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DIFFERENTIAL EQUATIONS 

1. Preliminaries 
The existence of solutions to set-valued differential equations were con-

sidered by many authors (see e.g. [2], [3], [8], [9], [10], [12]). In [11] a random 
set-valued differential equation has been investi gated. In this paper we con-
sider such equation with purely probabilistic initial conditions. The problem 
has the form 

DHXt = F(t,Xt) P . l , t e [0, T] - a.e. 
W ^ d Xo - fi, 

where F is a given set-valued mapping with values in the space Kn of all 
nonempty compact convex subsets of the space Rn and fi is a probability 
measure on Kn. The initial condition above requires that the solution of (I) 
has a given distribution fi at the time t = 0. 

Let KC(S) be the space of all nonempty compact and convex subsets 
of a metric space (5, p) equipped with the Hausdorff metric H (see e.g. 
[5], [7]); i.e., H{A,B) = max(H(A,B),H(B,A)) for A,B e Ke(S), where 
H(A,B) = sup a e i 4 inf ¡,6B p(a, b) 

By HAH we denote the distance of A to {0}, i.e., H(A, {0}). For S being 
a separable Banach space, ( K C ( S ) , H ) is a Polish metric space. 

Let I = [0,T], T > 0. For a given multifunction F : I KC(S) by 
Df{F(to) we denote its Hukuchara derivative at the point to £ I (see e.g.[5], 
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[12]) if there exist limits (in KC(S)) 

Um F(tp + h) - F(tp) Um F ( f 0 ) - F ( f 0 - f t ) 
/i—<-o+ h ' h->o+ h ' 

both equal to the same set DnF(to) € KC{S). 
The following connection between the Aumann integral of set-valued 

mapping and its Hukuchara derivative are well known (see e.g. [12]): 

PROPOSITION 1. If the set-valued mapping F : [ 0 , T ] —»• KC(S) is Aumann 
integrable and UQ G Kc(S), then if $(t) = Uo + /0* F(s)ds then £>#$(£) = 
F(t)-a.e. int. 

Let fi be a probabability measure on the metric space (S ,p) . 

DEFINITION 1. The probabability measure p, is said to be tight if for 
every e > 0 there exists a compact set Ke C S such that p(K€) > 1 - e. 

Similarly if (/¿n) is a sequence of distributions on S then we say that it is 
tight if for any e > 0 there exists a compact set Kf such that /J,n(Ke) > 1 — e 
for all n > 1. 

The next definitions are devoted to weak convergence of probability mea-
sures (see e.g. [1], [13]). 

DEFINITION 2. The sequance (/xn) of probability measures is weakly 
convergent to the the distribution /i (fin => fi) if for every continuous and 
bounded function / : S —»• R one has fs fd^n —• Js f d f i , as n oo. 

DEFINITION 3. A family II of probability measures on S is said to 
be relatively weakly compact if every sequence of elements of II contains 
a weakly converget subsequence. 

The following Theorems due to Prochorov (see e.g. [1]) will be needed in 
the sequel: 

T H E O R E M 1. If the family II of probability measures on S is tight then 
II is relatively weakly compact. 

THEOREM 2 . A relatively weakly compact family II of probability mea-
sures on Polish metric space S is tight. 

2. Tightness condiditions of probability measures on the space 
of continuous set-valued mappings 

Let S = Rn and Kn - Kc(Rn). By C/ = C(I, Kn) we denote the space 
of all H—continuous set-valued mappings. In C/ we introduce a metric p of 
uniform convergence i.e. 

p(F,G) := sup H(X(t),Y(t)), for X,YeCj. 
o <t<T 
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Then (C/,p) is a Polish metric space. For I 6 C/ we define a modulus 
of continuity wx(6) = s u p { H ( X ( t ) , X ( s ) ) :| t - s |< 6,t,s e I}. We can 
formulate the following version of Ascoli Theorem for the space Cf. 

T H E O R E M 3 ([5]). Let A C Cj. Then the set A is compact if and only if: 
i) there exists M > 0 such that sup sup ||X(i)|| < M, 

X€A tei 
ii) lims-o sup wx(6) = 0. 

xeA 
We can prove now the following tightness condition of probability mea-

sures on C/. 
T H E O R E M 4. A sequence (/zn) of probability measures on Ci is tight if 

and only if 
i) Va > 0, 3a > 0, Vn > 1 : fj.n(X € C j : sup ||X(i)|| < a) > 1 - a, 

tez 
ii) Va > 0, Ve > 0, 36 < 1, 3n0, Vn > n0 : 

fin(X € Ci : wx(S) < e) > 1 - a. 
P r o o f . Let {pn) be a sequence of thight probability measures on Cj, 

and let Ka be a compact subset of Cj such that fin(Ka) > 1 — a for all 
n > 1 and fixed a > 0. Then from i) of the theorem stated above we obtain: 
suPxe/c„ s uPte/ ll-X'COII < 00• L e t a '•= suPx<=/ia suP«e/ 11-^(011-Hence K<* Q 
{X e Ci: sup i e i \\X(t)\\ < a}. Thus for each n > 1 

H„(X G Ci : sup \\X{t)\\ < a) > 1 - a. 
tei 

Similarly, using condition ii) of Theorem 3, for every e > 0 there exists 
a 6 > 0 such that Ka C {X 6 C/ : < e}. Consequently we have 
fin(X € Ci : wx{6) < e) > 1 - for n > 1. Conversely, let 6k > 0 be 
chosen such that fin{X G Ci : wx{6k) < 1 /k) > 1 - ak for n > 1, where 
ak = a/2k+1. Let Ak := {X € C/ : wx(6k) < 1/k}. From Ascoli Theorem 
it follows that the set A := {X G C/ : sup<e i ||X(i)|| < a) n flfeti Ak has 
compact closure in C/. 

If we put Ka := A then 
oo 

H-niCi\Ka) < Vn(Ci\A) < /x„(X £ CT : sup ||X(i)|| > a) + Yiin(CMk) 

for n = 1,2, — Thus we get fin(Ci\Ka) < a for each n > 1. The proof is 
completed. 

3. Main result 
Let (ii, T , P) be a given complete probability space. The family of set-

vauled mappings X = (Xt)t>o is said to be a multivalued stochastic process 
if for every t > 0, the mapping Xt : Q Kn is measurable i.e X^(U) := 
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{w : Xf(u>) fl U ± 0} € T, for every open U C E (see e.g. [4, 7]). It can 
be noticed that U can be also chosen both as closed and Borel subset. We 
restrict our interest to the case when 0 < t < T, T > 0. If the mapping 
t —»• Xt(uj) is continuous (H—continuous) with probability one (P.l) then 
we say that the process X has continuous "paths". 

Observe that the set-valued stochastic process X can be thought as 
a random element X : i! —• C/ . Indeed,it follows immidiately from [6] and 
from the fact that the topology of uniform convergence and the compact-
open topology in Ci are the same. So we can state: 

PROPOSITION 2 . The set-valued stochastic process X = (Xt)o<t<T has 
continuous "paths" if and only if the mapping X : Q, Ci is measurable. 

DEFINITION 4 . A probability measure n on Ci is a distribution of the 
set-valued process X — (Xt)o<t<T if M ^ ) = f ° r every Borel 
subset A from C/. A distribution of X we will be denoted by Px. 

Let F : I x Kn —Kn be an integrably bounded set-valued mapping 
satisfying Caratheodory type conditions: 
1) there exists a measurable function m : I R+ such that fQ m(t)dt < oo 

and | |F(i, A)|| < m(t) t-a.e. A G Kn, 
2) F(t, •) is if—continuous t—a.e., 
3) F(-,A) is a measurable multifunction for every A £ Kn. 
Consider now the multivalued random differential equation mentioned above: 

By a weak solution to (I) we mean a system (fi, T , P, (Xt)tei) where (X t ) t£i 
is a set-valued process on some probability space (iì, T, P) such that (I) is 

Now we can formulate the following theorem: 

T H E O R E M 5. Let F : I x Kn —> Kn be a set-valued function satisfying 
Caratheodory type conditions and let n be a probability measure on the space 
Kn. Then there exists at least one weak solution to ( / ) . 

P r o o f . Let us observe first that the set S := {X G Ct : 3A e Kn,Vt G 
I : X{t) = A} is nonempty and closed in Cj . So the space Kn can be 
identified with the set S, of all "constant" elements from Cj . Thus the 
measure fx can be considered as the probability /¿' on C/ concentrated on 
S i.e. ii'(B) = fi(B n S), where B is a Borel subset of C/. Then there exist 
a probability space (ft, T, P) and random element X0 : ft S such that 

(I) 
DfjXt = F(t,Xt) P . l , t G [0, T] - a.e. 

X0 = n, 

fulfield. 
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Define the sequence of set-valued stochastic processes as follows 
t-T/n 

(1) X? = X0I(t)[0iT) + [ X 0 + f F ( s , X ? ) d s ] I ( t ) ( T / n t T ] . 
o 

Put M(t) = /J m(s)ds and let /(•) = || • ||. Because of the continuity of 

/ : Kn —• f(Xo) : ft —> R+ is measurable and hence we have f(Xo) = 
fi f, where p * is a distribution of / on R+. Using a continuity property 
of probability measures and R+ = LL>i [0 ' n ) ' w e obtain Va > 0, 3N : 
fj,'f([0, N ) ) > 1 - a . Thus we get 

(2) Va > 0, 3 N : P ( | | X 0 | | < N ) > l - a . 

For fixed u 6 ft one has 

s u p | | X r | | < | | X 0 | | + sup j | | F ( a , X ; ) | | d S < | | X 0 | | + M ( r ) . 
tei tei o 

If a := N + M(T) then from above we get 

P(sup \\X?\\ < a ) > P( | |X 0 | | + M(T) < a), 
tei 

Hence by (2) we get 

(3) Va > 0, 3a, Vn > 1 : (X e Cj\ sup | |X(i)| | < a) > 1 - a . 
tei 

Let us define now a sequence (Yn) of set-valued processes by the formula: 
Yt

n = X 0 + f*F(s,X?)ds for t > 0 and n = 1 ,2 , . . . . It can be shown 
(see e.g [11], proof of Lemma 2.1. II) that H(Yt

n,Ys
n) <\ M ( t ) - M ( s ) | with 

Proposition 1 and 

H(X?,Yt
n)<wM(T) for n= l , 2 , . . . , i , s € / , 

where wm(6) = sup{| M(t) - M(s) |; 11 - s |< 6, t,s G I}. Hence we have 

wx n (6) < 2wm(6) + wm(T/ti) with Proposition 1. 

The continuity property of wm(-) implies 

Va > 0, Ve > 0, 3£0 < 1, W < S0, 3n0 , Vn > n0 : 

P x n ( X e C r , w x ( 6 ) < e ) > I - a . 

This together with Theorem 4 implies tightness of the sequence (Px"). Thus 
(Theorem 1) there exists a subsequence ( P x k ) weakly convergent to some 
probability measure u on C/ . Let X be a random element on (ft, T, P) with 
values in C/ such that P x = v. One has (Xn*,XQ) 4- ( X , X 0 ) (c.f. Th. 4.4 
[1]). Thus there exists a sequence ( X ' n k , X'Q) and a random element ( X ' , Xq) 

on some probability space ( f t ' , / " ' , P ' ) with values in CjxCi such that 
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i) XJ) = for k = 1 , 2 , . . . 
ii) Â (X,X 0 ) 

iii) , (X', with P'.l 
(see e.g. [13]). This implies X't = X^ + ¡¿F(s,X'a)ds with P'.l for t <E I. 
Hence by Proposition 1 one gets 

DHX'Q = F(t,XI>) P'.l, t € [0,T]—a.e. 

Since XQ = Xq and XQ = /i then Xq = This completes the proof. 

References 

[1] P. B i l l i n g s l e y , Convergence of Probability Measures. Willey, New York (1968). 
[2] F.S. De Blas i , F. I e r v o l i n o , Euler method for differential equation with compact, 

convex valued solutions, Boll. U.M.I (4) 4 (1971), 941-949. 
[3] F.S. De B las i , F. I e r v o l i n o , Equazioni differenziali con soluzini a valore compatto 

convesso, Boll. U.M.I (4) 2 (1969), 501-591. 
[4] C.J. H i m m e l b e r g , F.S. V a n Vleck , The Hausdorff metric and measurale selec-

tions, Topology Appl. 20 (1985), 121-133, North-Holland. 
[5] M. H u k u c h a r a , Sur I application semicontinue dont la valeur est un compact 

convexe, Funkcial. Ekwac. 10 (1967), 43-66. 
[6] D.A. K a n d i l a k i s , N.S. P a p a g e o r g i o u , On the existence of solutions of random 

differential inclusions in Banach space, J. Math. Anal. Appl. 126 (1987), 11-23. 
[7] M. K i s i e l e w i c z , Differential Inclusions and Optimal Control. Kluver (1991). 
[8] M. K i s i e l e w i c z , Method of averaging for differential equation with compact convex 

valued solutions, Rend. Mat. (3), vol. 9, serie VI, (1976), 1-12. 
[9] M. K i s i e l e w i c z , B. S e r a f í n , W. S o s u l s k i , Existence theorem for functional-

differential equation with compact convex valued solutions, Demonstratio Math. 9 
(2) (1976), 229-237. 

[10] P . L o p e s P i n t o , F . S . D e Blas i , F. I e r v o l i n o , Uniqueness and existence theorem 
for differential equations with compact convex valued solutions, Boll. U.M.I 4 (1970), 
45-54. 

[11] M. M i c h t a, Istnienie i jednoznacznosc rozwiqzati losowych równarí rózniczkowych o 
wielowartosciowych, zwartych i wypuklych prawych stronach, Doctoral Thesis, UAM 
Poznan, WSI Zielona Góra (1993). 

[12] A. T o l s t o n o g o w , Differencjalnyje wkluczenija w Banachowych prostranstwach. 
Moskva, Nauka (1986). 

[13] S. W a t a n a b e , N. I k e d a , Stochasticeskije diferencjalnyje uravnienija difuzjonnyje 
procesy. Moskva, Nauka, (1981). 

INSTITUTE OP MATHEMATICS, TECHNICAL UNIVERSITY, 
Podgorna 50 
65-246 ZIELONA GORA, POLAND 

Received December 14, 1994. 


