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FURTHER PROPERTIES OF ALMOST CONTINUOUS
MULTIFUNCTIONS DEFINED BETWEEN
BITOPOLOGICAL SPACES

1.Introduction

Kelly [6] introduced the notion of bitopological spaces as a natural gen-
eralization of topological spaces. Thereafter tremendous developement in
this direction has been noticed and a vast number of papers have appered
extending and generalizing many topological concepts to bitopological situ-
ations.

By bitopological space (X, Py, P;) we shall always mean a space X en-
dowed with two topologies P, and P,. Throughout this paper spaces al-
ways mean bitopological spaces on which no pairwise separation axioms are
assumed unless explicitly stated. The bitopological spaces (X, P, P;) and
(Y,Q1,Q2) will sometimes be abbreviated as X and Y, respectively.

Let S be a subset of a space X. The P;-closure of § and the P;-interior
of § are denoted by P;-cl(S) and P;-int(.5), respectively. A subset S of X
is called an (%, j)-regular open set ((¢,j)-regular closed) [(briefly (7,j)-ro,
(((3,7)10)] iff § = Pi-int(Pj-cl(S)) [resp. S = Pi-cl(P;-int(S))] [16]. It is
easy to see that S is an (¢,7)-roset in X iff X-5 is a (¢, j)-rcset, 1,5 = 1,2
and 7 # j. A space (X, Py, P;) is called pairwise semi regular iff P; has
a base consisting of all (¢,j)-ro sets of X, for 7,57 = 1,2 and ¢ # j. A
space (X, P, P,) is said to be (i, j)-almost regular iff for each P;-open set
V and z € V, there is a P;-open set U of X such that z € U C P;-
d(U) € Print(Pj-cl(V)), 3,5 = 1,2 and ¢ # j [16]. A space (X, P, P2) is
called P P,-paracompact iff every cover W of X with P;-open sets has a
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refinement V with Pj-open sets which cover X and V is P,-locally finite,
i.e. for each point z, there is a Py-open neighbourhood U of z intersecting
at most finitely many elements of V.

A point z in X will be called an (7, j)-8-closure point of a subset S of X
iff SNU # ¢ for any (4, j)-regular open set U containing z, where 7,5 = 1,2
and 7 # j. The set of all (¢, j)-é-closure points of S is called (¢, j)-é-closure of
S and it is denoted by (3, j)-6-cl(.5). A subset S of X is called (z, j)-6-closed
if § =(i,7)-8-ci(S). A point z in X will be called an (¢, 7)-é-interior point
of a subset S of X iff there exists a (¢,7)-regular open set U containing
z and contained in S. The set of all (7, 7)-6-interior points of S is called
(2, 7)-6-interior of S and it is denoted by (3, 5)-6-int(S). A subset S of X is
called (%,j)-6-open iff S = (7,7)-6-int(.5). Let S be a subset of X, U is a
(4, 7)-6-neighbourhood of § which intersects S, if there exists a (¢, j)-6-open
subset V of X such that V. C U and VNS # ¢.

The family of all (¢,7)-6-open [(i,7)-6-closed] and (3,j)-regular open
[(¢, 7)-regular closed] sets of X are denoted by (¢, 5)-6-O(X)[(4,7)-6-C(X)]
and (7, 7)-RO(X) [(¢, 7)-RC(X)], respectively, [1].

The net (z4)aer is (1,2)-6-convergent to zg, if for each (1,2)-regular
open set U containing zg, there exists a ag € I such that o > ag = 2, € U.

The concept of almost continuous functions between topological spaces
were first introduced and studied by Singal and Singal [17]. The same idea
was further developed by many authors, e.g., we refer to the papers of Noiri
[9], Herrington [5] and Long and Carnahan [5]. Also, there has appeared
a large number of papers which deal with almost continuous functions in
relation to other types of functions. The notion of almost continuous multi-
functions was introduced and investigated by Popa [11, 13, 15], in which he
generalized the definition and properties of almost continuous functions by
introducing the notion of upper and lower almost continuous multifunctions.
Boshe and Sinha [3] extended the idea of almost continuous single-valued-
functions to bitopological space. Mukherjee and Ganguly [10] also extended
the idea of almost continuous multifunctions to bitopological space.

A multifunction F of a set X into Y is a correspondence such that
F(z) is a nonempty subset of ¥, for each 2 € X, that is it is a function
F:X — P(Y)\ {¢}, where P(Y) is the power set of Y. We will denote
such a multifunction by F : X — Y. For a multifunction F, the upper
and lower inverse of a set B of Y will be denoted by F*(B) and F~(B),
respectively, that is, F¥*(B) = {z € X | F(z) C B} and F~(B) = {z €
X | F(z)N B # ¢} [2]. A multifunction F : (X,7) — (Y,w) is upper semi
continuous (in short, u.s.c.) at a point g € X if for any open set V' C Y such
that F(z¢) C V, there exists an open set U C X containing zo such that
F(U) C V. A multifunction F : (X,7) — (Y,w) is lower semi-continuous
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(in short, l.s.c.) at a point zo € X if for any open set V' C Y such that
F(zp) NV # ¢, there exists an open set U C X containing zo such that
U C F~(V) [6]. A multifunction F : (X, P, P;) — (Y,Q1,Q2) is P1Q1-
upper almost continuous with respect to Q2 (in short, Py @1-u.a.c.w.r.t. Q2)
at a point zo € X if for any Q;-open set V C Y such that F(z9) C V,
there exists an Pj-open set U C X containing z¢ such that F(U) C Q-
int(Q,-cl(V)). A multifunction F : (X, Py, P,) — (Y,Q1,Q2) is PiQ1-lower
almost continuous with respect to @2 (in short, Py@Q;-l.a.c.w.r.t. @2) at a
point zo € X if for any Qq-open set V C Y such that F(zo) NV # ¢, there
exists a Pj-open set U C X containing g such that U C F~(Q;-int(Q2-
cl(V)) [10]. A multifunction F : X — Y is Py@,-upper weakly continuous
with respect to @2 (in short, P;@;-u.w.c.w.r.t. @) at a point o € X if
for any @Q-open set V C Y such that F(zg) C V, there exists a P;-open
set U C X containing z¢ such that F(U) C Qa-c(V). A multifunction
F:X — Y is P,Q:-lower weakly continuous with respect to 2 (in short,
Pi@Qq-lw.cow.r.t. Q2) at a point 2o € X if for any @;-open set V C Y such
that F(zo) NV # ¢, there exists a Pj-open set U C X containing z¢ such
that U C F~(Qq-cl(V)) [12].

2. Some characterisations of the lower almost continuous mul-
tifunctions between bitopological spaces

THEOREM 2.1. Let (X, Py, P;) and (Y,Q1,Q2) be bitopological spaces.
For any multifunction F: X — Y the following are equivalent:

(1) F is PiQq-l.a.c.w.r.t. Q2 at a point 2o € X;

(2) For each y € F(xzq) and for every net (z4)aer convergent to o (with
respect to Py), there exists a subnet (z5)pcy of the net (24)aecr and a net
(y3)pes inY so that (ya)pes is (1,2) — §-convergent to y and yg € F(zp);

(3) zo € Pi-cl(A) = F(zo) C (1,2)-6-cl(F(A)), for each A C X;

(4) 79 € Pycl(FT(N)) = z9 € F*((1,2)-6-c}(N)), for each N C Y.

Proof. (1)=(2): Suppose that F'is P;Q1-l.a.c.w.r.t. Q, at a point z¢ €
X. Let (2o)aer be a net convergent to zo and y € F(zo). f V € (1,2)-
RO(Y,y) where (1,2)-RO(Y, y) denote the family of all (1,2)-regular open
sets which contains y, then F(zg) NV # ¢. Since F is P1Q1—la.c.w.r.t. Q,
at a point z¢p € X, there exists a Pj-open set U containing zo such that
F(2) N (Q1-int(Q2-cl(V)) # ¢, z€ U or F(2)NV # ¢, z € U. Since the net
(o )aer is convergent to zg, for this U, there exists a ap € I such that a >
op = T4 € U. Therefore we have the implication a > ag = F(zo)NV # ¢.
For any V € (1,2)-RO(Y, y), define Iy = {ap € I | a > ag = F(z,) NV #
¢}’ J = U{IV XV I Ve (1,2)'RO(Y7y)} = {(a,V) I a € IV’V € (1’2)'
RO(Y,y)} and introduce an order on J as follows; (a*, V*) > (, V) & a* >



514 M. Kiigik, Y. Kaguk

o and V* C V. This is a direction on J. Define 2 : J — I by £2[(5,V)] = 8.
Then 2 is increasing and cofinal. So 2 defines a subnet (zgoys,v))(s,v)es
of (z4)aer. We denote the subnet (zgy5,vy))(s,v)es bY (28)(3,v)es- On the
other hand for any (8*,V*) € J, (B8,V) > (6*,V*) = F(z3) NV # ¢. Pick
ys € F(zg)NV. Then the net (y5)(s,v)es is (1,2)-6-convergent to y. To see
this notice that for any Vg € (1,2)-RO(Y, y) there exists a oy € I such that
(a0, Vo) € J and y,, € Vo. If (8,V) > (Bo, Vo) then § > fy and V C Vj.
Therefore yg € F(z5) NV C F(23) NV, s0 yp € Vo. Thus (ys)(,vyes is
(1,2)-6-convergent to y.

(2) = (3): Let zg € Py-cl(A), then there exists a net (z)oer convergent
to zo. Let y € F(2g). By the hypothesis, there exists a subnet (25)ges of
(2a)aer and a net (yg)ses in Y so that (ys)pes is (1,2)-6-convergent to y
and yg € F(zg). This implies that y € (1,2)-6-cl(F(A)) and so F(zg) C
(1,2)-8-cl( F(A)).

(3) = (4): For any N C Y and z¢ € Pi-cI(F*(N)). Replacing A by
F*(N)in (3), we get F(zo) C (1,2)-8-cl( F(F*(N))) C (1,2)-é-cl(N). So
zo € F((1,2)-6-cI(N)).

(4) = (1): Let (1) be not true. Then, there is a ;-open set G in Y
with F(zg) N G # ¢ such that for each U € Py(zp), where Py(zg) is the
family of Pj-open sets containing zg, there is zy € U for which F(zy) N
(Q1-int(Q2-cl(G)) = ¢. We set M = {zy | U € Pi(zo)}. Then we have
9 € Pi-cl(M) C P-c(FH(F(M))). From (4), we obtain zo € (1,2)-6-
A(F*T(F(M))). So F(zo) C (1,2)-6-cl(F(M)). On the other hand, since
F(zo) N G # ¢, there exists a point 2z in Y such that 2 € F(zo) N G,
z € G € Q1. The fact that Q1-int(Q,-cl(G)) is (1,2)-regular open set in
Y and F(M)N (Q1-int(Qq-cl(G))) = ¢ implies z ¢ (1,2)-8-cl( F(M)). This
contradicts with F(zo) C (1,2)-6-cl( F(M)) and shows that (1) is true.

THEOREM 2.2. Let (X, Py, P,) and (Y,Q1,Q2) be bitopological spaces.
For any multifunction F : X — Y the following statements are equivalent:

(1) F is PoQy-la.cw.rt. Q2.

(2) For each z € X and for each (1,2) — é6-neighbourhood V' which inter-
sects F(x), F~(V) is a Py-neighbourhood of .

(3) For each z € X and for each (1,2) — é6-neighbourhood V' which inter-
sects F(z), there is U € Pi(z) such that, F(z) NV # ¢, for each z € U.

(4) F(P;-cl(A)) C (1,2)-6-cl(F(A)), for each A C X.

(5) Pi-cl(F+(B)) C F*((1,2)-6-cl(B)), for each B CY.

(6) For each (1,2)-6-closed subset B of Y, F*(B) is a Py-closed subset
of X.
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(7) For each (1,2)-8-open subset B of Y, F*(B) is a P;-open subset of X .
(8) F~((1,2)-6-int(B)) C Py-int(F~(B)), for each BCY.

Proof. (1) = (2): Let z € X and V C Y be a (1,2)-6-neighbourhood
V which intersects F(z). Then there is a (1,2)-§-open set G contained in
V which intersects F(z) i.e. G CV and F(z)N G # ¢. There exists y € Y’
such that y € F(z) NG, so y € G. Since G is (1,2)-6-open set, there is a
(1,2)-regular open set T containing y such that y € T C G, but this implies
that F(z) N T # ¢. According to the Theorem 2.4 [8], there is a P;-open
set U containing z so that F(2)NT # ¢, for each z € U,so U C F~(T).
Since T C G C V, then we havez € U C F~(T) C F~(G) C F~(V). Thus
F~(V) is a P;-neighbourhood of z.

(2) > (3): Let z € X and V C Y be a (1,2) — é-neighbourhood V
which intersects F(z). According to the hypothesis, U = F~(V) is a P;-
neighbourhood of z and F(2)NV # ¢, for each z € U.

(3) = (4): Let y € F(P,—cl(A)). Then there exists a point 2 in Py-cl(A)
such that y € F(z). Let G € (1,2)-RO(Y, y). Then we have F(2) N G # ¢.
The fact that a set G is (1,2)-RO implies that G is (1, 2)-é-open set. By the
hypothesis, there exists a U € Pi(z) such that U C F~(G). On the other
hand since z € Py-cl(A), we have U N A # ¢. So there exists a point z in X
such that z € U N A. Therefore we obtain F(2) NG # ¢ and F(z) C F(A).
Finally, we have F(A) N G # ¢, which implies y € (1,2)-6-cl(F(A)). Since
y € F(Py-cl(A)) is arbitrary, we get F(P;-cl(A)) C (1,2)-6-cl( F(A)).

(4) = (5): Let B be any subset of Y. So we have F*(B) C X. By (4),
we obtain F(Py-cl(F*(B))) C (1,2)-6-ci( F(F*(B))) C (1,2)-6-cl( B). Then
we have Pj-cl(F*(B)) C F*((1,2)-6-cl(F(Ft(B)))) C F*((1,2))-6-ci( B)).

(5) = (6): Let B be any (1,2)-6-closed subset of Y, so B = (1,2)-6-cl( B).
According to the hypothesis, P-cl( F*(B)) C F*((1,2)-6-cl(B)) = F*(B).
Thus F'*(B) is P;-closed subset of X.

(6) = (7): Let B be any (1,2)-6-open subset of Y. So Y \ B is (1,2)-4-
closed subset of Y. By (6), F*(Y \ B) = Y \ F~(B) is P;-closed subset of
X. Thus F~(B) is P;-open subset of X.

(7) = (8):Forany B C Y, (1,2)-6-int(B) is (1,2)-6-open subset of Y. By
(7), F~((1,2)-6-int(B)) is P;-open subset of X. Then we obtain F~((1,2)-
§-int(B)) C Py-int(F~(B)).

(8) = (1): Let G be any (1, 2)-regular open subset of Y. Then G is (1, 2)-
d6-open subset of Y and G = (1,2)-6-int(G). By (8), we have F~(G) C P;-
int(F~(G)), which shows that F~(G) is P;-open subset of X. According to
Theorem 2.6 in [10], F' is Py@1-l.a.c.w.r.t. Q5.

Theorems 2.1 and 2.2 generalize Theorems 4,5 in [15].



516 M. Kigik, Y. Kigik

3. Weak continuity and almost continuity of the multifunction

THEOREM 3.1. Let (X, P1, P;) and (Y, Q1,Q2) be bitopological spaces. If a
multifunction F : X —= Y is P,Q-v.w.cw.r.t. Qz and F : (X, P) — (Y,@1)
open then F is PiQq-u.a.c.w.m.t. Q3.

Proof. Suppose that F is Pi@Q;-u.w.c.w.r.t. @2 at € X. Then for any
@1-open subset V of Y with F(z) C V, there is a P;-open set U containing
z of X such that F(U) C Q2-cl(V). As F is P;@Q;-open, F(U) is Q1-open,
which implies F(U) C Q1-int(Q2-cl(V)).

Above Theorem generalizes Theorem 2.1 in [13].

COROLLARY 3.2. Let (X, Py, P) and (Y,Q1,Q2) be bitopological spaces.
If a multifunction F : X - Y is PiQy-v.w.cw.r.t. Q2 and F: X — (Y, Q1)
point-open then F is PyQ1-v.a.c.w.r.l. (5.

Proof. By the previous theorem, the proof is clear.

THEOREM 3.3. Let (Y, Q1,Q2) be a (1,2)-almost regular, Q1Q-paracom-
pact space and F : (X, Py, P,) — (Y,Q1,Q2) be a point-P;-closed, then the
notion P, Q-u.w.c.w.r.t. ()2 coincides with the notion PyQ,-u.a.c.w.r.t. Q.

Proof. (=) Let V be a (1,2)-regular open set in Y and z € F*(V),
namely F*(V) C X. Since Y is (1,2)-almost regular, for each y € F(z),
there is a ()1-open set V, containing y such that V, C Qs-cI(V,) C @Q1-
int(Q2-cl(V)) = V. Thus we have F(z) C U{V, | v € F(2)} C U{Q:-
c(Vy) | y € F(z)} C V. Therefore the family {Y \ F(¢)} U{V, | y € F(z)}
is is a ()1-open cover of Y. Since Y is )1 (J;-paracompact, there exists a point
finite Q;-open refinement G of this cover. So for each y € F(z), there exists a
G, € G such that G, C V,, and we have F(z) C U{Gy | y € F(z)} C U{Vy |
y € F@)} C U{Qo-cl(V,) | y € F(x)}. If we sot G = U{G, | 3 € F(a)},
then Q2-cl(G) = U{Q2-cl(Gy) | y € F(z)},s0 F(z) C G C Q-cl(G) C V.
Since F is Pi¢)1-u.w.c.w.r.t. Q2 at z, there is a Pj-open set U containing
z such that F(U) C Q2-cl(V) C V. Then z € U C F(V). So F*(V) is
P, -open set in X and F is Pi@Q-u.a.c.w.r.t. 2 at z [8, Theorem 2.8].

(<) By the definitions of continuities, the proof is clear.

This Theorem generalize Theorem 2.3 in [14].

The following example shows that the relative continuity (P;@;-u.s.c.
w.r.t. @Q2) of F: (X, P, P) — (Y,Q1,Q2) does not imply the upper semi
continuity (u.s.c.) of F : (X, P;) — (Y,Q1). The reverse implication is al-
ways true.

ExaMPLE 3.4. Let X = R be a bitopological space with the usual topology
P, and the cofinal topology P.. Let Y = {a,b,c} be a bitopological space
with @, = @, =discreate topology. A multifunction F : (X, P, P,) —
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(Y’Q17Q2) defined by

— {a}; TE (_00’0]
F(e) = { {b,¢}; z€(0,00)

is relatively P;@Q;-u.s.c.w.r.t. @2, but not PiQ;-u.a.c.w.r.t. ¢2. In addition
F:(X,P) — (Y,Q1) is not u.s.c. To show this, take any z € (—00,0]. Then
F(z) = {a} and F*({a}) = F*(@1-Int(Qs-Cl({a})) = (~o0,0] = F+(Qs-
Int(Q,-Cl({a}))) N (—o0,1). We also take z € (0,00), then F(z) = {b,c}
and Ft({b,c}) = F*(Q1-Int(Q2-Cl({d,c}))) = (0,00) = F*(Q1-Int(Q>-
Cl({b,c}))) N (-1,00). F is not Q-u.w.c.w.r.t. @, at z = 0. F(0) = {a} C
{a} € Q1 but for all ¢ > 0 F((~¢,¢)) =Y ¢ Q1-Int(Q2-Cl({a})) = {a}. It
can be easily seen that F : (X, ;) — (Y,Q;) is not u.s.c. at ¢ = 0.

DEFINITION 3.5. A multifunction F : (X, P, P) — (Y,0Q1,Q2) is
relatively Py@Qi-u.s.cw.r.t. Q2 at z iff given a V € @ with F(z) C V,
the set F+(V) is an open set in the subspace (F1(Q;-int(Q2-cl(V))),

(P1)P+(Qi-int(Qa-(v))) [4]-

THEOREM 3.6. If F: (X, ) — (Y,Q1) is u.s.c., then F : (X, P, P;) —
(Y,Q1,Q2) is relatively PyQ1-u.s.c.w.r.t. Q.

Proof. Let z € X,V € @ with F(z) CV and F : (X, P,) — (Y, Q1)
be a u.s.c. Then F*(V) € Pi. Since F*(V) C F*(Q1-int(Q2-cl(V))) and
FH(V) N FH(Q-int(Q2-cl(V))) = FH(V). F+(V) is an open set in the
subspace F't(Q1-int(Q2-cl(V))). So F is relatively P;@Q;-u.s.c.w.r.t. Qs.

THEOREM 3.7. A multifunction F : (X, P;) — (Y,Q1) is u.s.c iff F :
(X, P, P2) — (Y,Q1,Q2) is relatively P1Q1-u.s.c.w.r.t. Q2 and PyQ;-u.a.c.

w.r.t. Q2.

Proof. (=) This part of the theorem is clear.

(<) Let V € Q. Since F is relatively PQ;-u.s.c.w.r.t. Q2, then F*(V)
is an open set in the subspace F*(Q1-int(Q2-cl(V))). So we have WNF*(Q,-
int(Q3-ci(V))) = F*(V), where W is P;-open set in X. To prove the open-
ness of F*(V)in X, let z € F*(V), what gives F(z) C V and z € W.
Since F is Pj@i-u.a.c.w.r.t. ¢, at = there exists an Pj-open set U in X
containing z such that F(U) C Qq-int(Qq-cl(V)). Since ¢ € W and W
is Py-open set in X, we may assume that U/ C W. It now follows that
z € U CWnFHQ-int(Q2-cl(V))) = FH(V). This shows that F*(V) is
Py-open in X. Consequently F : (X, P;) — (Y,Q1) is u.s.c..

DEFINITION 3.8. A multifunction F : (X, P, P2) — (Y,Gh,Q2) has

P;Q1-upper interior condition with respect to @, (briefly P;@Q;-ui.c.w.r.t.
Q2) iff for each Q1-open set V in Y, a multifunction F satisfies P;-Int(F+

(Quint(Q2-cl(V))) C F*(V) [5].
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The following example gives that the upper semi continuity of F :
(X,P) — (Y,Q1) does not imply the upper interior condition of F :
(X, P, P;) — (Y,Q1,Q2). By considering 3.4. Example, it is easily seen
that the reverse implication is not true.

ExaMPLE 3.9. Let X = N be a bitopological space with cofinal topology
P; and discrete topology. Let Y = N be a bitopological space with @, =
Q2 =cofinal topology. A multifunction F' : (X, Py, P,) — (Y, @1, @2) defined
by,
_[{1,2,3}; z=1
Fla)= {{w}; z#1
Fis surely u.s.c. But if V' is any proper nonempty ¢),-open set in Y, then @;-
Int(Q2-Cl(V)) = Y and so Int F+(Q1-Int(Q,-Cl(V))) = X while F¥(V) =
V. Hence F*(Q1-Int(Q2-CI(V))) ¢ F*(V). So F is not P;Qq-ui.c.w.r.t.
Q2.
THEOREM 3.10. If a multifunction F : (X,P,P) — (Y,Q1,Q2) is
P Q1-u.a.cw.r.t. Q2 and F has a PyQq-u.i.c.w.r.t. Q@ then the multifunc-
tion F: (X, P) — (Y,Q1) is u.s.c.

Proof. Let V be a given §i-open set in Y. By the first hypothesis,
we have F* (V) C P-Int(F+(Q1-int(Q2-cl(V))) [10, Theorem 2.8]. By the
interior condition, we have P;-Int(F*(Q1-int(Q2-cl(V))) C F*(V). Hence
we have Pi-Int(F*(Q1-int(Q2-cl(V))) = F*(V). Therefore we obtain P;-
Int(F*(V)) = Pi-Int(Py-Int(F*(Q1-int(Q2-ci(V))) = P-Int(F*(Q;-int
(Q2-cl(V))) = F¥(V). So F*(V) is Pj-open in X. This shows that F :
(X, P) — (Y,Q1) is us.c.

THEOREM 3.11. Let (X, Py, P») be a bitopological space and (Y, Q1,Q2)
be a pairwise normal bitopological space. If for each pair of different points
z1,%2 in X, there is a multifunction F : X — Y which has the following
properties:

(1) F is Q;-point closed (i = 1,2),

(2) F is PQ1-u.w.cw.r.t. @y at z1,

(3) F is P,Qz-u.a.cw.r.t. Q1 at z; and

(4) F(z1) N F(z3) = ¢, then (X, Py, Py) is a pairwise Hausdorff space.

Proof. Let 27,22 be different points in X. By the hypothesis, for these
points, there is a multifunction F such that F(z,) is Q,-closed, F(z2) is
@1-Closed and F(zq1) N F(z3) = ¢. Since (Y,Q1,Q2) is pairwise normal,
there are two sets V; € @1, V2 € Q2 such that F(z,) C V3, F(z1) C V, and
Vi nVz = ¢. So we have Q1-int(Qq-cl(V})) N Q2-int(Q1-cl(V2) = ¢, which
implies Q2-cl(V1) N Q2-int(Q1-cl(Vz) = ¢. Since F is Pi@Q1-u.w.c.w.r.t. @,
at z; and F is P;@Qi-u.a.c.w.r.t. Q2 at 3, there are sets Uy € Py(zy) and
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Uy € Py(z3) such that F(Up) C Q2-cl(V1) and F(U;) C Q2-int(Q1-cl(V2)).
It follows that F(Uy) N F(U;) = ¢, what implies that U; N Uz = ¢. The
latter means that is X is a pairwise Hausdorff space.

THEOREM 3.12. Let (X, Py, Py) and (Y,Q1,Q2) be bitopological spaces.
If multifunction F : X —» Y is PQq-lw.cwrt Qy and F: X — (Y,Q1)
point-open then F is PyQq-l.s.c.

Proof. Suppose that F is Py@;-l.w.c.w.r.t. 2 at z € X. Then for
any (),-open subset V of Y with F(z) NV # ¢, there is a Py-open set U
containing z such that F(z) N Qq-cl(V) # ¢, for each 2z € U. Since F(z)
is (Q1-open, we see that F(z) NV # ¢, for each z € U. Consequently F is
PlQl-l.S.C.

DEFINITION 3.13. A multifunction F : (X, P, P) — (Y,Q1,Q2) is
relatively PyQq-ls.cw.r.t. @Q; at z iff given a V € @y with F(z) NV #
¢, the set F~(V) is an open set in the subspace (F~(Q1-int(Qq-cl(V))),

(P1)r-(@u-inu(@z-a(vyy) [4]-
THEOREM 3.14. If F : (X, P1) — (Y, Q1) is Ls.c., then F : (X, P, P,) —
(Y,Q1,Q2) is relatively PyQy-l.s.c.w.r.t. Q2.

Proof.Letz € X,V € @ with F(z)NV # ¢and F : (X, P,) — (Y,Q1)
be a ls.c. Then F~(V) € P. Since F~(V) C F~(@Q1-int(Q2-cl(V))) and
F~(V)N F~(Q1-int(Q2-cl(V))) = F~(V), F~(V) is an open set in the
subspace F'~(Q1-int(Q2-cl(V))). So F is relatively P,Q;-ls.c.w.r.t. Q,.

THEOREM 3.15. A multifunction F : (X, P) — (Y,Q1) is l.s.c iff F :
(X, P, P) — (Y,Q1,Q2) is relatively PyQ1-l.s.c.w.r.t. Q2 and P1Q;-la.c.
w.r.t. Q.

Proof. (=) This part of the theorem is clear;

(<) Let V € Q1. Since F is relatively PiQq-l.s.c.w.r.t. @2, F~ (V) is an
open set in the subspace F'~(Q1-int(Q;-cl(V))). So we have W N F~(Q,-
int(Q2-cl(V))) = F~(V), where W is P;-open set in X. To prove the open-
ness of F~(V)in X,let z € F~(V),s0 F(¢)NV # ¢ and 2 € W. Since F
is PiQi-l.a.c.w.r.t. @2 at = there exists an Pj-open set U in X containing
z such that F(z) N Qq-int(Qs-cl(V)) # ¢, for each z € U. Since z € W
and W is Pj-open set in X, we may assume U C W. It now follows that
€U CWnNF(Qi1-int(Q2-c1(V))) = F~(V). This shows that F~(V) is
Py-open in X. Consequently F : (X, P,) — (Y,@1) is Ls.c.

DEFINITION 3.16. A multifunction F : (X, P, P;) — (Y,Q1,Q2) has
P,Q1-lower interior condition with respect to @, (briefly PQ;-li.c.w.r.t.
Q2) iff for each @y-open set V in Y, the multifunction F satisfies
Pr-Int(F~(Qy-int(Q2-c(V))) C F~(V) [3].
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THEOREM 3.17. If @ multifunction F : (X, P, P) — (Y,Q1,Q2) is
PiQi-la.cw.r.t. Q2 and F has a PLQ;-l.i.c.w.r.t. Q9 then the multifunction
F:(X,P)— (Y,Q1) is Ls.c.

Proof. Let V be a given @,-open set in Y. By the first hypothe-
sis, we have F~(V) C Py-Int(F~(Q1-int(Q2-cl(V))) [10, Theorem 2.6]. By
the interior condition, we have P;-Int(F~(Qy-int(Q2-cl(V))) C F~(V).
Hence we have P;-Int(F~(Q1-int(Q2-cl(V))) = F~(V'). Therefore we obtain
Pi-Int(F~(V)) = Pi-Int(Py-Int(F~(Q1-int(Q2-c(V))) = Pi-Int(F~(Q1-
int(Q2-cl(V))) = F~(V). So F~(V) is Pj-open in X. This shows that
F:(X,P)— (Y,@Q)is ls.c..

THEOREM 3.18. Let F : (X, P, P2) — (Y,Q1,Q2) be a multifunction. If
(Y,Q1,Q2) be a (1,2)-almost regular space and F is PiQq-l.w.c.w.r.t. Q2,
then F is Py@Q1-l.a.cw.r.t. Q5.

Proof. Let V be a (1,2)-regular open set of Y and z € F~(V); that
is F(z) NV # ¢. From the hypothesis, there is a @;-open set G of Y such
that F(z) NG # ¢ and Q2-cl(V) C V. Since F is PiQq-l.w.c.w.r.t. Q2, so
for any @1-open set G, there is a Pj-open set U of X such that z € U and
F(z)NQ2-cl(G) # ¢, for each z € U. This means that z € U ¢ F~ (V) and
shows that F'~ (V') is P;-open and by [10, Theorem 2.6] F' is P;@;-l.a.c.w.r.t.
Q2-

COROLLARY 3.19. Let F : (X, P, P2) — (Y,Q1,Q2) be a multifunction.
If (Y,Q1,Q2) be a (1,2)-almost regular space, then the notion of P1Q:-
Lw.c.w.r.t. Q3 coincides with the notion of P,Q+-la.c.w.r.t. Q7.

Proof. By the previous theorem, the proof is clear.

4. Some properties of the almost continuous multifunctions

THEOREM 4.1. If the multifunction F : (X, P, P;) — (Y,0Q1,Q2) is
Pi@Qq-u.a.cw.rt Qz, PoQo-La.c.w.r.t. Q1 and Q1-point -compact and X is
P, -H -closed with respect to Py, then'Y is Q1-H -closed with respect to Q.

THEOREM 4.2. If the multifunction F : (X, P, P2) — (Y,Q1,Q2) is a
PQq-v.a.cw.r.t. Qy and Q1-point -compact and (X, Py) is compact, then
Y is Q1-H-closed with respect to Q2.

Above theorems generalize Theorems 1, 2 in [15).

THEOREM 4.3. Let F : (X, P, P2) — (Y,Q1,Q2) be a multifunction
and Fg : (X, P, P;) —» (X XY, P1 X @1, P, x Q2) be a graph-multifunction
defined by Fg(z) = {¢} x F(z) of F. Then F is P\@Q1-v.a.c.w.r.t. Q [P1Q1-
La.cw.r.t. Qq] iff Fg is Pi(P; X Q1)-u.a.c.w.rt. Py X Q2 [Pi(P; x Q1)-
La.cw.r.t Py X Q2]
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Proof. (=) Let z € X and W be a (P, x Q1)-open set with Fg(z) =
{z} x F(z) C W. There exist subsets R € Pi(z) and § € @1 such that
Fg(z) C Rx § C W. Since F is Pi@Q;-u.a.c.w.r.t. @ at z, there exists
U € Py(z) such that F(U) C Q1-int(Q2-cl(S). On the other hand U x Q-
int(Q2~cl(5)) C Pz-Cl(U) X Q2-Cl(5) =Ux Ql-int(Qz-Cl(S)) C P2 X QZ'
(U x §) or Py X Qq-int(U x @Q1-int(Q2-cl(S)) C P X Q1-int(P2 X Qo-
(U x §)). As U x Qq-int(Q2-cl(S)) is a (P, X Q1)-open set containing
Fg(z), we obtain Fg(U) = U x F(U) C U X Q1-int(Q2-cl(S)) C P1 x Q1-
int(Py X Q2-cl(U x §)) C W. Consequently Fg is Pi(P X @1)-w.a.c.w.r.t.
P, xQ, at . Since z € X is arbitrary, Fg is Pj(Py x@1)-uw.a.c.w.r.t. P, X Q.

(«) Let z € X and V be a Q1-open set with F(z) C W. Then we have
Fg(z) = {z}x F(z) C X xV.Since X xV € Py x@Q and Fgis Pi(P; XQ1)-
u.a.c.w.r.t. Py X Q,, there exists U € Py(z) such that Fg(U) C P, X Q-
int( Py X Q2-c1(X X V)). On the other hand Py X Q1-int(P; X Q2-cl(X xV)) =
P1 X Ql-int([PQ-cl(X)] X [Qg-Cl(V)]) = P1 X Ql-int(X X [Qz-Cl(V)]) = [Pl-
int(X)] x [@1-int(Q2-cl(V))] = X X [@1-int(Q2-cl(V))]. Therefore we obtain
Fe(U) = UxF(U) C X x[Q1-int(Q2-cl(V'))]. Consequently we have F(U) C
[@1-int(Q2-cl(V))]). Thus F is Pi1Qi-u.a.c.w.r.t. Qo at z. Since z € X is
arbitrary, F is Py@;-u.a.c.w.r.t. Q.
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