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REFLECTIONS IN EQUIDISTANT HYPERSURFACES II.
GEOMETRIC CHARACTERIZATION OF THE GROUP
GENERATED BY REFLECTIONS

1. Introduction

The group generated by reflections in equidistant hypersurfaces of degen-
erate hyperbolic space (H} ) was described analitically in [5]. In this paper
we give a geometric characterization of this group — first for £ = 1 and
next for k > 1. In the paper we shall use the notions and notations of [2],

(3, {4], [5])-

2. Results
In the family Aut(m) we define a group of transformations.

DErINITION 1. Let
Gr = {f € Aut(H}) : (VT € I)[f(T) = T A fir — equiaffine]}.
Note that

ProrosiTiON 1. If k=1 and T € 3%, thendim(T) =1 and h: T —» T
is equiaffine iff for any a,b € T we have ab =; h(a)h(b), where ab = cd :&
(3f € G(E(H)))[f(e) = e A f(b) = d] A ab — isotropic.

Just from the definition of =; we have

ProposiTiON 2. If dim(T) = 1, a,b,c,d € T, a = (a1,...,a5), b =

(b1y...,bn), ¢ = (e1,...,¢n) and d = (dy,...,d,), then ab = ¢d & |a, -
bol = len — dyl-

PRrOPOSITION 3. If 0 = 0§ € Z(H}), T € 3%, then o7 = 0rn 4, -
Hence we have

ProrosITION 4. G(Z(HY ))|7 is the group consisting of central symme-
tries and translations of T.
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To give a geometric characterization of the groups G(A(H})) and
G(A(HY)) with £ > 1, we need some more definitions and facts. We be-
gin with the following rigidity condition.

ProPosITION 5. If h € G1, E € 6, q € C, q € E, h{q) = ¢, and
hig = idEg, then h = id.

Easily we get

ProposiTION 6. G(A(H})) C Gk.

Now from Proposition 5, 6, and Corollaries 2.14, 2.15 in [2], we directly
get

TrEOREM 1. G(A(H})) = G;.

DEFINITION 2.

Considering Gy for £ > 1 is more complicated. Let £k > 1. We define
a star of H}} to be a family of equidistant hypersurfaces E = {Fy,..., Fx}
satisfying the following conditions

(i) E;eBfor1<i<k;

k

(i) N V(E;) = 0, where V(E;) is the top of E;.
i=1

Stars are preserved by mappings from Gk, i.e.

ProposITION 7. If E is a star of H} and f € Gy, then f(E) is a star
of Hy.

Stars admit all possible reflections.

ProprosSITION 8. If {Ey,...,Ex} is a star of HY, 1 < i < j < k, and
q € MNopi; V(ES) \ (V(Ei) U V(Ey)), then there exists E € & such that
o0L(E;) = Ej and o} (E;) = E; for s #1,].

Moreover, the group G(A(H})) acts transitively on stars.

ProposiTION 9. If F = {F,...,Fx} and E = {E;,..., Ex} are stars of

¥, then there ezists a transformation g € G(A(MYy)) such that g(F;) = E;

for1 <i<k.

Using stars we can formulate for £ > 1 an analogue of rigidity condition
Proposition 5.

ProprosITION 10. If {E1,...,Ex} is a star of HE, k > 1, g € G, a &
[I_CJ E;, g(a) = a, and g(E;) = E; for 1 <i <k, then g = id.
= Now from Theorem 1, Definition 2, Propositions 6, 10, 11, 12, 13 we get
THEOREM 2. G(A(H})) = Gy.
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3. Proofs and auxiliary lemmas

Proof of Proposition 5.Let E = E,[a] and E; = E,[q]. By Corol-
laries 2.14, 2.15 in [2], EN E; = 0. Moreover ¢ € h(E;). Now we prove that
h|g, = idg,. Let z € Ey, y € E, and let zy be isotropic. From Definition
1 and Proposition 1 we have zy =; h(z)y. Now, from Proposition 2 follows
h(z) = o,(z) or h(z) = z. But if h(z) = o,(z), then h(E) N h(E,) # 0.
Whence E N Ey # § — contradiction. Thus kg, = idg,.

Let 2z ¢ ENEy, z1 € E, 22 € Ey, and 221, 22, be isotropic. Because
h(z1) = z and h(z;) = 22, therefore from Proposition 2, we have the thesis
of Proposition 5. m

LEMMA 1.IfE€®,P:2,=0isabase of E,T €T}, then ENT isa
(k — 1)-dimensional hyperplane of T.

Proof. From Theorem 2.9 and 2.11 in [2], F has the equation c?(—-1 +
¥+ ...+ 22_,)+ 22 = 0 with ¢ > 0. Hence T is described by a set of

equations {z; = a@;,Z2 = @3,...,Zpn—k = an_k}. Thus ENT is defined

by a system of conditions: z1 = a1, 3 = @2,...,Zp_k = Gpn_k, and 2, =
n=k

gey/1— Y a?, where e = —1 for z,, < 0 and ¢ = 1 for z,, > 0. Hence we
i=1

have the thesis. m
As a direct consequence of Lemma 2.6, Theorem 2.7 in [2], and Lemma
1 we infer

LEMMA 2. If E € & and T € 3}, then ENT s a (k — 1)-dimensional
hyperplane of T.

LEMMA 3. If f € A and T € 3%, then fir is a symmetry of T'.

Proof. Let f = of. Now, from Definition 1 in [5] and by the affine
definition of symmetry we have OF, = OgnT- Next, from Lemma 2, 0§~p
is a symmetry of 7. =

From Lemma 3 we obtain the following:

CoroLLARY 1. If f € A and T € T, then fir is equiaffine.

Proof of Proposition 6. Proposition 6 is a direct consequence of
Theorem 1,2 in [5] and Corollary 1. =

Proof of Theorem 1. From Proposition 6 we have G(A(H}) C G.
Let f € G1 and E € &. Let P be a base of E and let P’ be a base of £/ =
f(E) € &. There exists a symmetry g € G(A(H})) such that g(P') = P.
Let g(E') = E". Let us see that P is a base of E and E". Let K be an
isotropic line of HY, and let ¢ = K N E, o’ = K N E". There exists an
equidistant hypersurface H such that P is a base of H and o§(p") = p.
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Let 6§ (E") = Eo. From Corollaries 2.14, 2.15 in (2], Ey = E. Whence
o5(E") = E.H h = 0§ 0ogo f then (E) = E and h € G;, because
0,9 € G(A(H})) C G1. Whence h|g = idg. If there exists a point ¢ € C}
such that ¢ ¢ E and h(q) = g, then, from Proposition 5, h = id. Thus
f=gloo%oh e G(A(H})). If there does not exist a point ¢ € C} such
that ¢ ¢ E and h(q) = g, then we consider a transformation A’ = 0§, o h.
Of course h' satisfies the assumptions of Proposition 5, whence A’ = id and
h = 0% € G(A(H})). Thus also in this case f = ¢g™! 0 0% o h € G(A(H})).
Hence G1 C G(A(HY})). m

Analysing the proof of Lemma 1 we can see that the following lemma is
true.

LEMMA 4. If E € &, P : z, = 0 is a base of £, and Ty, T, € 3%, then
EnT||EnT;.

Now as a direct consequence of Lemma 2.6, Theorem 2.7 in [2], and
Lemma 4 we infer.

LEMMA 5. If E € & and T1, T, € 3%, then ENT{||ENT;.
Note that the following lemma is true.

LemMMA 6. If X1, X,,Y1,Y; are subspaces of the affine space with equal
dimensions, X1NX2,Y1NY2 # 0, and X1||Y1, X,||Y2, then X1 N X,||Y1NY3.

LemMMA 7. If Ly, Ly are isotropic lines of Hy, Ty, T € 33, T1 # T3, and
Ly CTy, Ly C T, then the following conditions are equivalent:
(i) L1l L2;
(ii) there ezist Eq,Eq,...,Ep_3 € & such that L, =T;NEy;NE;N...N
E, o fori=1,2.

Proof. (ii)=(i) Let Ly =T, N EyNE;N...NE,_5. Thus L; = (T; N
E)n(TinE)N...n(T;NE,_2). From Lemma 5, we have that T3 N Ey|| T2 N
Ey, ... hNE,2||To N E,_2. Now, from Lemma 6, we get L1||L;. m

(i)=(ii) Let Lq||Ls. Thus there exists a plane @ generated by lines
Li,Ly. Whence L; = Q NT; for i = 1,2. Let a, be a direction vec-
tor of Li,Ly and a € L1, b € L,. Whence the vector a; = ab is non
isotropic and @ is generated by the point @ and two vectors a; and a,
(@ = a+ (a1,a,)). The vectors a; and a,, are not parallel, because the
vector a, is isotropic. Let (a1,az,...,a,) with ay_k41,...,a, isotropic be
a base of A,; thus A, = a + (a3,a2,...,a,). Now we define (n — 2) non
isotropic hyperplanes such that @ is the intersection of them. Let P; =

a+(a1,a2,...,0n_kt(i=1)> Gnokt(i+1)s++ -1 @n) fori =1,...,k—1. Let us see
that ap_gy; € Pifore=1,...,k—1. Whence P;for:=1,...,k—1,is anon
isotropic hyperplane. Let R; = a+(a1,...,8iy@i41—0n—1,0i42,- -, Gn-2,0p)

fori=1,...,n—k—1. From easy considerations we have that a,_; ¢ R; for
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i=1,...,n—k—1 and the set of vectors (a1, ..., @i, @it1 — Cn_1,8i42,--.,
@n_3,0a,) is linearly independent for ¢ = 1,...,n — k — 1. Whence R; is a
non isotropic hyperplane for ¢ = 1,...,n — k — 1. Note that P = ﬂf;ll P, =

a+ (a1,...,0n—k,ar). Now we have PN ﬂ::lk_l R, = a + (a1,a,) = Q.

However, P, ¢ 8fori=1,...,k—land R, € Bfori=1,...,n - k- 1.
Hence the thesis. =

LeEMMA 8. If K1, K, are isotropic lines of H} and f € Gk, then K|/ K,
iff f(K1)||f(K2).

Proof. Because Gy is a group we need to prove only that K;||K, =
F(K1)|| f(K2). If there exists T € J such that Ky, K, C T, then, by Def-
inition 1, we have the thesis. Let Ky C Ty, Ky C Ty, T7,T; € J%, and
Ty # T. Let K1||K,. Thus, by Lemma 7, there exist Ey, Ep,...,Ep_2 € &
such that K; = T, NE;NE;N...N E,_, for ¢ = 1,2. Whence f(K;) =
T:0 f(E1) N f(Ey)N...0 f(Enp—2) for i = 1,2. From Definition 1 we obtain
f(E;) € & fori=1,...,n—2and f(K;) is an isotropic line for : = 1,2.
Now, by Lemma 7, we have f(K,)||f(K3). =

We observe that any f € G determines the transformation f¥ : V(C} )~
V() defined by the condition:

f(q) = ¢' iff there exists an isotropic line K of Hy such that ¢ € K and
¢ € f(K).

From Definition 1 and Lemma 8 we get that the definition of f” is correct.

Proof of Proposition 7.Let {Ey, E,,...,E} be astar of H} and
let f € Gx. Whence f(E;) € & for 1 < i < k. Let (N5, V(f(E:)) # 0.
Thus there exists a point z such that z € V(f(E;)) for 1 < i < k. However,
U (z) € V(E;) for 1 < ¢ < k. Whence (o, V(E;) # 0 — contradiction.
Hence {f(E1), f(E2),..., f(Ex)} is a star of Hy. m

As a direct consequence of Lemma 5 and Definition 1 from [5] we infer.

LEMMA 9. Ifq€ V(E),q¢ V(F), and E,F € &, then o}.(E)= E.

LEMMA 10. If F; € & for i = 1,2, then for any q such that ¢ € V(C})\
(V(F1) U V(Fy)) there exists E € & such that ¢ ¢ V(E) and o,(F1) = F3.

Proof. For ¢ = 1,2 let Q; be a base of F;. We assume that ¢ € V(C}) \
(V(F1) U V(Fy)). (Such a point may exist because dim(V(C})) = k — 1 and
dim(V(F)))=k-2fori=1,2.)

Let K be a isotropic line such that ¢ € K and, if Q; # Q,, then K N
(@1NQ2) = 0. Let ¢; = KNQ; for i = 1,2.) We construct now a hyperplane
P and an equidistant hypersurface F with the base P.

We assume first that Q; # @2, then of course we have ¢; # ¢o. Let a be
the affine centre of a segment g;¢2. Since @1 N Q3 is an (n — 2)-dimensional
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hyperplane of P,,, then there exists (n — 1)-dimensional non isotropic hyper-
plane P such that a € P and Q; NQ, C P.

Now we assume that @1 = @3; then P = ¢;. Of course K C F; for
i = 1,2. Thus, by Lemma 1 (i), (ii) in [5], there exist points d; = K N F;
for ¢ = 1,2. Let b be a affine centre of a segment d;d;. Let E an equidistant
hypersurface such that b € E and P is a base of E. Note that ¢ ¢ V(E).
Consider the symmetry of,. From definition, Lemma 3 in [5], and Corollaries
2.14, 2.15 in [2] we have the thesis. m

Proof of Proposition 8. Proposition 8 is a direct consequence of
Lemma 9 and 10.

Let us see that for any £ € &, V(E)C V(C}), dim(V(E)) = k — 2, and
dim(V(C})) = k — 1. Whence V(E) is a hyperplane of V(C}). Hence we get

LemMA 11. If {Ey, Es,. .., E} is a star of H, then there ezists a point
& such that z = (\r_, V(E)).

LeEMMA 12. If {Ey, Es, ..., Ex} and {E{, E,,..., Ex} are stars of H},
then there erists f € G(A(H})) such that f(Ey) = E{ and f(E;) = E; for
2<i<k.

Proof. If {E{, Es,..., Ex} is a star of Hy, then, from Lemma 11, there
exists a point z such that z = ('_, V(E;) and = ¢ V(E!), V(E;). Now, from
Lemma 10, there exists E € ® such that z ¢ V(F) and ¢§(E,) = E;. From
Lemma 9 we have of(F;) = E;for2<i<k. m

LEMMA 13. If {Ey, Es,...,Ex} and {Fy, F,..., Fx} are stars of H,
then there exists a permutation o of the set {1,2,...,k} such that for any
H{Eo(1), -+ Ea(iys Fig1, ..., Fx} is a star of Hy.

Proof. A desired permutation is defined by induction on «.

First we consider ¢ = 1. Whence we prove that there exists z in the set
{1,2,...,k} such that {E,, F3,..., Fx} is a star of H}.

From Lemma 11, there exists a point ¢; such that ¢ = ﬂf:z V(F).
Because {Eq, Es, ..., E} is a star of HY, thus there exists z € {1,2,...,k}
such that q; ¢ V(E;). We set o(1) = z. Hence {E,(1), F3, F3,..., Fi} is a
star of H}..

Now we prove that if { E(1), ..., Eo(i), Fit1,. .., Fi} is a star of H}, then
there exists z in the set {1,2,...,k} such that {E,(),..., Ess), Ez, Fiyo,
..., Fy} is a star of H}.

From Lemma 11, there exists a point ¢;+; such that
gir1= () VEom) N () V(Fm)-
m=1

m=i+2
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Because {Ey, E;,. .., Ex} is a star of HY, thus there exists z € {1,2,...,k}
such that ¢;41 & V(E,). Of course z # 0(1),0(2),...,0(i). Set o(i+1) = 2.
Thus {Eo(s), - - -» Eo(it1)s Fita, - - -» Fi} 1s a star of Hj.

Hence we have the thesis of Lemma 13. m

LEMMA 14. IfE = {E{,Es,...,Ex} and F = {F}, F,,..., Fi} are stars
of HY, then there exists f € G(A(HY)) such that f(F) = E.

Proof. Let F, E be stars of H} . Thus, from Lemma 13, there exists a per-
mutation o of the set {1,2,...,k} such that F; = {E,(), ..., Eoi), Fig1,- - -,
Fi}is astar of H} for 0 > ¢ > k. Note Fy = F and Fy, = E. Now, from Lemma
12, there exists f; € G(A(H})) such that f; : F;_y — F; for 1 > i > k. Thus
we see that f = fro...0 fho f; € G(A(H})) and f(F)=E. m

Since every permutation is a superposition of a finite number of trans-
positions, then as a direct consequence of Lemma 11 and Proposition 8 we
infer

LEMMA 15. If {E1, Ey, ..., EL} is a star of H} and o is a permutation of
the set {1,2,...,k}, then there ezists f € G(A(Hy)) such that f(E;) = E,(;
for1<i<k.

Proof of Proposition 9.If F and E are stars of H}, then, from
Lemma 14, there exists f; € G(A(Hy)) such that fi(F) = E. Whence
fi(F;) = Eq(;) where o is some permutation of the set {1,2,...,k}. Now,
from Lemma 15, there exists f; € G(A(H})) such that fy(E,i)) = E; for
1<i<k.Henceg= frofo € G(A(H})) and g(F;) = E;for 1<i<k. m

Now we define the following relation a:

a(E,F): & E,FEBANENF=0AV(E)=V(F)A
ANz g EUF)3GeB)etecGAGNE=0=GNFlor E=F.
From this definition we get

Remark. 1. Let E,F € . Then a(E, F)iff E = F or E # F and there
exists a hyperplane P which is a common base of F and F.

Proof of Proposition 10. Let T = {a,V)\ V. From the assump-
tions we get g(E;NT) = E;NT for 1 < i < k. From Lemma 2, E;NT
is a (k — 1)-dimensional hyperplane of T, for 1 < ¢ < k. Because the set
{F1, E,, ..., E;}is astar of HY therefore dim(ﬂf=l(E,~ﬂT)) = 0. Whence we
can consider a coordinate system given by hyperplanes E;NT for 1 < i < k.
From assumptions, g is affine, a ¢ Ule E;, and g(a) = a, thus g;r = id. Let
r € C; and z ¢ T. Let the set {F}, F,,..., Fi} be a star of H} such that
z € F; and E;, F; have a common base §); for 1 < i < k. Of course TNF; C T,
gir = id, thus g(T N F;) = TN F; for 1 < ¢ < k. By Remark 1, a( E;, F;) for
1 < ¢ < k. However, g € G, whence o E;, F;) & a(g(E;), g(F;)). Thus Q;
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is a base of g(F;) for 1 < ¢ < k. But we have g(TNF;) =TNF;forl1 <i<k,
thus g(F;) = F; for 1 <4 < k. Let Ty = (z,V)\ V. Then g(T1) = T1 and
¢ =N (FNT). Hence g(z) = 2. m

Proof of Theorem 2. From Theorem 1 we get the thesis for k = 1.

Let k > 1. From Proposition 6 we have G(A(H})) C Gy.

Let f € Gk, and let {Ey, Ey,..., Ex} be a star of HY such that E; :
Tp-k4i = 0 for 1 < i< k. Set E] = f(E;) for 1 < i < k. From Proposition
7, {E{, E},...,EL} is a star of H}. Now, from Proposition 9, there exists
g € G(A(H})) such that g(E]) = E; for 1 <i < k. Let f; = go f. Whence
fi € Gy and fi(E;) = E; for 1 < i< k. Let ¢ = (0,0,...,0,1,...,1). Note
that ¢ ¢ F; for 1 < ¢ < k. Set ¢' = fi(q).

Assume ¢' = g. Thus, from Proposition 10, f; = id. Whence g o f = id,
thus f = g7, hence f € G(A(I})).

Now we assume that ¢’ # ¢. Let T = (¢, V)\V. Whence E;NT is described

by the set of equations {x; = 0,23 = 0,...,Zp_k = 0,2p_k4; = 0} for
1<i<k.
(1) Let A € F, A # 0, and let g4 : T — T be a transformation defined by
G1((Tr—kd1> Trokt2y Tn k43, Tnkdds o+ o5 Tn)) =
= (AZn—k42, (1/A)Tnokt1s Trok43, Tnoktds -« -, Tn)-

Let ay,02 € F, a1, 09 # 0, and let p = [0,0,...,0,,03,0,...,0]. Thus
(k)

0 € N, V(E) \ (V(E1) U V(E)). From Proposition 8, there exists E € &
such that 0% (Ey) = F; and 0% (E;) = E; for 3 < ¢ < k. Of course we have
of € G, O'%IT(E,‘ NTY=E;,NTfor3 <i<k,and ang(El NT)=E,NT.
Now from this and from Lemma 2, 3 we get that Uf?u is described in T by
a k X k matrix M such that

0 22 0 0 ... 0
$7. 0 00 ... 0
M=10 0 10 ...0
0 0 00 ... 1

where det(M) = —1. Let L be a line such that g,q € L. Thus L is described
by the set of equations

{Znkpr =1+ at,en_pp2 =14+ 2tz p13=1,Znppa=1,...,2, = 1)

where t € F. Whence LN E; = (0,1 - (a2/1),1,1,...,1) and LN E; =
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(1-(a1/02),0,1,1,...,1). ang(L N Ey) = LN E,, thus

0 (—ay/a3) 0 0 ... 0
(—a2/a1) 0 0 0 ... 0

M= 0 0 10 ...0
0 0 0 0 ... 1

Let (—a;/as) = X. Whence we see that for any g; there exists of €
G(A(H})) such that o, = g1 and 0% (E;) = {E3"i for i < 2

Er EAT E; for3<i<k.
(2) Let A€ F, A # 0 and let hy : T+ T be a transformation defined by

hl ((zn—k+l yTn—k+2yTn—k+39-- -9 zn)) =
= (/\zn—-k-i-l ) (1/A)$n_k+2, Tn—k+3:Tn—kt4y---y zn)-

Let g1, g- be transformations such that

gl(($n—k+1 1 Tn—k+29 Tn—k+3yTn—k+4s. .+ fcn)) =
((1/A)Tnekt2, AT po ks Trok43> Tn—ktdr - -, Tn),

92((Tr—kt1, Tnekt2s Tnek+3, Tn—k+dy - -+, Tn)) =
= (Trnk42) Tnek+1> Tn-k43> Tnokdds -« - Tn)-

From (1) we get §i1,g2 € G(A(HY)) such that g;, = g; and g;(E;) =
E3_,' for ¢ S 2

{ E; for3<i<k
Whence for any h; there exists a transformation hy € G(A(H})) such that
h'l|T = hl and hl(E',') = E,' for 1 S ) S k.

(3) At the beginning of this proof we defined the transformation f;. From
this definition we have that f1|r is described in T by a k X k matrix N such
that

for j = 1,2. Let g = g5 0 g1. Note that h; = g5 0 ¢;.

B 0 0

0 p 0
N= ? ,

0 0 ... f

where Hle B; = £1. We remember that fi(q) = ¢'. Let
ql = (07 0,...,0, qz—k+17 q:;—k+2, EER q:;)

Thus q;,_4,; = Bi for 1 < ¢ < k. Whence e, ¢ _pp; = £1. Let h; be a
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transformation such that

T; forn—-k+1<j<n—-k+1
_ orn—k+i+1<j<n
hi(z); = AiZ ki forj=n—-k+1¢

(1/A)ZTn-ktit1 forj=n—-k+i+1,
where A; € F, \; # 0, and 1 < ¢ < k — 1. From considerations analogous
to (1) and (2) for any h; we get a transformation h; € G(A(H})) such
that hy, = h; and hi(E;) = B, for 1 <7 < k. Let Ay = ¢, ., A2 =

1T
G kp1Tn—fg2s + v v> Akm1 = =l gri>andlet h=hg_johrz0...0h.

Let us see that if Hz 19n—k4i = 1, then A(g) = ¢' and there exists
h € G(A(HE)) such that hyr = h and h(E )=E; for 1 < t < k. Now going
to the beginning of this proof we have A~ fi(q) = ¢, h™! fi(E;) = E; for
1<i<k,and h~'o f; € Gi. From Proposition 10 we have h -1,  fi =
But fy = go f, where g € G(A(H})). Thus f =g lofy =g loh. Hence
f € G(A(H)).

Let [T5, ¢_ ppi = —1. Let o= NiZ,) V(E;) and let h* = oF, » oh. Note

that h*(¢) = ¢' and there exists h* € G(A(H})) such that h|T = h* and

h*(E;) = E; for 1 < i < k. Now again coming back to the beginning of this
proof, analogously, we have f € G(A(H})). »
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