we will be referring to as a ‘manifold’. For any manifold M and some C^∞ -atlas $\{\kappa_i, M_i\}_{i \in I}$ on it, we shall use the notation: $\widetilde{M}_i = \kappa_i(M_i) \subseteq \mathbf{R}^m$, $M_{ij} = M_i \cap M_j$ and $\kappa_{ij} := \kappa_i(\kappa_j^{-1}) : \kappa_j(M_{ij}) \rightarrow \kappa_i(M_{ij})$ for the (coordinate) diffeomorphic maps of class C^∞ of open sets in \mathbf{R}^m ($i, j \in I$). Further, for arbitrary open subset U of M we shall denote: $U_i = U \cap M_i$, $U_{ij} = U_i \cap U_j$ and $\widetilde{U}_i = \kappa_i(U_i) \subseteq \mathbf{R}^m$ ($i, j \in I$). Later on we shall often need the following.

THEOREM 1. *Let $\kappa : U_1 \rightarrow U_2$ be a C^∞ -diffeomorphic map of open sets in \mathbf{R}^m . Then there is a unique continuous linear map of the distribution spaces $\kappa^* : \mathcal{D}'(U_2) \rightarrow \mathcal{D}'(U_1) : F \mapsto \kappa^*F$ (pull-back of F by κ) coinciding with the composition of functions $F(\kappa(x))$ whenever F is in $C^0(U_2)$ and it holds for any test-function ϕ in $\mathcal{D}(U_1)$*

$$(1) \quad \langle \kappa^*F, \phi \rangle = \langle F, \psi \rangle, \quad \text{where } \psi = \phi(\kappa^{-1}) | \det D\kappa^{-1} | \in \mathcal{D}(U_2).$$

Further, for each function f in $C^\infty(U_1)$

$$(2) \quad \kappa^*(F \cdot f) = \kappa^*F \cdot f(\kappa),$$

and for any open subset V_2 of U_2 and $V_1 = \kappa^{-1}(V_2)$ open in U_1

$$(3) \quad \kappa^*(F|_{V_2}) = (\kappa^*F)|_{V_1},$$

where the restriction $F|_V$ is defined by $\langle F|_V, \psi \rangle = \langle F, \bar{\psi} \rangle$ for each ψ in $\mathcal{D}(U)$ and $\bar{\psi} = \{\psi \text{ on } V, 0 \text{ on } U \setminus V\}$.

Proof. For an arbitrary distribution F in $\mathcal{D}'(U_2)$, let $\{F_n(x)\}$ be a sequence of infinitely-differentiable functions in U_2 converging weakly to F , as $n \rightarrow \infty$. Then, on making the substitution $t = \kappa(x)$, we have for any ϕ in $\mathcal{D}(V_1)$:

$$\int_{U_1} F_n(\kappa(x))\phi(x)dx = \int_{U_2} F_n(t)\phi(\kappa^{-1}(t)) |\det D\kappa^{-1}| dt = \int_{U_2} F_n(t)\psi(t)dt$$

with a test-function ψ in $\mathcal{D}'(U_2)$ defined as in (1). Now taking the weak limits as $n \rightarrow \infty$, we see that the sequence $\{F_n(\kappa(x))\}$ converges to the unique distribution κ^*F in $\mathcal{D}'(U_1)$ given by (1). Moreover, the map $\kappa^* : \mathcal{D}'(U_2) \rightarrow \mathcal{D}'(U_1) : F \mapsto \kappa^*F$ is linear, continuous and coincides with the ordinary composition of functions in $C^0(U_2)$, by its construction.

Further, equation (2) readily follows on noting that

$$\int_{U_1} (F_n \cdot f)(\kappa(x))\phi(x)dx = \int_{U_1} F_n(\kappa(x)) \cdot f(\kappa(x))\phi(x)dx.$$

Both expressions in this equation clearly lead to the same distribution in $\mathcal{D}'(U_1)$, when we make the substitution $t = \kappa(x)$ and pass to the weak limits, as $n \rightarrow \infty$.

In order to prove (3), we get the following chain of equations for arbitrary sequence $\{F_n(x)\}$ weakly converging to F , on making the due substitutions

$$\begin{aligned} \int_{V_1} (F_n|_{V_2})(\kappa)\phi(x)dx &= \int_{V_2} (F_n|_{V_2})(t)\psi(t)dt \quad [\text{with } \psi \text{ defined as in (1)}] \\ &= \int_{U_2} F_n(t)\bar{\psi}(t)dt \quad [\bar{\psi} = \psi \text{ on } V_2, 0 \text{ on } U_2 \setminus V_2] \\ &= \int_{U_1} (F_n(\kappa(x)))\bar{\phi}(x)dx \quad [\bar{\phi} = \phi \text{ on } U_1, 0 \text{ on } U_1 \setminus V_1] \\ &= \int_{V_1} (F_n(\kappa(x)))|_{V_1} \phi(x)dx. \end{aligned}$$

Since the restriction map $R_V : F \mapsto F|_V$ is linear and continuous, we obtain on passing to the weak limits as $n \rightarrow \infty$, that $\langle \kappa^*(F|_{V_2}), \phi \rangle = \langle (\kappa^*F)|_{V_1}, \phi \rangle$ for any ϕ in $\mathcal{D}(V_1)$. This completes the proof of the theorem.

We note that a stronger version of the main claim of this theorem concerning the pull-back map by a C^∞ -differentiable function with surjective derivative, is proved in ([7] §6.1).

DEFINITION 1. For each coordinate chart (κ_i, M_i) (or briefly, κ_i) in an atlas $\{\kappa_i, M_i\}_{i \in I}$ on a given manifold M , let F_i be a distribution in $\mathcal{D}'(\widetilde{M}_i)$, such that for any other κ_j and any distribution F_j in $\mathcal{D}'(\widetilde{M}_j)$ the pull-back by the map κ_{ij} satisfies

$$(4) \quad F_j = \kappa_{ij}^* F_i \quad \text{on } \kappa_j(M_{ij}) \subseteq \mathbf{R}^m.$$

Then we call the collection (of components) $\{F_i\}_{i \in I}$ a *distribution F on M* .

We point out that although this definition of distributions on a manifold M is not as elegant as the global one (i.e. as linear forms on the C_0^∞ -densities on the manifold), it is preferable when there are concrete calculations or applications in mind (cf. [7]).

Note also that this is a direct extension of an alternative definition of a C^r -function f on a given manifold M , viz. as collection of functions $\{f_i \in C^r(\widetilde{M}_i)\}_{i \in I}$ satisfying a consistency condition as in (4). Definition 1 needs to be justified by the following.

LEMMA. Suppose $\{\mu_i, N_i\}_{i \in I}$ is a second atlas on M which is C^∞ -compatible with $\{\kappa_i, M_i\}_{i \in I}$. We say that a collection $\{G_i\}_{i \in I}$ defines the same distribution on M as $\{F_i\}_{i \in I}$ if

$$G_j = (\kappa_i(\mu_j^{-1}))^* (F_i) \quad \text{on } \mu_j(M_i \cap N_j)$$

for all i and j in I . This then defines an equivalence relation on the set of all collections satisfying (4), each given on some C^∞ -atlas within the maximal one.

P r o o f. It is immediately verified that this relation is reflexive, symmetric and transitive with respect to all collections in consideration.

Now we specify the definition of a distribution F on a given manifold M as the equivalence class of collections $\{F_i\}_{i \in I}$ satisfying equation (4) on any C^∞ -compatible atlas in the maximal atlas on M . Thus, a distribution on M is uniquely defined by a collection $\{F_i\}_{i \in I}$ given on some atlas $\{\kappa_i\}_{i \in I}$ and satisfying (4); we write $F = G$ iff, for some atlas $\{\kappa_i\}_{i \in I}$, $F_i = G_i$ for all i in I . The vector space of all distributions on M with component-wise \mathbf{C} -linear operations will be denoted by $\mathcal{D}'(M)$.

2. Next we recall the definition of neutrix product for the distributions, starting with that of a neutrix given in ([1]).

DEFINITION 2. A *neutrix N* is an additive group of functions $\nu(\xi)$ defined on domain N' with values in an additive group N'' , where if, for some ν in

$N, \nu(\xi) = \gamma$ for all ξ in N' , then $\gamma = 0$. Let further N' be a set contained in a topological space with a limit point b which does not belong to N' . If $f(\xi)$ is a function on N' with values in N'' and it is possible to find a constant β such that $f(\xi) - \beta$ is negligible in N , then β is called the neutrix limit of f as ξ tends to b . This is written as $N - \lim_{\xi \rightarrow b} f(\xi) = \beta$.

The elements of the neutrix chosen are viewed as ‘negligible functions’ and basically the neutrix-limit approach represents a systematic method to neglect infinite quantities of certain type. We note that if a neutrix limit β exists, it is unique; also, if the limit exists in the normal sense, it exists in the neutrix sense as well, the two limits being identical.

In what follows, we fix N to be the set of all finite linear sums of the functions

$$n^\lambda \ln^{r-1}(n), \quad \ln^r(n) : \lambda > 0, r, n \in \mathbb{N}$$

and all functions $f(n)$ which converge to 0 in the usual sense, as $n \rightarrow \infty$. It is straightforward to check that N is a neutrix with domain \mathbb{N} and range \mathbf{R}^1 .

Further, we let ρ be a fixed function in \mathbf{R}^1 , such that:

$$\rho(x) = 0, \quad \text{for } |x| > 1, \quad \rho(x) \geq 0, \quad \rho(-x) = \rho(x), \quad \int_{-1}^1 \rho(x) = 1.$$

Then we define the function δ_n by $\delta_n(x) = n\rho(nx)$ for $n = 1, 2, \dots$. The sequence $\{\delta_n\}$ of functions in \mathcal{D} (short for $\mathcal{D}(\mathbf{R}^1)$) is convergent in \mathcal{D}' to the Dirac δ -function. For any distribution G in \mathcal{D}' , the convolution $G_n(x) = (G * \delta_n)(x) = \langle G(x-t), \delta_n(t) \rangle$, gives rise to a sequence $\{G_n\}$ of C^∞ -functions weakly converging to G , as $n \rightarrow \infty$.

The next definition of neutrix distribution product was given in ([3]).

DEFINITION 3. Let F and G be arbitrary distributions in \mathcal{D}' and let $G_n = G * \delta_n$. We say that the *neutrix product* $F \circ G$ exists and is equal to H on the open interval (a, b) if

$$N - \lim_{n \rightarrow \infty} \langle FG_n, \phi \rangle = N - \lim_{n \rightarrow \infty} \langle F, G_n \phi \rangle = \langle H, \phi \rangle$$

for all test-functions ϕ with support contained in (a, b) .

It was shown in ([3]) that if $\lim_{n \rightarrow \infty} \langle FG_n, \phi \rangle$ exists and is equal to H on the open interval (a, b) , then the same holds for the neutrix product $F \circ G$.

Note that neutrix products of certain pairs of distributions depend on the particular choice of the function ρ . This is like introducing an arbitrary constants into the product, with different products containing the same constants. Güttinger [6] introduced arbitrary constants into his products of distributions but in his case, all the constants were unrelated.

Consider now the sequence of functions of variable $x = (x_1, \dots, x_m)$ in \mathbf{R}^m

$$(5) \quad \delta_n(x) = n_1 \rho(n_1 x_1) \dots n_m \rho(n_m x_m), \quad n = (n_1, \dots, n_m) \in \mathbf{N}^m.$$

Clearly, it converges in \mathcal{D}'_m (short for $\mathcal{D}'(\mathbf{R}^m)$) to the δ -function, and for any distribution G in \mathcal{D}'_m and all test-functions ϕ in \mathcal{D}_m it holds

$$\lim_{n_1 \rightarrow \infty} \dots \lim_{n_m \rightarrow \infty} \langle G_n(x), \phi(x) \rangle = \langle G, \phi \rangle,$$

$$G_n(x) = (G * \delta_n)(x) = \langle G(x - t), \delta_n(t) \rangle.$$

The next definition of the neutrix product of distributions in \mathcal{D}'_m extends slightly that given in ([5]) with respect to the open sets in \mathbf{R}^m . This extension however makes the definition more ‘flexible’; it will enable the handling of products of sums of distributions not defined everywhere by using the sheaf properties of the distribution spaces (cf. [2]).

DEFINITION 4. Let F and G be distributions in \mathcal{D}'_m and let $G_n = G * \delta_n$, with δ_n as in (5) and n in \mathbf{N}^m . We say that the neutrix product $F \circ G$ exists and is equal to H on the open set U in \mathbf{R}^m if

$$\text{N} - \lim_{n_1 \rightarrow \infty} \dots \text{N} - \lim_{n_m \rightarrow \infty} \langle FG_n, \phi \rangle = \langle H, \phi \rangle,$$

or briefly

$$\text{N} - \lim_{n \rightarrow \infty} \langle FG_n, \phi \rangle = \langle H, \phi \rangle,$$

for all test-functions ϕ in $\mathcal{D}_m(U)$, provided H is independent of the order in which the neutrix limits are taken.

The next theorem now establishes the consistency of the neutrix product of distributions in \mathcal{D}'_m with their pull-back by a diffeomorphic map of the underlying domains.

THEOREM 2. Let F and G be distributions in \mathcal{D}'_m and let the neutrix product $F \circ G$ exist and is equal to H on the open set U_2 in \mathbf{R}^m . If $\kappa : U_1 \rightarrow U_2$ is a C^∞ -diffeomorphic map of open sets in \mathbf{R}^m , then the neutrix product $(\kappa^* F) \circ (\kappa^* G)$ exists and

$$(6) \quad (\kappa^* F) \circ (\kappa^* G) = \kappa^* H \quad \text{on the open set } U_1 \text{ in } \mathbf{R}^m.$$

Proof. First of all, applying the pull-back κ^* on the function $G_n(x) = (G * \delta_n)(x)$ in \mathbf{R}^m , we have, in view of Theorem 1,

$$\kappa^*(G_n(x)) = \kappa^*(\langle G(x - t), \delta_n(t) \rangle) = \langle G(\kappa(x) - t), \delta_n(t) \rangle = (\kappa^* G)_n.$$

Now let ϕ be an arbitrary test-function in \mathcal{D}_m with support contained in U_1 . Taking into account the above equation as well as (1) and (2), we obtain

$$\langle (\kappa^* F) \circ (\kappa^* G)_n, \phi \rangle = \langle (\kappa^* F) \cdot G_n(\kappa), \phi \rangle = \langle \kappa^*(FG_n), \phi \rangle = \langle FG_n, \phi \rangle,$$

where $\psi = \phi(\kappa^{-1}) \mid \det D\kappa^{-1} \mid$ is in $\mathcal{D}'_m(U_2)$. Thus we have for any ϕ in $\mathcal{D}_m(U_1)$

$$\langle (\kappa^* F) \circ (\kappa^* G), \phi \rangle = N - \lim_{n \rightarrow \infty} \langle \kappa^*(F) \cdot G_n(\kappa), \phi \rangle = N - \lim_{n \rightarrow \infty} \langle FG_n, \psi \rangle = \langle H, \psi \rangle$$

with the test-function ψ given as above.

On the other hand, for any test-function ϕ in $\mathcal{D}_m(U_1)$, equation (1) gives

$$\langle \kappa^* H, \phi \rangle = \langle H, \psi \rangle$$

with a test-function ψ as above. Comparing now the left hand side of the last two equations, we have that the neutrix product in consideration exists and equation (6) holds on the open set U_1 in \mathbf{R}^m . This completes the proof.

The proposition below will also be needed in the sequel.

THEOREM 3. *If F and G are distributions in \mathcal{D}'_m and the neutrix product $F \circ G$ exists and is equal to H on the open set V in \mathbf{R}^m , then the neutrix product $(F|_V) \circ (G|_V)$ also exists and*

$$(7) \quad (F|_V) \circ (G|_V) = H|_V \quad \text{on the open set } V \text{ in } \mathbf{R}^m.$$

P r o o f. In view of equation (3), we have for any test-function ϕ in \mathcal{D}_m with support contained in the open set V :

$$\langle (F|_V) \cdot (G|_V)_n, \phi \rangle = \langle (F|_V) \cdot (G_n|_V), \phi \rangle = \langle (F \cdot G_n)|_V, \phi \rangle = \langle F \cdot G_n, \bar{\phi} \rangle,$$

where the test-function $\bar{\phi}$ in \mathcal{D} coincides with ϕ on V and is 0 elsewhere. Taking the neutrix limit as $n \rightarrow \infty$, we get

$$\begin{aligned} \langle (F|_V) \circ (G|_V), \phi \rangle &= N - \lim_{n \rightarrow \infty} \langle (F|_V) \cdot (G|_V)_n, \phi \rangle \\ &= N - \lim_{n \rightarrow \infty} \langle F \cdot G_n, \bar{\phi} \rangle \\ &= \langle H, \bar{\phi} \rangle = \langle H|_V, \phi \rangle \end{aligned}$$

for all ϕ in \mathcal{D}_m with support contained in V . This proves that the neutrix product in consideration exists and obeys equation (7).

3. Now we extend the definition of the neutrix distribution product in \mathcal{D}'_m so as to be applicable to the space $\mathcal{D}'(M)$ of distributions on a manifold M .

DEFINITION 5. If M is a manifold with atlas $\{\kappa_i\}_{i \in I}$ on it, let $\{F_i\}_{i \in I}$ and $\{G_i\}_{i \in I}$ be distributions in $\mathcal{D}'(M)$ and let $G_{in} = G_i * \delta_n$, with δ_n as in (5), for all i in I . We say that the neutrix product $F \circ G$ exists in $\mathcal{D}'(M)$ and is equal to $H = \{H_i\}_{i \in I}$ on the open set U in M if, for each i in I ,

$$(8) \quad N - \lim_{n_1 \rightarrow \infty} \dots N - \lim_{n_m \rightarrow \infty} \langle F_i G_{in}, \phi \rangle = \langle H_i, \phi \rangle$$

for all test-functions ϕ in $\mathcal{D}'_m(\tilde{U}_i)$, provided each H_i is independent of the order in which the neutrix limits are taken.

The next theorem now gives a natural sufficient condition for the existence of the neutrix distribution product in the space $\mathcal{D}'(M)$.

THEOREM 4. *Given the distributions $F = \{F_i\}_{i \in I}$ and $G = \{G_i\}_{i \in I}$ on a manifold M with an atlas $\{\kappa_i, M_i\}_{i \in I}$ on it, suppose the neutrix product $F_i \circ G_i$ exist (in \mathcal{D}'_m) and is equal to H_i on the whole domain \tilde{M}_i for all i in I . Then the neutrix product $F \circ G$ exist in $\mathcal{D}'(M)$ and is equal to $H = \{H_i\}_{i \in I}$ on the whole manifold M .*

Proof. Consider the distribution H on M defined by the collection $\{H_i = F_i \circ G_i\}_{i \in I}$ of distributions in $\mathcal{D}'(\tilde{M}_i)$. Then for each i in I equation (8) holds. Taking the pull-back map of the component H_i by κ_{ij} , we get for any i in I

$$\begin{aligned} \kappa_{ij}^* H_i &= \kappa_{ij}^* (F_i \circ G_i) = \kappa_{ij}^* F_i \circ \kappa_{ij}^* G_i && [\text{by (6)}] \\ &= F_j \circ G_j = H_j. && [\text{by (4)}] \end{aligned}$$

Each equation here holds on the whole domain $\tilde{M}_i \subseteq \mathbf{R}^m$, except the third one that holds on $\kappa_j(M_{ij}) \subseteq \tilde{M}_i$. Thus, we get exactly the consistency condition (4) between the components H_i and H_j for arbitrary i and j in the index set I . According to the Lemma, we have thus defined a unique distribution H in $\mathcal{D}'(M)$. Clearly, it satisfies Definition 5 with an open set U coinciding with M (and all $\tilde{U}_i = \tilde{M}_i$). The proof of the theorem is complete.

We note that the sufficient condition set up by this theorem would apply to a variety of particular neutrix products in $\mathcal{D}'(M)$ since most of the neutrix distribution products proved so far to exist are each equal to some distribution on the whole space (cf. [4]).

A further refinement of this existence theorem is given below. We first introduce the following notation. Any open set U in given manifold M and atlas $\{\kappa_i\}_{i \in I}$ on it can be viewed as submanifold of M with an inclusion map $\text{id}_U : U \rightarrow M : x \mapsto x$ and atlas $\{U_i, \kappa_i^U = \kappa_i|_{U_i}\}_{i \in I}$. Thus applying Definition 1, we can define the space of distributions on U , which we shall denote by $\mathcal{D}'_M(U)$ (with an index 'M' indicating the parent manifold).

THEOREM 5. *Given the distributions $F = \{F_i\}_{i \in I}$ and $G = \{G_i\}_{i \in I}$ on a manifold M with atlas $\{\kappa_i\}_{i \in I}$ and an arbitrary open set U in M , suppose the neutrix product $F_i \circ G_i$ exists (in \mathcal{D}'_m) and is equal to H_i on the open set \tilde{U}_i for any i in I . Then there is a unique distribution $K = \{K_i\}_{i \in I}$ on the submanifold U of M , such that $K_i = H_i|_{\tilde{U}_i}$ for all i in I .*

Proof. Consider the distribution K on the submanifold U of M defined by the collection $\{K_i = H_i|_{\tilde{U}_i}\}_{i \in I}$ of distributions in $\mathcal{D}'(\tilde{U}_i)$. We have

$F_i \circ G_i = K_i$ on \tilde{U}_i for each i in I , and therefore equation (8) holds. Now we show that $\{K_i\}_{i \in I}$ is ‘well-defined’ distribution on U . Indeed, for any i and j in I , the following chain of equations for the pull-back map by κ_{ij}^U can be obtained:

$$\begin{aligned}
 (\kappa_{ij}^U)^* K_i &= (\kappa_{ij}^U)^* \left(H_i |_{\tilde{U}_i} \right) = (\kappa_{ij}^U)^* \left((F_i \circ G_i) |_{\tilde{U}_i} \right) \\
 &= (\kappa_{ij}^U)^* \left((F_i |_{\tilde{U}_i}) \circ (G_i |_{\tilde{U}_i}) \right) \quad [\text{by (7)}] \\
 &= \left((\kappa_{ij}^U)^* (F_i |_{\tilde{U}_i}) \right) \circ \left((\kappa_{ij}^U)^* (G_i |_{\tilde{U}_i}) \right) \quad [\text{by (6)}] \\
 &= \left(((\kappa_{ij}^U)^* F_i) |_{\tilde{U}_i} \right) \circ \left(((\kappa_{ij}^U)^* G_i) |_{\tilde{U}_i} \right) \quad [\text{by (3)}] \\
 &= (F_j |_{\tilde{U}_i}) \circ (G_j |_{\tilde{U}_i}) \quad [\text{by (4)}] \\
 &= H_j |_{\tilde{U}_i} = K_j.
 \end{aligned}$$

Each equation here holds on the whole \tilde{U}_j , except for that obtained by (4) holding on $\kappa_j(M_{ij}) \cap \tilde{U}_j = \kappa_j(U_{ij})$. We therefore have: $(\kappa_{ij}^U)^* K_i = K_j$ on the set $\kappa_j(U_{ij})$ for all i and j in I , and it follows from the Lemma that the collection $\{K_i\}_{i \in I}$ defines a unique distribution K in the space $\mathcal{D}'_M(U)$. This completes the proof of the theorem.

Finally we shall employ the following canonical definitions. For a given distribution $F = \{F_i\}_{i \in I}$ in $\mathcal{D}'(M)$ and an open set U in M consider the collection $\{G_i = F_i |_{\tilde{U}_i}\}_{i \in I}$ (we can put $G_i = 0$ if $U \cap M_i$ is empty). In view of (3), their elements satisfy the consistency condition (4) and thus they define a unique distribution in $\mathcal{D}'_M(U)$, that can equally be denoted by $F|_U$. Further, we have this definition for the equality of distributions on M : $F = G$ on an open set U if $F|_U = G|_U$ in $\mathcal{D}'_M(U)$.

With these definitions, the following is now an immediate consequence of the last two theorems.

COROLLARY. *Under the hypothesis of Theorem 5, the neutrix product $(F|_U) \circ (G|_U)$ exists in $\mathcal{D}'_M(U)$ and is equal to the distribution $K = \{H_i |_{\tilde{U}_i}\}_{i \in I}$ on the whole U .*

Acknowledgement. One of the authors (B.D.) would like to thank the Ministry of Science and Education of Bulgaria for a financial help under NFSR Grant ϕ 610.

References

- [1] J. van der Corput, *Introduction to the neutrix calculus*, J. Anal. Math. **7** (1959), 291–398.
- [2] B. Damyanov, *On the sheaf of generalized functions over a C^∞ -manifold*, Math. Balkanica (N.S.) **7** (1993), 83–88.
- [3] B. Fisher, *The non-commutative neutrix product of distributions*, Math. Nachr. **108** (1982), 117–127.
- [4] B. Fisher, *The non-commutative neutrix product of the distributions x_+^{-r} and $\delta^{(p)}(x)$* , Indian J.P.A.Math. **14** (1983), 1439–1449.
- [5] B. Fisher, Li Chen Kuan, *On defining a non-commutative product of distributions in m variables*, J. Nat. Sci. Math. **31** (1991), 95–102.
- [6] W. Göttinger, *Products of improper operators and the renormalization problem of quantum field theory*, Progress Theor. Phys. **13** (1955), 612–626.
- [7] L. Hörmander, *The Analysis of LPDO: I. Distribution Theory and Fourier Analysis*. Springer, Berlin, 1983.

Blagovest Damyanov
BULGARIAN ACADEMY OF SCIENCES
INRNE-THEORY GROUP
72, Tzarigradsko Shosse
1784 SOFIA, BULGARIA

Brian Fisher
DEPARTMENT OF MATHEMATICS
AND COMPUTER SCIENCE
THE UNIVERSITY, LEICESTER
LE1 7RH, ENGLAND

Received January 2nd, 1995.

