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WEAK SOLUTIONS OF SET-VALUED RANDOM
DIFFERENTIAL EQUATIONS

1. Preliminaries

The existence of solutions to set—valued differential equations were con-
sidered by many authors (see e.g. [2], 3], [8], [9], [10], [12]). In [11] a random
set—valued differential equation has been investi gated. In this paper we con-
sider such equation with purely probabilistic initial conditions. The problem
has the form

( ) DX, = F(t,Xt) Pl, te [O,T]— a.e.
I
d

Xo Ky

where F' is a given set-valued mapping with values in the space K™ of all
nonempty compact convex subsets of the space R™ and p is a probability
measure on K™. The initial condition above requires that the solution of (I)
has a given distribution p at the time ¢ = 0.

Let K.(S) be the space of all nonempty compact and convex subsets
of a metric space (5, p) equipped with the Hausdorff metric H (see e.g.
[5], [7]); i-e., H(A, B) = max(H(A, B), H(B, A)) for A,B € K.(S), where
H(A,B) = sup,¢4infrep p(a, b)

By ||A|| we denote the distance of A to {0}, i.e., H(A,{0}). For S being
a separable Banach space, (K.(S), H) is a Polish metric space.

Let I = [0,T], T > 0. For a given multifunction F : I — K.(S) by
Dy F(to) we denote its Hukuchara derivative at the point ¢ € I (see e.g.[5],
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[12]) if there exist limits (in K(S))
m F(to+h) - F(to)’ lim F(to) — F(to — h),
h—0+ h h—0+ h

both equal to the same set Dy F(ty) € K ().
The following connection between the Aumann integral of set-valued
mapping and its Hukuchara derivative are well known (see e.g. [12]):

PRrOPOSITION 1. If the set-valued mapping F : [0,T] — K(S) is Aumann
integrable and Uy € K(5), then if ®(t) = Up + fot F(s)ds then Dy ®(t) =
F(t)—a.e. int.

Let p be a probabability measure on the metric space (.5, p).

DEFINITION 1. The probabability measure u is said to be tight if for
every € > 0 there exists a compact set K, C S such that u(K.) > 1 ~-e.

Similarly if (1) is a sequence of distributions on § then we say that it is
tight if for any € > 0 there exists a compact set K such that p,(K.) > 1-¢
for all n > 1.

The next definitions are devoted to weak convergence of probability mea-
sures (see e.g. [1], [13]).

DErFINITION 2. The sequance (uy) of probability measures is weakly
convergent to the the distribution p (u, = p) if for every continuous and
bounded function f: 5 — R one has [¢ fdp, — [¢ fdp, as n — oo.

DeriNiTION 3. A family II of probability measures on S is said to
be relatively weakly compact if every sequence of elements of II contains
a weakly converget subsequence.

The following Theorems due to Prochorov (see e.g. [1]) will be needed in
the sequel:

THEOREM 1. If the family I of probability measures on S is tight then
Il is relatively weakly compact.

THEOREM 2. A relatively weakly compact family 11 of probability mea-
sures on Polish metric space S is tight.

2. Tightness condiditions of probability measures on the space
of continuous set-valued mappings

Let § = R™ and K" = K. (R"). By C; = C(I, K™) we denote the space
of all H—continuous set-valued mappings. In Cy we introduce a metric p of
uniform convergence i.e.

p(F,G):= sup H(X(t),Y(t)), for X,Y €Cy.
0<t<T
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Then (Cp,p) is a Polish metric space. For X € C; we define a modulus
of continuity wx(6) = sup{H(X(¢),X(s)) :|t —s|< é,t,s € I}. We can
formulate the following version of Ascoli Theorem for the space Cr:

THEOREM 3 ([5]). Let A C Cr. Then the set A is compact if and only if:
i) there ezists M > 0 such that sup sup || X(t)|| < M,
X€A tel

ii) lims—o sup wx(é) = 0.
XeA

We can prove now the following tightness condition of probability mea-
sures on C7.

THEOREM 4. A sequence (uy) of probability measures on C is tight if
and only if
DVa>0,3a>0,Vn>1:pu(X € Cr:sup||X(t)|]|<a)>1-aq,
tel

i) Va > 0, Ve > 0, 36 < 1, 3ng, Vn > ng :
pr(X € Criwx()<e)>1-a.

Proof. Let (1) be a sequence of thight probability measures on Cf,
and let K, be a compact subset of C'; such that u,(K,) > 1 — « for all
n > 1 and fixed o > 0. Then from i) of the theorem stated above we obtain:
supxer, subeer X (D] < 00. Let @ 1= 5upy crc, supre [X(2)]. Hence Ko C
{X € Cr:supyer || X ()|} < a}. Thus for each n > 1

pn(X € Crisup || X(1)|<a) 21~
tel

Similarly, using condition ii) of Theorem 3, for every ¢ > 0 there exists
a § > 0 such that K, C {X € Cr: wx(6) < €}. Consequently we have
pn(X € Cr:wx(6) <€) > 1—-a, for n > 1. Conversely, let 6 > 0 be
chosen such that p,(X € Cr: wx(6x) < 1/k) > 1—-ax for n > 1, where
o = af2F*t1 Let Ay := {X € Cr: wx(6;) < 1/k}. From Ascoli Theorem
it follows that the set A := {X € C; : sup,¢;[|X(t)|| < a} N Nre, Ak has
compact closure in Cj.
If we put K, := A then

pn(CI\Ka) < pn(C1\A) < (X € Crsup X ()] > o) + Y #a(C1\Ar)
k=1

for n = 1,2,.... Thus we get u,(Cr\K,) < a for each n > 1. The proof is

completed.

3. Main result

Let (2, F, P) be a given complete probability space. The family of set-
vauled mappings X = (X;):>o is said to be a multivalued stochastic process
if for every ¢ > 0, the mapping X; : @ — K™ is measurable i.e X; (U) :=
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{w: Xy(w)yNU # 0} € F, for every open U C E (see e.g. [4, 7]). It can
be noticed that U can be also chosen both as closed and Borel subset. We
restrict our interest to the case when 0 < t < T, T > 0. If the mapping
t — Xi(w) is continuous (H —continuous) with probability one (P.1) then
we say that the process X has continuous ”paths”.

Observe that the set—valued stochastic process X can be thought as
a random element X : Q@ — Cy. Indeed,it follows immidiately from [6] and
from the fact that the topology of uniform convergence and the compact-
open topology in C are the same. So we can state:

PrOPOSITION 2. The set-valued stochastic process X = (Xi)o<t<T has
continuous "paths” if and only if the mapping X : Q@ — C; is measurable.

DEFINITION 4. A probability measure p on Cy is a distribution of the
set-valued process X = (X;)o<icr if p(A) = P(X~(A)) for every Borel
subset A from C;. A distribution of X we will be denoted by PX.

Let F : I X K™ — K™ be an integrably bounded set-valued mapping
satisfying Caratheodory type conditions:

1) there exists a measurable function m : I — R, such that fOT m(t)dt < oo

and ||F(t, A)|| £ m(t) t—a.e. A€ K",

2) F(t,-)is H~—continuous t—a.e.,
3) F(-, A) is a measurable multifunction for every A € K.
Consider now the multivalued random differential equation mentioned above:

DyX,=F(t,X;) P.1,te€[0,T]- ae.
XO g s

By a weak solution to (I) we mean a system (2, F, P, (X¢):er) where (X¢)ier
is a set-valued process on some probability space (2, F, P) such that (I) is
fulfield.

Now we can formulate the following theorem:

@

THEOREM 5. Let F: I X K™ — K™ be a set-valued function satisfying
Caratheodory type conditions and let u be a probability measure on the space
K™. Then there ezists at least one weak solution to (I).

Proof. Let us observe first that the set S := {X € C;:34 € K™Vt €
I: X(t) = A} is nonempty and closed in Cj. So the space K™ can be
identified with the set S, of all "constant” elements from Cjy. Thus the
measure y can be considered as the probability u' on C; concentrated on
Sie p/(B) = pu(BNS), where B is a Borel subset of C;. Then there exist
a probability space (2, F, P) and random element Xy :  — § such that

Xo -'(é M'.



Weak solutions of equations 527

Define the sequence of set-valued stochastic processes as follows
t—T/n
(1) XP = Xol(pmy + X+ [ F(s,X7)ds)I(t)z/n,1-
0

Put M(t) = f(: m(s)ds and let f(-) = || - ||. Because of the continuity of

f:K" = Ry, f(Xo):Q — R4 is measurable and hence we have f(Xo) 2
u'f , Where ,u'f is a distribution of f on R,. Using a continuity property
of probability measures and Ry = U,»,[0,n), we obtain Va > 0, 3N :
@ f([0,N))> 1 — a. Thus we get

(2) Ya >0, 3N : P(|| Xoll £ N) > 1-a.

For fixed w € Q one has
t
sup || XF|| < {| Xo|| + sup f |F (s, X)|lds < || Xol| + M(T).
tel tel 5

If a:= N + M(T) then from above we get
Pleup |71l < @) > P(IXall + M(T) < o).

Hence by (2) we get
(3) VYa>0,3¢,Vn>1:PX (X eCphsup||X(®)]|<a)>1-a.
tel

Let us define now a sequence (Y™) of set-valued processes by the formula:
Y = Xo + fot F(s,XM)ds for t >0 and n = 1,2,.... It can be shown
(see e.g [11], proof of Lemma 2.1. II) that H (Y, Y") <] M(t)— M(s) | with
Proposition 1 and
H(XNY™) <wm(T) for n=1,2,...,t,s€ 1,

where war(8) = sup{| M(¢) — M(s) |;|t — s|< é,t,s € I'}. Hence we have

wxn(6) < 2wpr(6) + wp(T/n) with Proposition 1.
The continuity property of was(-) implies

Ya >0, Ve > 0, 36y < 1, Y6 < &, Ing, Y > ng :

PX (X e Crywx(6)<e) > 1—a.

This together with Theorem 4 implies tightness of the sequence (PX"). Thus

(Theorem 1) there exists a subsequence (PX"*) weakly convergent to some
probability measure v on C;. Let X be a random element on (2, F, P) with

values in Cy such that PX = v. One has (X™, X;) LA (X, Xo) (c.f. Th. 4.4

[1]). Thus there exists a sequence (X '™, X{) and a random element (X', X}{)
on some probability space (', F', P') with values in C';zCy such that
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i) (X', X1) £ (X™, X,), for k=1,2,...

i) (X', X4) £ (X, Xo)
iii) (X', X}) — (X', X)) with P’.1

(see e.g. [13]). This implies X{ = X§ + fot F(s,X.)ds with P’.1 for t € I.
Hence by Proposition 1 one gets

DyXy = F(t,X;) P'.1, te€[0,T]~ae.

Since X 2 X, and Xo & w then X} £ . This completes the proof.

[10]

(11]

(12]

13]
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