

Mariusz Michta

WEAK SOLUTIONS OF SET-VALUED RANDOM DIFFERENTIAL EQUATIONS

1. Preliminaries

The existence of solutions to set-valued differential equations were considered by many authors (see e.g. [2], [3], [8], [9], [10], [12]). In [11] a random set-valued differential equation has been investigated. In this paper we consider such equation with purely probabilistic initial conditions. The problem has the form

$$(I) \quad \begin{aligned} D_H X_t &= F(t, X_t) \quad \text{P.1, } t \in [0, T] - \text{ a.e.} \\ X_0 &\stackrel{d}{=} \mu, \end{aligned}$$

where F is a given set-valued mapping with values in the space K^n of all nonempty compact convex subsets of the space R^n and μ is a probability measure on K^n . The initial condition above requires that the solution of (I) has a given distribution μ at the time $t = 0$.

Let $K_c(S)$ be the space of all nonempty compact and convex subsets of a metric space (S, ρ) equipped with the Hausdorff metric H (see e.g. [5], [7]); i.e., $H(A, B) = \max(\bar{H}(A, B), \bar{H}(B, A))$ for $A, B \in K_c(S)$, where $\bar{H}(A, B) = \sup_{a \in A} \inf_{b \in B} \rho(a, b)$

By $\|A\|$ we denote the distance of A to $\{0\}$, i.e., $H(A, \{0\})$. For S being a separable Banach space, $(K_c(S), H)$ is a Polish metric space.

Let $I = [0, T]$, $T > 0$. For a given multifunction $F : I \rightarrow K_c(S)$ by $D_H F(t_0)$ we denote its Hukuhara derivative at the point $t_0 \in I$ (see e.g. [5],

Key words and phrases: set-valued mappings, Hukuhara's derivative, Aumann's integral, tightness and weak convergence of probability measures.

1991 *Mathematics Subject Classification:* 26E25, 60B10.

This work has been supported by KBN grant no. 332069203.

[12]) if there exist limits (in $K_c(S)$)

$$\lim_{h \rightarrow 0+} \frac{F(t_0 + h) - F(t_0)}{h}, \lim_{h \rightarrow 0+} \frac{F(t_0) - F(t_0 - h)}{h},$$

both equal to the same set $D_H F(t_0) \in K_c(S)$.

The following connection between the Aumann integral of set-valued mapping and its Hukuhara derivative are well known (see e.g. [12]):

PROPOSITION 1. *If the set-valued mapping $F : [0, T] \rightarrow K_c(S)$ is Aumann integrable and $U_0 \in K_c(S)$, then if $\Phi(t) = U_0 + \int_0^t F(s)ds$ then $D_H \Phi(t) = F(t)$ —a.e. int.*

Let μ be a probability measure on the metric space (S, ρ) .

DEFINITION 1. The probability measure μ is said to be tight if for every $\epsilon > 0$ there exists a compact set $K_\epsilon \subset S$ such that $\mu(K_\epsilon) \geq 1 - \epsilon$.

Similarly if (μ_n) is a sequence of distributions on S then we say that it is tight if for any $\epsilon > 0$ there exists a compact set K_ϵ such that $\mu_n(K_\epsilon) \geq 1 - \epsilon$ for all $n \geq 1$.

The next definitions are devoted to weak convergence of probability measures (see e.g. [1], [13]).

DEFINITION 2. The sequence (μ_n) of probability measures is weakly convergent to the the distribution μ ($\mu_n \Rightarrow \mu$) if for every continuous and bounded function $f : S \rightarrow R$ one has $\int_S f d\mu_n \rightarrow \int_S f d\mu$, as $n \rightarrow \infty$.

DEFINITION 3. A family Π of probability measures on S is said to be relatively weakly compact if every sequence of elements of Π contains a weakly converget subsequence.

The following Theorems due to Prochorov (see e.g. [1]) will be needed in the sequel:

THEOREM 1. *If the family Π of probability measures on S is tight then Π is relatively weakly compact.*

THEOREM 2. *A relatively weakly compact family Π of probability measures on Polish metric space S is tight.*

2. Tightness condiditions of probability measures on the space of continuous set-valued mappings

Let $S = R^n$ and $K^n = K_c(R^n)$. By $C_I = C(I, K^n)$ we denote the space of all H -continuous set-valued mappings. In C_I we introduce a metric ρ of uniform convergence i.e.

$$\rho(F, G) := \sup_{0 \leq t \leq T} H(X(t), Y(t)), \quad \text{for } X, Y \in C_I.$$

Then (C_I, ρ) is a Polish metric space. For $X \in C_I$ we define a modulus of continuity $w_X(\delta) = \sup\{H(X(t), X(s)) : |t - s| < \delta, t, s \in I\}$. We can formulate the following version of Ascoli Theorem for the space C_I :

THEOREM 3 ([5]). *Let $A \subset C_I$. Then the set \bar{A} is compact if and only if:*

- i) *there exists $M > 0$ such that $\sup_{X \in A} \sup_{t \in I} \|X(t)\| < M$,*
- ii) *$\lim_{\delta \rightarrow 0} \sup_{X \in A} w_X(\delta) = 0$.*

We can prove now the following tightness condition of probability measures on C_I .

THEOREM 4. *A sequence (μ_n) of probability measures on C_I is tight if and only if*

- i) $\forall \alpha > 0, \exists a > 0, \forall n \geq 1 : \mu_n(X \in C_I : \sup_{t \in I} \|X(t)\| \leq a) \geq 1 - \alpha$,
- ii) $\forall \alpha > 0, \forall \epsilon > 0, \exists \delta < 1, \exists n_0, \forall n \geq n_0 : \mu_n(X \in C_I : w_X(\delta) \leq \epsilon) \geq 1 - \alpha$.

P r o o f. Let (μ_n) be a sequence of tight probability measures on C_I , and let K_α be a compact subset of C_I such that $\mu_n(K_\alpha) \geq 1 - \alpha$ for all $n \geq 1$ and fixed $\alpha > 0$. Then from i) of the theorem stated above we obtain: $\sup_{X \in K_\alpha} \sup_{t \in I} \|X(t)\| < \infty$. Let $a := \sup_{X \in K_\alpha} \sup_{t \in I} \|X(t)\|$. Hence $K_\alpha \subseteq \{X \in C_I : \sup_{t \in I} \|X(t)\| \leq a\}$. Thus for each $n \geq 1$

$$\mu_n(X \in C_I : \sup_{t \in I} \|X(t)\| \leq a) \geq 1 - \alpha.$$

Similarly, using condition ii) of Theorem 3, for every $\epsilon > 0$ there exists $a, \delta > 0$ such that $K_\alpha \subseteq \{X \in C_I : w_X(\delta) \leq \epsilon\}$. Consequently we have $\mu_n(X \in C_I : w_X(\delta) \leq \epsilon) \geq 1 - \alpha$, for $n \geq 1$. Conversely, let $\delta_k > 0$ be chosen such that $\mu_n(X \in C_I : w_X(\delta_k) \leq 1/k) \geq 1 - \alpha_k$ for $n \geq 1$, where $\alpha_k = \alpha/2^{k+1}$. Let $A_k := \{X \in C_I : w_X(\delta_k) \leq 1/k\}$. From Ascoli Theorem it follows that the set $A := \{X \in C_I : \sup_{t \in I} \|X(t)\| \leq a\} \cap \bigcap_{k=1}^{\infty} A_k$ has compact closure in C_I .

If we put $K_\alpha := \bar{A}$ then

$$\mu_n(C_I \setminus K_\alpha) \leq \mu_n(C_I \setminus A) \leq \mu_n(X \in C_I : \sup_{t \in I} \|X(t)\| > a) + \sum_{k=1}^{\infty} \mu_n(C_I \setminus A_k)$$

for $n = 1, 2, \dots$. Thus we get $\mu_n(C_I \setminus K_\alpha) \leq \alpha$ for each $n \geq 1$. The proof is completed.

3. Main result

Let (Ω, \mathcal{F}, P) be a given complete probability space. The family of set-valued mappings $X = (X_t)_{t \geq 0}$ is said to be a multivalued stochastic process if for every $t \geq 0$, the mapping $X_t : \Omega \rightarrow K^n$ is measurable i.e $X_t^-(U) :=$

$\{\omega : X_t(\omega) \cap U \neq \emptyset\} \in \mathcal{F}$, for every open $U \subset E$ (see e.g. [4, 7]). It can be noticed that U can be also chosen both as closed and Borel subset. We restrict our interest to the case when $0 \leq t \leq T$, $T > 0$. If the mapping $t \rightarrow X_t(\omega)$ is continuous (H -continuous) with probability one (P.1) then we say that the process X has continuous "paths".

Observe that the set-valued stochastic process X can be thought as a random element $X : \Omega \rightarrow C_I$. Indeed, it follows immediately from [6] and from the fact that the topology of uniform convergence and the compact-open topology in C_I are the same. So we can state:

PROPOSITION 2. *The set-valued stochastic process $X = (X_t)_{0 \leq t \leq T}$ has continuous "paths" if and only if the mapping $X : \Omega \rightarrow C_I$ is measurable.*

DEFINITION 4. A probability measure μ on C_I is a distribution of the set-valued process $X = (X_t)_{0 \leq t \leq T}$ if $\mu(A) = P(X^-(A))$ for every Borel subset A from C_I . A distribution of X we will be denoted by P^X .

Let $F : I \times K^n \rightarrow K^n$ be an integrably bounded set-valued mapping satisfying Caratheodory type conditions:

- 1) there exists a measurable function $m : I \rightarrow \mathbb{R}_+$ such that $\int_0^T m(t)dt < \infty$ and $\|F(t, A)\| \leq m(t)$ t -a.e. $A \in K^n$,
- 2) $F(t, \cdot)$ is H -continuous t -a.e.,
- 3) $F(\cdot, A)$ is a measurable multifunction for every $A \in K^n$.

Consider now the multivalued random differential equation mentioned above:

$$(I) \quad \begin{aligned} D_H X_t &= F(t, X_t) \quad \text{P.1, } t \in [0, T] - \text{a.e.} \\ X_0 &\stackrel{d}{=} \mu, \end{aligned}$$

By a weak solution to (I) we mean a system $(\Omega, \mathcal{F}, P, (X_t)_{t \in I})$ where $(X_t)_{t \in I}$ is a set-valued process on some probability space (Ω, \mathcal{F}, P) such that (I) is fulfilled.

Now we can formulate the following theorem:

THEOREM 5. *Let $F : I \times K^n \rightarrow K^n$ be a set-valued function satisfying Caratheodory type conditions and let μ be a probability measure on the space K^n . Then there exists at least one weak solution to (I).*

Proof. Let us observe first that the set $S := \{X \in C_I : \exists A \in K^n, \forall t \in I : X(t) = A\}$ is nonempty and closed in C_I . So the space K^n can be identified with the set S , of all "constant" elements from C_I . Thus the measure μ can be considered as the probability μ' on C_I concentrated on S i.e. $\mu'(B) = \mu(B \cap S)$, where B is a Borel subset of C_I . Then there exist a probability space (Ω, \mathcal{F}, P) and random element $X_0 : \Omega \rightarrow S$ such that $X_0 \stackrel{d}{=} \mu'$.

Define the sequence of set-valued stochastic processes as follows

$$(1) \quad X_t^n = X_0 I(t)_{[0,T)} + [X_0 + \int_0^{t-T/n} F(s, X_s^n) ds] I(t)_{(T/n, T]}.$$

Put $M(t) = \int_0^t m(s) ds$ and let $f(\cdot) = \|\cdot\|$. Because of the continuity of $f : K^n \rightarrow R_+$, $f(X_0) : \Omega \rightarrow R_+$ is measurable and hence we have $f(X_0) \stackrel{d}{=} \mu'^f$, where μ'^f is a distribution of f on R_+ . Using a continuity property of probability measures and $R_+ = \bigcup_{n \geq 1} [0, n)$, we obtain $\forall \alpha > 0, \exists N : \mu'^f([0, N)) \geq 1 - \alpha$. Thus we get

$$(2) \quad \forall \alpha > 0, \exists N : P(\|X_0\| \leq N) \geq 1 - \alpha.$$

For fixed $\omega \in \Omega$ one has

$$\sup_{t \in I} \|X_t^n\| \leq \|X_0\| + \sup_{t \in I} \int_0^t \|F(s, X_s^n)\| ds \leq \|X_0\| + M(T).$$

If $a := N + M(T)$ then from above we get

$$P(\sup_{t \in I} \|X_t^n\| \leq a) \geq P(\|X_0\| + M(T) \leq a).$$

Hence by (2) we get

$$(3) \quad \forall \alpha > 0, \exists a, \forall n \geq 1 : P^{X^n}(X \in C_I; \sup_{t \in I} \|X(t)\| \leq a) \geq 1 - \alpha.$$

Let us define now a sequence (Y^n) of set-valued processes by the formula: $Y_t^n = X_0 + \int_0^t F(s, X_s^n) ds$ for $t \geq 0$ and $n = 1, 2, \dots$. It can be shown (see e.g [11], proof of Lemma 2.1. II) that $H(Y_t^n, Y_s^n) \leq |M(t) - M(s)|$ with Proposition 1 and

$$H(X_t^n, Y_t^n) \leq w_M(T) \text{ for } n = 1, 2, \dots, t, s \in I,$$

where $w_M(\delta) = \sup\{|M(t) - M(s)|; |t - s| < \delta, t, s \in I\}$. Hence we have

$$w_{X^n}(\delta) \leq 2w_M(\delta) + w_M(T/n) \text{ with Proposition 1.}$$

The continuity property of $w_M(\cdot)$ implies

$$\forall \alpha > 0, \forall \epsilon > 0, \exists \delta_0 < 1, \forall \delta < \delta_0, \exists n_0, \forall n \geq n_0 :$$

$$P^{X^n}(X \in C_I; w_X(\delta) \leq \epsilon) \geq 1 - \alpha.$$

This together with Theorem 4 implies tightness of the sequence (P^{X^n}) . Thus (Theorem 1) there exists a subsequence $(P^{X^{n_k}})$ weakly convergent to some probability measure ν on C_I . Let X be a random element on (Ω, \mathcal{F}, P) with values in C_I such that $P^X = \nu$. One has $(X^{n_k}, X_0) \stackrel{d}{\rightarrow} (X, X_0)$ (c.f. Th. 4.4 [1]). Thus there exists a sequence (X'^{n_k}, X'_0) and a random element (X', X'_0) on some probability space $(\Omega', \mathcal{F}', P')$ with values in $C_I \times C_I$ such that

i) $(X'^{n_k}, X'_0) \stackrel{d}{=} (X^{n_k}, X_0)$, for $k = 1, 2, \dots$

ii) $(X', X'_0) \stackrel{d}{=} (X, X_0)$

iii) $(X'^{n_k}, X'_0) \rightarrow (X', X'_0)$ with $P'.1$

(see e.g. [13]). This implies $X'_t = X'_0 + \int_0^t F(s, X'_s)ds$ with $P'.1$ for $t \in I$. Hence by Proposition 1 one gets

$$D_H X'_0 = F(t, X'_0) \quad P'.1, \quad t \in [0, T] \text{-a.e.}$$

Since $X'_0 \stackrel{d}{=} X_0$ and $X_0 \stackrel{d}{=} \mu$ then $X'_0 \stackrel{d}{=} \mu$. This completes the proof.

References

- [1] P. Billingsley, *Convergence of Probability Measures*. Wiley, New York (1968).
- [2] F.S. De Blasi, F. Iervolino, *Euler method for differential equation with compact, convex valued solutions*, Boll. U.M.I (4) 4 (1971), 941–949.
- [3] F.S. De Blasi, F. Iervolino, *Equazioni differenziali con soluzioni a valore compatto convesso*, Boll. U.M.I (4) 2 (1969), 501–591.
- [4] C.J. Himmelberg, F.S. Van Vleck, *The Hausdorff metric and measurable selections*, Topology Appl. 20 (1985), 121–133, North-Holland.
- [5] M. Hukuhara, *Sur l'application semicontinue dont la valeur est un compact convexe*, Funkcial. Ekwac. 10 (1967), 43–66.
- [6] D.A. Kandilakis, N.S. Papageorgiou, *On the existence of solutions of random differential inclusions in Banach space*, J. Math. Anal. Appl. 126 (1987), 11–23.
- [7] M. Kisielewicz, *Differential Inclusions and Optimal Control*. Kluwer (1991).
- [8] M. Kisielewicz, *Method of averaging for differential equation with compact convex valued solutions*, Rend. Mat. (3), vol. 9, serie VI, (1976), 1–12.
- [9] M. Kisielewicz, B. Serafin, W. Sosulski, *Existence theorem for functional-differential equation with compact convex valued solutions*, Demonstratio Math. 9 (2) (1976), 229–237.
- [10] P. Lopes Pinto, F.S. De Blasi, F. Iervolino, *Uniqueness and existence theorem for differential equations with compact convex valued solutions*, Boll. U.M.I 4 (1970), 45–54.
- [11] M. Michta, *Istnienie i jednoznaczność rozwiązań losowych równań różniczkowych o wielowartościowych, zwartych i wypukłych prawych stronach*, Doctoral Thesis, UAM Poznań, WSI Zielona Góra (1993).
- [12] A. Tolstonogow, *Diferencjalnyje wkluczenija w Banachowych prostranstwach*. Moskva, Nauka (1986).
- [13] S. Watanabe, N. Ikeda, *Stochasticeskije diferencjalnyje uravnenija difuzjonnyje procesy*. Moskva, Nauka, (1981).

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY,
Podgorna 50
65-246 ZIELONA GORA, POLAND

Received December 14, 1994.