

Mahide Küçük, Yalçın Küçük

FURTHER PROPERTIES OF ALMOST CONTINUOUS
MULTIFUNCTIONS DEFINED BETWEEN
BITOPOLOGICAL SPACES

1. Introduction

Kelly [6] introduced the notion of bitopological spaces as a natural generalization of topological spaces. Thereafter tremendous development in this direction has been noticed and a vast number of papers have appeared extending and generalizing many topological concepts to bitopological situations.

By bitopological space (X, P_1, P_2) we shall always mean a space X endowed with two topologies P_1 and P_2 . Throughout this paper spaces always mean bitopological spaces on which no pairwise separation axioms are assumed unless explicitly stated. The bitopological spaces (X, P_1, P_2) and (Y, Q_1, Q_2) will sometimes be abbreviated as X and Y , respectively.

Let S be a subset of a space X . The P_i -closure of S and the P_i -interior of S are denoted by $P_i\text{-cl}(S)$ and $P_i\text{-int}(S)$, respectively. A subset S of X is called an (i, j) -regular open set ((i, j) -regular closed) [(briefly (i, j) -ro, $((i, j)$ -rc)] iff $S = P_i\text{-int}(P_j\text{-cl}(S))$ [resp. $S = P_i\text{-cl}(P_j\text{-int}(S))$] [16]. It is easy to see that S is an (i, j) -ro set in X iff $X - S$ is a (i, j) -rc set, $i, j = 1, 2$ and $i \neq j$. A space (X, P_1, P_2) is called pairwise semi regular iff P_i has a base consisting of all (i, j) -ro sets of X , for $i, j = 1, 2$ and $i \neq j$. A space (X, P_1, P_2) is said to be (i, j) -almost regular iff for each P_i -open set V and $x \in V$, there is a P_i -open set U of X such that $x \in U \subseteq P_j\text{-cl}(U) \subseteq P_i\text{-int}(P_j\text{-cl}(V))$, $i, j = 1, 2$ and $i \neq j$ [16]. A space (X, P_1, P_2) is called $P_1 P_2$ -paracompact iff every cover W of X with P_1 -open sets has a

Key words and phrases: Almost continuity, weak continuity, semi continuity, $P_1 P_2$ -upper(lower) almost continuity with respect to Q_2 , $P_1 P_2$ -upper(lower)weak continuity with respect to Q_2 , multifunction, bitopological space.

1991 *Mathematics Subject Classification:* 54C60-54E55.

refinement V with P_1 -open sets which cover X and V is P_2 -locally finite, i.e. for each point x , there is a P_2 -open neighbourhood U of x intersecting at most finitely many elements of V .

A point x in X will be called an (i, j) - δ -closure point of a subset S of X iff $S \cap U \neq \emptyset$ for any (i, j) -regular open set U containing x , where $i, j = 1, 2$ and $i \neq j$. The set of all (i, j) - δ -closure points of S is called (i, j) - δ -closure of S and it is denoted by (i, j) - δ -cl(S). A subset S of X is called (i, j) - δ -closed if $S = (i, j)$ - δ -cl(S). A point x in X will be called an (i, j) - δ -interior point of a subset S of X iff there exists a (i, j) -regular open set U containing x and contained in S . The set of all (i, j) - δ -interior points of S is called (i, j) - δ -interior of S and it is denoted by (i, j) - δ -int(S). A subset S of X is called (i, j) - δ -open iff $S = (i, j)$ - δ -int(S). Let S be a subset of X , U is a (i, j) - δ -neighbourhood of S which intersects S , if there exists a (i, j) - δ -open subset V of X such that $V \subset U$ and $V \cap S \neq \emptyset$.

The family of all (i, j) - δ -open [(i, j) - δ -closed] and (i, j) -regular open [(i, j) -regular closed] sets of X are denoted by (i, j) - δ -O(X) [(i, j) - δ -C(X)] and (i, j) -RO(X) [(i, j) -RC(X)], respectively, [1].

The net $(x_\alpha)_{\alpha \in I}$ is $(1, 2)$ - δ -convergent to x_0 , if for each $(1, 2)$ -regular open set U containing x_0 , there exists a $\alpha_0 \in I$ such that $\alpha \geq \alpha_0 \Rightarrow x_\alpha \in U$.

The concept of almost continuous functions between topological spaces were first introduced and studied by Singal and Singal [17]. The same idea was further developed by many authors, e.g., we refer to the papers of Noiri [9], Herrington [5] and Long and Carnahan [5]. Also, there has appeared a large number of papers which deal with almost continuous functions in relation to other types of functions. The notion of almost continuous multifunctions was introduced and investigated by Popa [11, 13, 15], in which he generalized the definition and properties of almost continuous functions by introducing the notion of upper and lower almost continuous multifunctions. Boshe and Sinha [3] extended the idea of almost continuous single-valued functions to bitopological space. Mukherjee and Ganguly [10] also extended the idea of almost continuous multifunctions to bitopological space.

A multifunction F of a set X into Y is a correspondence such that $F(x)$ is a nonempty subset of Y , for each $x \in X$, that is it is a function $F : X \rightarrow P(Y) \setminus \{\emptyset\}$, where $P(Y)$ is the power set of Y . We will denote such a multifunction by $F : X \rightarrow Y$. For a multifunction F , the upper and lower inverse of a set B of Y will be denoted by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and $F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}$ [2]. A multifunction $F : (X, \tau) \rightarrow (Y, \omega)$ is upper semi continuous (in short, u.s.c.) at a point $x_0 \in X$ if for any open set $V \subseteq Y$ such that $F(x_0) \subseteq V$, there exists an open set $U \subseteq X$ containing x_0 such that $F(U) \subseteq V$. A multifunction $F : (X, \tau) \rightarrow (Y, \omega)$ is lower semi-continuous

(in short, l.s.c.) at a point $x_0 \in X$ if for any open set $V \subseteq Y$ such that $F(x_0) \cap V \neq \emptyset$, there exists an open set $U \subseteq X$ containing x_0 such that $U \subseteq F^-(V)$ [6]. A multifunction $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ is $P_1 Q_1$ -upper almost continuous with respect to Q_2 (in short, $P_1 Q_1$ -u.a.c.w.r.t. Q_2) at a point $x_0 \in X$ if for any Q_1 -open set $V \subseteq Y$ such that $F(x_0) \subseteq V$, there exists an P_1 -open set $U \subseteq X$ containing x_0 such that $F(U) \subseteq Q_1$ -int(Q_2 -cl(V)). A multifunction $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ is $P_1 Q_1$ -lower almost continuous with respect to Q_2 (in short, $P_1 Q_1$ -l.a.c.w.r.t. Q_2) at a point $x_0 \in X$ if for any Q_1 -open set $V \subseteq Y$ such that $F(x_0) \cap V \neq \emptyset$, there exists a P_1 -open set $U \subseteq X$ containing x_0 such that $U \subseteq F^-(Q_1$ -int(Q_2 -cl(V))) [10]. A multifunction $F : X \rightarrow Y$ is $P_1 Q_1$ -upper weakly continuous with respect to Q_2 (in short, $P_1 Q_1$ -u.w.c.w.r.t. Q_2) at a point $x_0 \in X$ if for any Q_1 -open set $V \subseteq Y$ such that $F(x_0) \subseteq V$, there exists a P_1 -open set $U \subseteq X$ containing x_0 such that $F(U) \subseteq Q_2$ -cl(V). A multifunction $F : X \rightarrow Y$ is $P_1 Q_1$ -lower weakly continuous with respect to Q_2 (in short, $P_1 Q_1$ -l.w.c.w.r.t. Q_2) at a point $x_0 \in X$ if for any Q_1 -open set $V \subseteq Y$ such that $F(x_0) \cap V \neq \emptyset$, there exists a P_1 -open set $U \subseteq X$ containing x_0 such that $U \subseteq F^-(Q_2$ -cl(V))) [12].

2. Some characterisations of the lower almost continuous multifunctions between bitopological spaces

THEOREM 2.1. *Let (X, P_1, P_2) and (Y, Q_1, Q_2) be bitopological spaces. For any multifunction $F : X \rightarrow Y$ the following are equivalent:*

- (1) *F is $P_1 Q_1$ -l.a.c.w.r.t. Q_2 at a point $x_0 \in X$;*
- (2) *For each $y \in F(x_0)$ and for every net $(x_\alpha)_{\alpha \in I}$ convergent to x_0 (with respect to P_1), there exists a subnet $(z_\beta)_{\beta \in J}$ of the net $(x_\alpha)_{\alpha \in I}$ and a net $(y_\beta)_{\beta \in J}$ in Y so that $(y_\beta)_{\beta \in J}$ is $(1, 2) - \delta$ -convergent to y and $y_\beta \in F(z_\beta)$;*
- (3) *$x_0 \in P_1$ -cl(A) $\Rightarrow F(x_0) \subseteq (1, 2) - \delta$ -cl($F(A)$), for each $A \subset X$;*
- (4) *$x_0 \in P_1$ -cl($F^+(N)$) $\Rightarrow x_0 \in F^+((1, 2) - \delta$ -cl(N)), for each $N \subset Y$.*

Proof. (1) \Rightarrow (2): Suppose that F is $P_1 Q_1$ -l.a.c.w.r.t. Q_2 at a point $x_0 \in X$. Let $(x_\alpha)_{\alpha \in I}$ be a net convergent to x_0 and $y \in F(x_0)$. If $V \in (1, 2)$ -RO(Y, y) where $(1, 2)$ -RO(Y, y) denote the family of all $(1, 2)$ -regular open sets which contains y , then $F(x_0) \cap V \neq \emptyset$. Since F is $P_1 Q_1$ -l.a.c.w.r.t. Q_2 at a point $x_0 \in X$, there exists a P_1 -open set U containing x_0 such that $F(z) \cap (Q_1$ -int(Q_2 -cl(V))) $\neq \emptyset$, $z \in U$ or $F(z) \cap V \neq \emptyset$, $z \in U$. Since the net $(x_\alpha)_{\alpha \in I}$ is convergent to x_0 , for this U , there exists a $\alpha_0 \in I$ such that $\alpha > \alpha_0 \Rightarrow x_\alpha \in U$. Therefore we have the implication $\alpha > \alpha_0 \Rightarrow F(x_\alpha) \cap V \neq \emptyset$. For any $V \in (1, 2)$ -RO(Y, y), define $I_V = \{\alpha_0 \in I \mid \alpha > \alpha_0 \Rightarrow F(x_\alpha) \cap V \neq \emptyset\}$, $J = U\{I_V \times V \mid V \in (1, 2)$ -RO(Y, y) $\} = \{(\alpha, V) \mid \alpha \in I_V, V \in (1, 2)$ -RO(Y, y) $\}$ and introduce an order on J as follows; $(\alpha^*, V^*) > (\alpha, V) \Leftrightarrow \alpha^* >$

α and $V^* \subset V$. This is a direction on J . Define $\Omega : J \rightarrow I$ by $\Omega[(\beta, V)] = \beta$. Then Ω is increasing and cofinal. So Ω defines a subnet $(x_{\Omega[(\beta, V)]})_{(\beta, V) \in J}$ of $(x_\alpha)_{\alpha \in I}$. We denote the subnet $(x_{\Omega[(\beta, V)]})_{(\beta, V) \in J}$ by $(z_\beta)_{(\beta, V) \in J}$. On the other hand for any $(\beta^*, V^*) \in J$, $(\beta, V) > (\beta^*, V^*) \Rightarrow F(z_\beta) \cap V \neq \emptyset$. Pick $y_\beta \in F(z_\beta) \cap V$. Then the net $(y_\beta)_{(\beta, V) \in J}$ is $(1, 2)$ - δ -convergent to y . To see this notice that for any $V_0 \in (1, 2)$ -RO(Y, y) there exists a $\alpha_0 \in I$ such that $(\alpha_0, V_0) \in J$ and $y_{\alpha_0} \in V_0$. If $(\beta, V) > (\beta_0, V_0)$ then $\beta > \beta_0$ and $V \subset V_0$. Therefore $y_\beta \in F(z_\beta) \cap V \subset F(z_\beta) \cap V_0$, so $y_\beta \in V_0$. Thus $(y_\beta)_{(\beta, V) \in J}$ is $(1, 2)$ - δ -convergent to y .

(2) \Rightarrow (3): Let $x_0 \in P_1\text{-cl}(A)$, then there exists a net $(x_\alpha)_{\alpha \in I}$ convergent to x_0 . Let $y \in F(x_0)$. By the hypothesis, there exists a subnet $(z_\beta)_{\beta \in J}$ of $(x_\alpha)_{\alpha \in I}$ and a net $(y_\beta)_{\beta \in J}$ in Y so that $(y_\beta)_{\beta \in J}$ is $(1, 2)$ - δ -convergent to y and $y_\beta \in F(z_\beta)$. This implies that $y \in (1, 2)$ - δ -cl($F(A)$) and so $F(x_0) \subset (1, 2)$ - δ -cl($F(A)$).

(3) \Rightarrow (4): For any $N \subset Y$ and $x_0 \in P_1\text{-cl}(F^+(N))$. Replacing A by $F^+(N)$ in (3), we get $F(x_0) \subset (1, 2)$ - δ -cl($F(F^+(N))$) $\subset (1, 2)$ - δ -cl(N). So $x_0 \in F^+((1, 2)$ - δ -cl(N)).

(4) \Rightarrow (1): Let (1) be not true. Then, there is a Q_1 -open set G in Y with $F(x_0) \cap G \neq \emptyset$ such that for each $U \in P_1(x_0)$, where $P_1(x_0)$ is the family of P_1 -open sets containing x_0 , there is $x_U \in U$ for which $F(x_U) \cap (Q_1\text{-int}(Q_2\text{-cl}(G))) = \emptyset$. We set $M = \{x_U \mid U \in P_1(x_0)\}$. Then we have $x_0 \in P_1\text{-cl}(M) \subset P_1\text{-cl}(F^+(F(M)))$. From (4), we obtain $x_0 \in (1, 2)$ - δ -cl($F^+(F(M))$). So $F(x_0) \subset (1, 2)$ - δ -cl($F(M)$). On the other hand, since $F(x_0) \cap G \neq \emptyset$, there exists a point z in Y such that $z \in F(x_0) \cap G$, $z \in G \in Q_1$. The fact that $Q_1\text{-int}(Q_2\text{-cl}(G))$ is $(1, 2)$ -regular open set in Y and $F(M) \cap (Q_1\text{-int}(Q_2\text{-cl}(G))) = \emptyset$ implies $z \notin (1, 2)$ - δ -cl($F(M)$). This contradicts with $F(x_0) \subset (1, 2)$ - δ -cl($F(M)$) and shows that (1) is true.

THEOREM 2.2. *Let (X, P_1, P_2) and (Y, Q_1, Q_2) be bitopological spaces. For any multifunction $F : X \rightarrow Y$ the following statements are equivalent:*

- (1) *F is P_1Q_1 -l.a.c.w.r.t. Q_2 .*
- (2) *For each $x \in X$ and for each $(1, 2)$ - δ -neighbourhood V which intersects $F(x)$, $F^-(V)$ is a P_1 -neighbourhood of x .*
- (3) *For each $x \in X$ and for each $(1, 2)$ - δ -neighbourhood V which intersects $F(x)$, there is $U \in P_1(x)$ such that, $F(z) \cap V \neq \emptyset$, for each $z \in U$.*
- (4) *$F(P_1\text{-cl}(A)) \subset (1, 2)$ - δ -cl($F(A)$), for each $A \subset X$.*
- (5) *$P_1\text{-cl}(F^+(B)) \subset F^+((1, 2)$ - δ -cl(B)), for each $B \subset Y$.*
- (6) *For each $(1, 2)$ - δ -closed subset B of Y , $F^+(B)$ is a P_1 -closed subset of X .*

(7) For each $(1, 2)$ - δ -open subset B of Y , $F^+(B)$ is a P_1 -open subset of X .

(8) $F^-((1, 2)\text{-}\delta\text{-int}(B)) \subset P_1\text{-int}(F^-(B))$, for each $B \subset Y$.

P r o o f. (1) \Rightarrow (2): Let $x \in X$ and $V \subset Y$ be a $(1, 2)$ - δ -neighbourhood V which intersects $F(x)$. Then there is a $(1, 2)$ - δ -open set G contained in V which intersects $F(x)$ i.e. $G \subset V$ and $F(x) \cap G \neq \emptyset$. There exists $y \in Y$ such that $y \in F(x) \cap G$, so $y \in G$. Since G is $(1, 2)$ - δ -open set, there is a $(1, 2)$ -regular open set T containing y such that $y \in T \subset G$, but this implies that $F(x) \cap T \neq \emptyset$. According to the Theorem 2.4 [8], there is a P_1 -open set U containing x so that $F(z) \cap T \neq \emptyset$, for each $z \in U$, so $U \subset F^-(T)$. Since $T \subset G \subset V$, then we have $x \in U \subset F^-(T) \subset F^-(G) \subset F^-(V)$. Thus $F^-(V)$ is a P_1 -neighbourhood of x .

(2) \Rightarrow (3): Let $x \in X$ and $V \subset Y$ be a $(1, 2)$ - δ -neighbourhood V which intersects $F(x)$. According to the hypothesis, $U = F^-(V)$ is a P_1 -neighbourhood of x and $F(z) \cap V \neq \emptyset$, for each $z \in U$.

(3) \Rightarrow (4): Let $y \in F(P_1\text{-cl}(A))$. Then there exists a point x in $P_1\text{-cl}(A)$ such that $y \in F(x)$. Let $G \in (1, 2)\text{-RO}(Y, y)$. Then we have $F(x) \cap G \neq \emptyset$. The fact that a set G is $(1, 2)$ -RO implies that G is $(1, 2)$ - δ -open set. By the hypothesis, there exists a $U \in P_1(x)$ such that $U \subset F^-(G)$. On the other hand since $x \in P_1\text{-cl}(A)$, we have $U \cap A \neq \emptyset$. So there exists a point z in X such that $z \in U \cap A$. Therefore we obtain $F(z) \cap G \neq \emptyset$ and $F(z) \subset F(A)$. Finally, we have $F(A) \cap G \neq \emptyset$, which implies $y \in (1, 2)\text{-}\delta\text{-cl}(F(A))$. Since $y \in F(P_1\text{-cl}(A))$ is arbitrary, we get $F(P_1\text{-cl}(A)) \subset (1, 2)\text{-}\delta\text{-cl}(F(A))$.

(4) \Rightarrow (5): Let B be any subset of Y . So we have $F^+(B) \subset X$. By (4), we obtain $F(P_1\text{-cl}(F^+(B))) \subset (1, 2)\text{-}\delta\text{-cl}(F(F^+(B))) \subset (1, 2)\text{-}\delta\text{-cl}(B)$. Then we have $P_1\text{-cl}(F^+(B)) \subset F^+((1, 2)\text{-}\delta\text{-cl}(F(F^+(B)))) \subset F^+((1, 2)\text{-}\delta\text{-cl}(B))$.

(5) \Rightarrow (6): Let B be any $(1, 2)$ - δ -closed subset of Y , so $B = (1, 2)\text{-}\delta\text{-cl}(B)$. According to the hypothesis, $P_1\text{-cl}(F^+(B)) \subset F^+((1, 2)\text{-}\delta\text{-cl}(B)) = F^+(B)$. Thus $F^+(B)$ is P_1 -closed subset of X .

(6) \Rightarrow (7): Let B be any $(1, 2)$ - δ -open subset of Y . So $Y \setminus B$ is $(1, 2)$ - δ -closed subset of Y . By (6), $F^+(Y \setminus B) = Y \setminus F^-(B)$ is P_1 -closed subset of X . Thus $F^-(B)$ is P_1 -open subset of X .

(7) \Rightarrow (8): For any $B \subset Y$, $(1, 2)\text{-}\delta\text{-int}(B)$ is $(1, 2)$ - δ -open subset of Y . By (7), $F^-((1, 2)\text{-}\delta\text{-int}(B))$ is P_1 -open subset of X . Then we obtain $F^-((1, 2)\text{-}\delta\text{-int}(B)) \subset P_1\text{-int}(F^-(B))$.

(8) \Rightarrow (1): Let G be any $(1, 2)$ -regular open subset of Y . Then G is $(1, 2)$ - δ -open subset of Y and $G = (1, 2)\text{-}\delta\text{-int}(G)$. By (8), we have $F^-(G) \subset P_1\text{-int}(F^-(G))$, which shows that $F^-(G)$ is P_1 -open subset of X . According to Theorem 2.6 in [10], F is P_1Q_1 -l.a.c.w.r.t. Q_2 .

Theorems 2.1 and 2.2 generalize Theorems 4,5 in [15].

3. Weak continuity and almost continuity of the multifunction

THEOREM 3.1. *Let (X, P_1, P_2) and (Y, Q_1, Q_2) be bitopological spaces. If a multifunction $F : X \rightarrow Y$ is $P_1 Q_1$ -u.w.c.w.r.t. Q_2 and $F : (X, P_1) \rightarrow (Y, Q_1)$ open then F is $P_1 Q_1$ -u.a.c.w.r.t. Q_2 .*

Proof. Suppose that F is $P_1 Q_1$ -u.w.c.w.r.t. Q_2 at $x \in X$. Then for any Q_1 -open subset V of Y with $F(x) \subset V$, there is a P_1 -open set U containing x of X such that $F(U) \subset Q_2\text{-cl}(V)$. As F is $P_1 Q_1$ -open, $F(U)$ is Q_1 -open, which implies $F(U) \subseteq Q_1\text{-int}(Q_2\text{-cl}(V))$.

Above Theorem generalizes Theorem 2.1 in [13].

COROLLARY 3.2. *Let (X, P_1, P_2) and (Y, Q_1, Q_2) be bitopological spaces. If a multifunction $F : X \rightarrow Y$ is $P_1 Q_1$ -u.w.c.w.r.t. Q_2 and $F : X \rightarrow (Y, Q_1)$ point-open then F is $P_1 Q_1$ -u.a.c.w.r.t. Q_2 .*

Proof. By the previous theorem, the proof is clear.

THEOREM 3.3. *Let (Y, Q_1, Q_2) be a $(1, 2)$ -almost regular, $Q_1 Q_2$ -paracompact space and $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ be a point- P_1 -closed, then the notion $P_1 Q_1$ -u.w.c.w.r.t. Q_2 coincides with the notion $P_1 Q_1$ -u.a.c.w.r.t. Q_2 .*

Proof. (\Rightarrow) Let V be a $(1, 2)$ -regular open set in Y and $x \in F^+(V)$, namely $F^+(V) \subset X$. Since Y is $(1, 2)$ -almost regular, for each $y \in F(x)$, there is a Q_1 -open set V_y containing y such that $V_y \subset Q_2\text{-cl}(V_y) \subset Q_1\text{-int}(Q_2\text{-cl}(V)) = V$. Thus we have $F(x) \subset \bigcup\{V_y \mid y \in F(x)\} \subset \bigcup\{Q_2\text{-cl}(V_y) \mid y \in F(x)\} \subset V$. Therefore the family $\{Y \setminus F(x)\} \cup \{V_y \mid y \in F(x)\}$ is a Q_1 -open cover of Y . Since Y is $Q_1 Q_2$ -paracompact, there exists a point finite Q_2 -open refinement G of this cover. So for each $y \in F(x)$, there exists a $G_y \in G$ such that $G_y \subset V_y$ and we have $F(x) \subset \bigcup\{G_y \mid y \in F(x)\} \subset \bigcup\{V_y \mid y \in F(x)\} \subset \bigcup\{Q_2\text{-cl}(V_y) \mid y \in F(x)\}$. If we set $G = \bigcup\{G_y \mid y \in F(x)\}$, then $Q_2\text{-cl}(G) = \bigcup\{Q_2\text{-cl}(G_y) \mid y \in F(x)\}$, so $F(x) \subset G \subset Q_2\text{-cl}(G) \subset V$. Since F is $P_1 Q_1$ -u.w.c.w.r.t. Q_2 at x , there is a P_1 -open set U containing x such that $F(U) \subset Q_2\text{-cl}(V) \subset V$. Then $x \in U \subset F^+(V)$. So $F^+(V)$ is P_1 -open set in X and F is $P_1 Q_1$ -u.a.c.w.r.t. Q_2 at x [8, Theorem 2.8].

(\Leftarrow) By the definitions of continuities, the proof is clear.

This Theorem generalize Theorem 2.3 in [14].

The following example shows that the relative continuity ($P_1 Q_1$ -u.s.c. w.r.t. Q_2) of $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ does not imply the upper semi continuity (u.s.c.) of $F : (X, P_1) \rightarrow (Y, Q_1)$. The reverse implication is always true.

EXAMPLE 3.4. Let $X = \mathbb{R}$ be a bitopological space with the usual *topology* P_1 and the cofinal topology P_2 . Let $Y = \{a, b, c\}$ be a bitopological space with $Q_1 = Q_2$ =discrete topology. A multifunction $F : (X, P_1, P_2) \rightarrow$

(Y, Q_1, Q_2) defined by

$$F(x) = \begin{cases} \{a\}; & x \in (-\infty, 0] \\ \{b, c\}; & x \in (0, \infty) \end{cases}$$

is relatively $P_1 Q_1$ -u.s.c.w.r.t. Q_2 , but not $P_1 Q_1$ -u.a.c.w.r.t. Q_2 . In addition $F : (X, P_1) \rightarrow (Y, Q_1)$ is not u.s.c. To show this, take any $x \in (-\infty, 0]$. Then $F(x) = \{a\}$ and $F^+(\{a\}) = F^+(Q_1\text{-Int}(Q_2\text{-Cl}(\{a\}))) = (-\infty, 0] = F^+(Q_1\text{-Int}(Q_2\text{-Cl}(\{a\}))) \cap (-\infty, 1)$. We also take $x \in (0, \infty)$, then $F(x) = \{b, c\}$ and $F^+(\{b, c\}) = F^+(Q_1\text{-Int}(Q_2\text{-Cl}(\{b, c\}))) = (0, \infty) = F^+(Q_1\text{-Int}(Q_2\text{-Cl}(\{b, c\}))) \cap (-1, \infty)$. F is not Q_1 -u.w.c.w.r.t. Q_2 at $x = 0$. $F(0) = \{a\} \subset \{a\} \in Q_1$ but for all $\varepsilon > 0$ $F((-\varepsilon, \varepsilon)) = Y \not\subset Q_1\text{-Int}(Q_2\text{-Cl}(\{a\})) = \{a\}$. It can be easily seen that $F : (X, P_1) \rightarrow (Y, Q_1)$ is not u.s.c. at $x = 0$.

DEFINITION 3.5. A multifunction $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ is relatively $P_1 Q_1$ -u.s.c.w.r.t. Q_2 at x iff given a $V \in Q_1$ with $F(x) \subset V$, the set $F^+(V)$ is an open set in the subspace $(F^+(Q_1\text{-int}(Q_2\text{-cl}(V))), (P_1)F^+(Q_1\text{-int}(Q_2\text{-cl}(V))))$ [4].

THEOREM 3.6. If $F : (X, P_1) \rightarrow (Y, Q_1)$ is u.s.c., then $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ is relatively $P_1 Q_1$ -u.s.c.w.r.t. Q_2 .

Proof. Let $x \in X, V \in Q_1$ with $F(x) \subset V$ and $F : (X, P_1) \rightarrow (Y, Q_1)$ be a u.s.c. Then $F^+(V) \in P_1$. Since $F^+(V) \subset F^+(Q_1\text{-int}(Q_2\text{-cl}(V)))$ and $F^+(V) \cap F^+(Q_1\text{-int}(Q_2\text{-cl}(V))) = F^+(V)$. $F^+(V)$ is an open set in the subspace $F^+(Q_1\text{-int}(Q_2\text{-cl}(V)))$. So F is relatively $P_1 Q_1$ -u.s.c.w.r.t. Q_2 .

THEOREM 3.7. A multifunction $F : (X, P_1) \rightarrow (Y, Q_1)$ is u.s.c iff $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ is relatively $P_1 Q_1$ -u.s.c.w.r.t. Q_2 and $P_1 Q_1$ -u.a.c.w.r.t. Q_2 .

Proof. (\Rightarrow) This part of the theorem is clear.

(\Leftarrow) Let $V \in Q_1$. Since F is relatively $P_1 Q_1$ -u.s.c.w.r.t. Q_2 , then $F^+(V)$ is an open set in the subspace $F^+(Q_1\text{-int}(Q_2\text{-cl}(V)))$. So we have $W \cap F^+(Q_1\text{-int}(Q_2\text{-cl}(V))) = F^+(V)$, where W is P_1 -open set in X . To prove the openness of $F^+(V)$ in X , let $x \in F^+(V)$, what gives $F(x) \subset V$ and $x \in W$. Since F is $P_1 Q_1$ -u.a.c.w.r.t. Q_2 at x there exists an P_1 -open set U in X containing x such that $F(U) \subset Q_1\text{-int}(Q_2\text{-cl}(V))$. Since $x \in W$ and W is P_1 -open set in X , we may assume that $U \subset W$. It now follows that $x \in U \subset W \cap F^+(Q_1\text{-int}(Q_2\text{-cl}(V))) = F^+(V)$. This shows that $F^+(V)$ is P_1 -open in X . Consequently $F : (X, P_1) \rightarrow (Y, Q_1)$ is u.s.c..

DEFINITION 3.8. A multifunction $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ has $P_1 Q_1$ -upper interior condition with respect to Q_2 (briefly $P_1 Q_1$ -u.i.c.w.r.t. Q_2) iff for each Q_1 -open set V in Y , a multifunction F satisfies $P_1\text{-Int}(F^+(Q_1\text{-int}(Q_2\text{-cl}(V)))) \subset F^+(V)$ [5].

The following example gives that the upper semi continuity of $F : (X, P_1) \rightarrow (Y, Q_1)$ does not imply the upper interior condition of $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$. By considering 3.4. Example, it is easily seen that the reverse implication is not true.

EXAMPLE 3.9. Let $X = \mathbb{N}$ be a bitopological space with cofinal topology P_1 and discrete topology. Let $Y = \mathbb{N}$ be a bitopological space with $Q_1 = Q_2$ =cofinal topology. A multifunction $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ defined by,

$$F(x) = \begin{cases} \{1, 2, 3\}; & x = 1 \\ \{x\}; & x \neq 1. \end{cases}$$

F is surely u.s.c. But if V is any proper nonempty Q_1 -open set in Y , then $Q_1\text{-Int}(Q_2\text{-Cl}(V)) = Y$ and so $\text{Int } F^+(Q_1\text{-Int}(Q_2\text{-Cl}(V))) = X$ while $F^+(V) = V$. Hence $F^+(Q_1\text{-Int}(Q_2\text{-Cl}(V))) \not\subset F^+(V)$. So F is not P_1Q_1 -u.i.c.w.r.t. Q_2 .

THEOREM 3.10. *If a multifunction $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ is P_1Q_1 -u.a.c.w.r.t. Q_2 and F has a P_1Q_1 -u.i.c.w.r.t. Q_2 then the multifunction $F : (X, P_1) \rightarrow (Y, Q_1)$ is u.s.c.*

Proof. Let V be a given Q_1 -open set in Y . By the first hypothesis, we have $F^+(V) \subset P_1\text{-Int}(F^+(Q_1\text{-int}(Q_2\text{-cl}(V))))$ [10, Theorem 2.8]. By the interior condition, we have $P_1\text{-Int}(F^+(Q_1\text{-int}(Q_2\text{-cl}(V)))) \subset F^+(V)$. Hence we have $P_1\text{-Int}(F^+(Q_1\text{-int}(Q_2\text{-cl}(V)))) = F^+(V)$. Therefore we obtain $P_1\text{-Int}(F^+(V)) = P_1\text{-Int}(P_1\text{-Int}(F^+(Q_1\text{-int}(Q_2\text{-cl}(V)))) = P_1\text{-Int}(F^+(Q_1\text{-int}(Q_2\text{-cl}(V)))) = F^+(V)$. So $F^+(V)$ is P_1 -open in X . This shows that $F : (X, P_1) \rightarrow (Y, Q_1)$ is u.s.c.

THEOREM 3.11. *Let (X, P_1, P_2) be a bitopological space and (Y, Q_1, Q_2) be a pairwise normal bitopological space. If for each pair of different points x_1, x_2 in X , there is a multifunction $F : X \rightarrow Y$ which has the following properties:*

- (1) F is Q_i -point closed ($i = 1, 2$),
- (2) F is P_1Q_1 -u.w.c.w.r.t. Q_2 at x_1 ,
- (3) F is P_2Q_2 -u.a.c.w.r.t. Q_1 at x_2 and
- (4) $F(x_1) \cap F(x_2) = \emptyset$, then (X, P_1, P_2) is a pairwise Hausdorff space.

Proof. Let x_1, x_2 be different points in X . By the hypothesis, for these points, there is a multifunction F such that $F(x_1)$ is Q_2 -closed, $F(x_2)$ is Q_1 -Closed and $F(x_1) \cap F(x_2) = \emptyset$. Since (Y, Q_1, Q_2) is pairwise normal, there are two sets $V_1 \in Q_1$, $V_2 \in Q_2$ such that $F(x_1) \subset V_1$, $F(x_2) \subset V_2$ and $V_1 \cap V_2 = \emptyset$. So we have $Q_1\text{-int}(Q_2\text{-cl}(V_1)) \cap Q_2\text{-int}(Q_1\text{-cl}(V_2)) = \emptyset$, which implies $Q_2\text{-cl}(V_1) \cap Q_2\text{-int}(Q_1\text{-cl}(V_2)) = \emptyset$. Since F is P_1Q_1 -u.w.c.w.r.t. Q_2 at x_1 and F is P_1Q_1 -u.a.c.w.r.t. Q_2 at x_2 , there are sets $U_1 \in P_1(x_1)$ and

$U_2 \in P_2(x_2)$ such that $F(U_1) \subset Q_2\text{-cl}(V_1)$ and $F(U_2) \subset Q_2\text{-int}(Q_1\text{-cl}(V_2))$. It follows that $F(U_1) \cap F(U_2) = \phi$, what implies that $U_1 \cap U_2 = \phi$. The latter means that is X is a pairwise Hausdorff space.

THEOREM 3.12. *Let (X, P_1, P_2) and (Y, Q_1, Q_2) be bitopological spaces. If multifunction $F : X \rightarrow Y$ is P_1Q_1 -l.w.c.w.r.t. Q_2 and $F : X \rightarrow (Y, Q_1)$ point-open then F is P_1Q_1 -l.s.c.*

Proof. Suppose that F is P_1Q_1 -l.w.c.w.r.t. Q_2 at $x \in X$. Then for any Q_1 -open subset V of Y with $F(x) \cap V \neq \phi$, there is a P_1 -open set U containing x such that $F(z) \cap Q_2\text{-cl}(V) \neq \phi$, for each $z \in U$. Since $F(z)$ is Q_1 -open, we see that $F(z) \cap V \neq \phi$, for each $z \in U$. Consequently F is P_1Q_1 -l.s.c.

DEFINITION 3.13. A multifunction $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ is relatively P_1Q_1 -l.s.c.w.r.t. Q_2 at x iff given a $V \in Q_1$ with $F(x) \cap V \neq \phi$, the set $F^-(V)$ is an open set in the subspace $(F^-(Q_1\text{-int}(Q_2\text{-cl}(V))), (P_1)_{F^-(Q_1\text{-int}(Q_2\text{-cl}(V)))})$ [4].

THEOREM 3.14. *If $F : (X, P_1) \rightarrow (Y, Q_1)$ is l.s.c., then $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ is relatively P_1Q_1 -l.s.c.w.r.t. Q_2 .*

Proof. Let $x \in X, V \in Q_1$ with $F(x) \cap V \neq \phi$ and $F : (X, P_1) \rightarrow (Y, Q_1)$ be a l.s.c. Then $F^-(V) \in P_1$. Since $F^-(V) \subset F^-(Q_1\text{-int}(Q_2\text{-cl}(V)))$ and $F^-(V) \cap F^-(Q_1\text{-int}(Q_2\text{-cl}(V))) = F^-(V)$, $F^-(V)$ is an open set in the subspace $F^-(Q_1\text{-int}(Q_2\text{-cl}(V)))$. So F is relatively P_1Q_1 -l.s.c.w.r.t. Q_2 .

THEOREM 3.15. *A multifunction $F : (X, P_1) \rightarrow (Y, Q_1)$ is l.s.c iff $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ is relatively P_1Q_1 -l.s.c.w.r.t. Q_2 and P_1Q_1 -l.a.c.w.r.t. Q_2 .*

Proof. (\Rightarrow) This part of the theorem is clear;

(\Leftarrow) Let $V \in Q_1$. Since F is relatively P_1Q_1 -l.s.c.w.r.t. Q_2 , $F^-(V)$ is an open set in the subspace $F^-(Q_1\text{-int}(Q_2\text{-cl}(V)))$. So we have $W \cap F^-(Q_1\text{-int}(Q_2\text{-cl}(V))) = F^-(V)$, where W is P_1 -open set in X . To prove the openness of $F^-(V)$ in X , let $x \in F^-(V)$, so $F(x) \cap V \neq \phi$ and $x \in W$. Since F is P_1Q_1 -l.a.c.w.r.t. Q_2 at x there exists an P_1 -open set U in X containing x such that $F(x) \cap Q_1\text{-int}(Q_2\text{-cl}(V)) \neq \phi$, for each $x \in U$. Since $x \in W$ and W is P_1 -open set in X , we may assume $U \subset W$. It now follows that $x \in U \subset W \cap F^-(Q_1\text{-int}(Q_2\text{-cl}(V))) = F^-(V)$. This shows that $F^-(V)$ is P_1 -open in X . Consequently $F : (X, P_1) \rightarrow (Y, Q_1)$ is l.s.c.

DEFINITION 3.16. A multifunction $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ has P_1Q_1 -lower interior condition with respect to Q_2 (briefly P_1Q_1 -l.i.c.w.r.t. Q_2) iff for each Q_1 -open set V in Y , the multifunction F satisfies $P_1\text{-Int}(F^-(Q_1\text{-int}(Q_2\text{-cl}(V)))) \subset F^-(V)$ [5].

THEOREM 3.17. *If a multifunction $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ is $P_1 Q_1$ -l.a.c.w.r.t. Q_2 and F has a $P_1 Q_1$ -l.i.c.w.r.t. Q_2 then the multifunction $F : (X, P_1) \rightarrow (Y, Q_1)$ is l.s.c.*

Proof. Let V be a given Q_1 -open set in Y . By the first hypothesis, we have $F^-(V) \subset P_1\text{-Int}(F^-(Q_1\text{-int}(Q_2\text{-cl}(V))))$ [10, Theorem 2.6]. By the interior condition, we have $P_1\text{-Int}(F^-(Q_1\text{-int}(Q_2\text{-cl}(V)))) \subset F^-(V)$. Hence we have $P_1\text{-Int}(F^-(Q_1\text{-int}(Q_2\text{-cl}(V)))) = F^-(V)$. Therefore we obtain $P_1\text{-Int}(F^-(V)) = P_1\text{-Int}(P_1\text{-Int}(F^-(Q_1\text{-int}(Q_2\text{-cl}(V)))) = P_1\text{-Int}(F^-(Q_1\text{-int}(Q_2\text{-cl}(V)))) = F^-(V)$. So $F^-(V)$ is P_1 -open in X . This shows that $F : (X, P_1) \rightarrow (Y, Q_1)$ is l.s.c..

THEOREM 3.18. *Let $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ be a multifunction. If (Y, Q_1, Q_2) be a $(1, 2)$ -almost regular space and F is $P_1 Q_1$ -l.w.c.w.r.t. Q_2 , then F is $P_1 Q_1$ -l.a.c.w.r.t. Q_2 .*

Proof. Let V be a $(1, 2)$ -regular open set of Y and $x \in F^-(V)$; that is $F(x) \cap V \neq \emptyset$. From the hypothesis, there is a Q_1 -open set G of Y such that $F(x) \cap G \neq \emptyset$ and $Q_2\text{-cl}(V) \subset G$. Since F is $P_1 Q_1$ -l.w.c.w.r.t. Q_2 , so for any Q_1 -open set G , there is a P_1 -open set U of X such that $x \in U$ and $F(z) \cap Q_2\text{-cl}(G) \neq \emptyset$, for each $z \in U$. This means that $x \in U \subset F^-(V)$ and shows that $F^-(V)$ is P_1 -open and by [10, Theorem 2.6] F is $P_1 Q_1$ -l.a.c.w.r.t. Q_2 .

COROLLARY 3.19. *Let $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ be a multifunction. If (Y, Q_1, Q_2) be a $(1, 2)$ -almost regular space, then the notion of $P_1 Q_1$ -l.w.c.w.r.t. Q_2 coincides with the notion of $P_1 Q_1$ -l.a.c.w.r.t. Q_2 .*

Proof. By the previous theorem, the proof is clear.

4. Some properties of the almost continuous multifunctions

THEOREM 4.1. *If the multifunction $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ is $P_1 Q_1$ -u.a.c.w.r.t. Q_2 , $P_2 Q_2$ -l.a.c.w.r.t. Q_1 and Q_1 -point -compact and X is P_1 -H-closed with respect to P_2 , then Y is Q_1 -H-closed with respect to Q_2 .*

THEOREM 4.2. *If the multifunction $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ is a $P_1 Q_1$ -u.a.c.w.r.t. Q_2 and Q_1 -point -compact and (X, P_1) is compact, then Y is Q_1 -H-closed with respect to Q_2 .*

Above theorems generalize Theorems 1, 2 in [15].

THEOREM 4.3. *Let $F : (X, P_1, P_2) \rightarrow (Y, Q_1, Q_2)$ be a multifunction and $F_G : (X, P_1, P_2) \rightarrow (X \times Y, P_1 \times Q_1, P_2 \times Q_2)$ be a graph-multifunction defined by $F_G(x) = \{x\} \times F(x)$ of F . Then F is $P_1 Q_1$ -u.a.c.w.r.t. Q_2 [$P_1 Q_1$ -l.a.c.w.r.t. Q_2] iff F_G is $P_1(P_1 \times Q_1)$ -u.a.c.w.r.t. $P_2 \times Q_2$ [$P_1(P_1 \times Q_1)$ -l.a.c.w.r.t. $P_2 \times Q_2$].*

Proof. (\Rightarrow) Let $x \in X$ and W be a $(P_1 \times Q_1)$ -open set with $F_G(x) = \{x\} \times F(x) \subset W$. There exist subsets $R \in P_1(x)$ and $S \in Q_1$ such that $F_G(x) \subset R \times S \subset W$. Since F is $P_1 Q_1$ -u.a.c.w.r.t. Q_2 at x , there exists $U \in P_1(x)$ such that $F(U) \subset Q_1\text{-int}(Q_2\text{-cl}(S))$. On the other hand $U \times Q_1\text{-int}(Q_2\text{-cl}(S)) \subset P_2\text{-cl}(U) \times Q_2\text{-cl}(S) = U \times Q_1\text{-int}(Q_2\text{-cl}(S)) \subset P_2 \times Q_2\text{-cl}(U \times S)$ or $P_1 \times Q_1\text{-int}(U \times Q_1\text{-int}(Q_2\text{-cl}(S))) \subset P_1 \times Q_1\text{-int}(P_2 \times Q_2\text{-cl}(U \times S))$. As $U \times Q_1\text{-int}(Q_2\text{-cl}(S))$ is a $(P_1 \times Q_1)$ -open set containing $F_G(x)$, we obtain $F_G(U) = U \times F(U) \subset U \times Q_1\text{-int}(Q_2\text{-cl}(S)) \subset P_1 \times Q_1\text{-int}(P_2 \times Q_2\text{-cl}(U \times S)) \subset W$. Consequently F_G is $P_1(P_1 \times Q_1)$ -u.a.c.w.r.t. $P_2 \times Q_2$ at x . Since $x \in X$ is arbitrary, F_G is $P_1(P_1 \times Q_1)$ -u.a.c.w.r.t. $P_2 \times Q_2$.

(\Leftarrow) Let $x \in X$ and V be a Q_1 -open set with $F(x) \subset V$. Then we have $F_G(x) = \{x\} \times F(x) \subset X \times V$. Since $X \times V \in P_1 \times Q_1$ and F_G is $P_1(P_1 \times Q_1)$ -u.a.c.w.r.t. $P_2 \times Q_2$, there exists $U \in P_1(x)$ such that $F_G(U) \subset P_1 \times Q_1\text{-int}(P_2 \times Q_2\text{-cl}(X \times V))$. On the other hand $P_1 \times Q_1\text{-int}(P_2 \times Q_2\text{-cl}(X \times V)) = P_1 \times Q_1\text{-int}([P_2\text{-cl}(X)] \times [Q_2\text{-cl}(V)]) = P_1 \times Q_1\text{-int}(X \times [Q_2\text{-cl}(V)]) = [P_1\text{-int}(X)] \times [Q_1\text{-int}(Q_2\text{-cl}(V))] = X \times [Q_1\text{-int}(Q_2\text{-cl}(V))]$. Therefore we obtain $F_G(U) = U \times F(U) \subset X \times [Q_1\text{-int}(Q_2\text{-cl}(V))]$. Consequently we have $F(U) \subset [Q_1\text{-int}(Q_2\text{-cl}(V))]$. Thus F is $P_1 Q_1$ -u.a.c.w.r.t. Q_2 at x . Since $x \in X$ is arbitrary, F is $P_1 Q_1$ -u.a.c.w.r.t. Q_2 .

References

- [1] G.K. Banerjee, *On pairwise almost strongly θ -continuous mappings*, Bull. Cal. Math. Soc., 79 (1987), 314–320.
- [2] C. Berge, *Espaces Topologiques Fonctions Multivoques*. Paris, Dunod, (1959).
- [3] S. Boshe, D. Sinha, *Pairwise almost continuous map and weakly continuous map in bitopological spaces*, Bull. Cal. Math. Soc., 74 (1982), 195.
- [4] J. Chew and J. Tong, *Some remarks on weak continuity*, Amer. Math. Monthly 98, 10 (1991), 931–934.
- [5] L.L. Herrington, *Some properties preserved by almost continuous functions*, Bol. U. M. I. 10, (4), (1974), 556.
- [6] J.C. Kelly, *Bitopological spaces*, Proc. London Math. Soc. 13 (1963), 71–89.
- [7] P.E. Long and D.A. Carnahan, *Comparing almost continuous functions*, Proc. Amer. Math. Soc. 38 (3) (1973), 71.
- [8] E. Michael, *Topologies on spaces of subsets*, Trans. Amer. Math. Soc. (1951), 71.
- [9] T. Noiri, *Between continuity and weak continuity*, Bol. U.M.I. 9 (4) (1974), 647.
- [10] M.N. Mukherjee and S. Ganguly, *Generalization of almost continuous multifunctions to bitopological spaces*, Bull. Cal. Math. Soc. 79 (1987), 274–283.
- [11] V. Popa, *Almost continuous multifunctions*, Mat. Vesnik, 6, 19, (34), (!982), 75.
- [12] V. Popa, *Weakly continuous multifunctions defined on bitopological spaces (Romanian)*, Stud. Cerc. Mat. 34 (1982), 561–567.
- [13] V. Popa, *Some properties of almost continuous multifunctions*, Mat. Vesnik, 35, 4, (!983), 425–432.

- [14] V. Popa, *On some weakened forms of continuity for multifunctions*, Mat. Vesnik 36 (1984), 339–350.
- [15] V. Popa, *On almost continuous multifunctions*, Review of Research University of Novi Sad, Mathematics Series 15, (1985), 1.
- [16] A.R. Singal and S.P. Arya, *On pairwise almost regular spaces*, Glasnik Math. 6 (26), (1971), 335.
- [17] M.K. Singal and A.R. Singal, *Almost continuous mappings*, Yokohama Math.J. 16 (1968), 63–73.

CUMHURIYET UNIVERSITY
FACULTY OF SCIENCE
58140-SIVAS, TURKEY

Received December 12, 1994; revised version June 7, 1995.