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REFLECTIONS IN EQUIDISTANT HYPERSURFACES II. 
GEOMETRIC CHARACTERIZATION OF THE GROUP 

GENERATED B Y REFLECTIONS 

1. Introduction 
The group generated by reflections in equidistant hypersurfaces of degen-

erate hyperbolic space (H£) was described analitically in [5]. In this paper 
we give a geometric characterization of this group — first for k = 1 and 
next for k > 1. In the paper we shall use the notions and notations of [2], 
[3], [4], [5]. 

2. Results 
In the family Aut(Hfc) we define a group of transformations. 

D E F I N I T I O N 1 . L e t 

Gk = {f e Aut(H^) : (Vr € Tk)[f(T) = T A f{T - equiaffine]}. 

Note that 

P R O P O S I T I O N 1. I f k = 1 and T e then dim(T) = 1 andh\T 
is equiaffine i f f for any a,b G T we have ab =i h(a)h(b), where ab =i cd 
(3 / e G(E(HJJ)))[/(a) = c A f(b) = d]Aab — isotropic. 

Just from the definition of we have 

P R O P O S I T I O N 2. If dim(T) = 1 , a,b,c,d e T, a - ( A X , . . . , A „ ) , b -
(bi,.. c = (ci,...,cn) and d = (di,.. .,dn), then ab =i cd \an -
bn\ - |c„ - dn\. 

P R O P O S I T I O N 3 . If a = ae
Ae E (H£) , T e then cr\T = aTn,4|T. 

Hence we have 

P R O P O S I T I O N 4. G(E(Hj l)) | j is the group consisting of central symme-
tries and translations ofT. 
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To give a geometric characterization of the groups G(A(EÇ)) and 
G(A(H£)) with k > 1, we need some more definitions and facts. We be-
gin with the following rigidity condition. 

PROPOSITION 5 . If h e Gi: E e <8, q e C £ , q £ E, h(q) = q, and 

h\E = then h — id. 
Easily we get 

PROPOSITION 6 . G ( A ( H £ ) ) C Gk. 

Now from Proposition 5, 6, and Corollaries 2.14, 2.15 in [2], we directly 

get 

T H E O R E M 1. G(A(H?)) = G1. 

DEFINITION 2 . 

Considering Gk for k > 1 is more complicated. Let k > 1. We define 
a star of to be a family of equidistant hypersurfaces E = {E\,..., E^} 
satisfying the following conditions 

(i) Ei G <9 for 1 < i < k; 
k 

(ii) n V(-Ei) = 0, where V ( ^ ) is the top of 

Stars are preserved by mappings from Gk-, i.e. 
PROPOSITION 7. If E is a star of and f e Gk, then f(E) is a star 

ofE»k. 
Stars admit all possible reflections. 

PROPOSITION 8 . If {Ex,.. .,Ek} is a star of H £ , 1 < i < j < k, and 
q e r\s^itjV(Es) \ (V(Ei) U V(Ej)), then there exists E e <5 such that 
crq

E(Ei) = Ej and <rq
E(Es) = Es for s £ i,j. 

Moreover, the group Cr(A(HjJ)) acts transitively on stars. 

PROPOSITION 9 . If F = {Fi,. ..,Fk} and E = {Ei,. ..,Ek} are stars of 
then there exists a transformation g £ G(A(H£)) such that g(Fi) = Ei 

for 1 < i < k. 
Using stars we can formulate for k > 1 an analogue of rigidity condition 

Proposition 5. 

PROPOSITION 10. If {Ex,.. ,,Ek} is a star O / H £ , k > 1, g E Gk, a 
k 
t j Ei, g(a) = a, and g(Ei) = Ei for 1 < i < k, then g = id. 

¿=1 

Now from Theorem 1, Definition 2, Propositions 6, 10, 11, 12, 13 we get 

THEOREM 2. G ( A ( H g ) ) = Gk• 
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3. Proofs and auxiliary lemmas 

P r o o f of P r o p o s i t i o n 5. Let E = Ep[a] and Ei = Ep[q\. By Corol-
laries 2.14, 2.15 in [2], E D Ex = 0. Moreover q £ h{E{). Now we prove that 

= id^j . Let x G Ei, y £ E, and let xy be isotropic. From Definition 
1 and Proposition 1 we have xy = i h(x)y. Now, from Proposition 2 follows 
h(x) - oy(x) or h{x) = x. But if h(x) = ay(x), then h(E) n h{Ex) £ 0. 
Whence E fl E\ ^ 0 — contradiction. Thus h\El = i d ^ . 

Let z ^ E fl Ei, z\ £ E, Z2 £ Ei, and zzi, zzi be isotropic. Because 
h{z\) — zi and h(z2) = zi, therefore from Proposition 2, we have the thesis 
of Proposition 5. • 

L E M M A 1. If E £ <9, P : xn = 0 is a base of E,T £ then EnT is a 
(k — I)-dimensional hyperplane ofT. 

P r o o f . From Theorem 2.9 and 2.11 in [2], E has the equation c2(—1 + 
xl + ... + x2

n_k) + x2
n = 0 with c > 0. Hence T is described by a set of 

equations {xi = ax,X2 = < i 2 , . . . , = a„_fc}. Thus E fl T is defined 
by a system of conditions: = ai, X2 = a^,..., xn-k = o-n-ki and xn = 

ec a f , where e = - 1 for xn < 0 and £ = 1 for xn > 0. Hence we 

have the thesis. • 
As a direct consequence of Lemma 2.6, Theorem 2.7 in [2], and Lemma 

1 we infer 

L E M M A 2 . If E e <3 and T G then EOT is a (k - 1)-dimensional 
hyperplane ofT. 

L E M M A 3 . If f € A and T g ^ , then fyr is a symmetry ofT. 

P r o o f . Let / = a^ . Now, from Definition 1 in [5] and by the affine 
definition of symmetry we have = a ^ n T . Next, from Lemma 2, cr^nT 

is a symmetry of T. m 
From Lemma 3 we obtain the following: 

COROLLARY 1. If f e A and T € then f \ j is equiaffine. 

P r o o f of P r o p o s i t i o n 6. Proposition 6 is a direct consequence of 
Theorem 1,2 in [5] and Corollary 1. • 

P r o o f of T h e o r e m 1. From Proposition 6 we have G(A(H5l) C G\. 
Let f € Gi and E £ <5. Let P be a base of E and let P' be a base of E' = 
f(E) e 0 . There exists a symmetry g £ G(A(H?)) such that g(P') = P. 
Let g(E') = E". Let us see that P is a base of E and E". Let K be an 
isotropic line of H£, and let g = K n E, q" = K n E". There exists an 
equidistant hypersurface H such that P is a base of H and oj/(i>") = Q. 
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Let afj(E") = E0. From Corollaries 2.14, 2.15 in [2], E0 = E. Whence 
afj(E") - E. If h = a f j o g o / then h(E) = E and h G Gx, because 
ffff,g G C G\. Whence h\E = id#. If there exists a point q £ Cj 
such that q E and h(q) = q, then, from Proposition 5, h = id. Thus 
/ = g o crff o h G G(A(Hi)). If there does not exist a point q G CJ1 such 
that q $ E and h(q) = <7, then we consider a transformation h' = a^ o /i. 
Of course h! satisfies the assumptions of Proposition 5, whence h' = id and 
h = ax

E € G(A(B?)). Thus also in this case f = g-1 o afr o h e G(A(H?)). 
Hence Gx C G(A(Hf))- • 

Analysing the proof of Lemma 1 we can see that the following lemma is 
true. 

LEMMA 4 . If E G <5, P : xn - 0 is a base of E, and TX,T2 G then 
EnTi\\EnT2. 

Now as a direct consequence of Lemma 2.6, Theorem 2.7 in [2], and 
Lemma 4 we infer. 

LEMMA 5. If E G <5 andTuT2 G then E n TX\\E n T2. 
Note that the following lemma is true. 

LEMMA 6. If X\,X2,Y\,Y2 are subspaces of the affine space with equal 
dimensions, X1nX2,Y1nY2 ± 0, and Xx\\Yx, X2\\Y2, then Xi n J ^ P i nY2 . 

LEMMA 7. If Lx, L2 are isotropic lines of H £ , TX,T2 G T\ ± T2, and 
L\ CT\, L2 C T2, then the following conditions are equivalent: 

0) ¿ i | | £ 2 ; 
(ii) there exist EX,E2,..., £„_ 2 G 0 suc/i that Li = Ti n Ex n E2 D ... n 

£„_ 2 /or i = 1,2. 

P r o o f . (ii)^-(i) Let ^ = T, fl E1 D E2 n . . . D En-2. Thus Li = (Ti n 
Ex) n (Ti n E2) n . . .n (T< n £„_2). From Lemma 5, we have that Tx n Ex\\T2 n 
Ex,.. ,,TX n En-2\\T2 n En-2- Now, from Lemma 6, we get LX\\L2. • 

(i)=i»(ii) Let LI\\L2. Thus there exists a plane Q generated by lines 
LX,L2. Whence LI = Q 0 TI for i = 1,2. Let an be a direction vec-
tor of L\,L2 and a G LX, b G L2. Whence the vector ax — ab is non 
isotropic and Q is generated by the point a and two vectors ax and an 

(Q = a + (a\,an)). The vectors ax and an are not parallel, because the 
vector an is isotropic. Let (ax, a 2 , . . . , a n ) with a n _fc + 1, . . . , an isotropic be 
a base of thus An = a + (ax,a2,.. .,an). Now we define (n — 2) non 
isotropic hyperplanes such that Q is the intersection of them. Let PI = 
a + (ax,a2,... ,an_fc+(j_1),an_fc+(i+1),.. .,an) for i = l,...,k-l. Let us see 
that an_jt+i ^ Pi for i = 1 , . . . , k — 1. Whence Pi for i = 1 , . . . , k — 1, is a non 
isotropic hyperplane. Let Ri = a + ( a i , . . . , a j ,a j+i —an-i> <¡[¿+2,..., an^2,an) 
for i = 1 , . . . , n — k — 1. From easy considerations we have that a n _ 1 ^ Ri for 
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i = 1 , . . . , n — k — 1 and the set of vectors ( a i , . . . , a^aj+i — a n _ i , a j + 2 , . . . , 
a n _ 2 , a n ) is linearly independent for i = 1 , . . . , n - k - 1. Whence Ri is a 
non isotropic hyperplane for i = 1 , . . . , n - k - 1. Note that P — Hj^i Pi = 

a + ( a i , . . . , a n - k , a n ) . Now we have P n f l" :^ - 1 Ri = a + ( a i , a n ) - Q. 

However, Pi G © for i = 1 , . . . , k - 1 and Ri G © for i = 1 , . . . , n - k - 1. 
Hence the thesis. • 

L E M M A 8 . If K\, K2 are isotropic lines o / I f f £ and f G Gk, then K\\\K2 

i f f ¡ { K ^ W f i K i ) . 

P r o o f . Because Gk is a group we need to prove only that K1WK2 => 
f { K x ) \ \ f { K 2 ) . If there exists T G CTjJ such that K I , K 2 C T , then, by Def-
inition 1, we have the thesis. Let K\ C Tj, C T2, T\,T2 € and 
7i ^ T2. Let i ^ i l l ^ . Thus, by Lemma 7, there exist Ei,E2, • ..,EN-2 £ © 
such that if,- = Ti n EX n E2 n . . . n EN-2 for i = 1,2. Whence f(K{) = 
Ti n f(EI) n f(E2) n . . . n f{EN.2) for ¿ = 1,2. From Definition 1 we obtain 
f ( E i ) € © for i = 1 , . . . , n — 2 and f { K i ) is an isotropic line for i = 1,2. 
Now, by Lemma 7, we have /(ii'i)||/(ii'2)- • 

We observe that any f £ Gk determines the transformation fv : V(<C£)i-> 
V(C£) defined by the condition: 

fv(q) = q' iff there exists an isotropic line K of such that q E K and 
q' e f ( K ) . 

From Definition 1 and Lemma 8 we get that the definition of fv is correct. 

P r o o f of P r o p o s i t i o n 7. Let {E\,E2,...,Ek} be a star of and 
let / e Gk. Whence / ( £ ; ) G © for 1 < i < k. Let f|f=i V( / (£ i ) ) ? 0. 
Thus there exists a point x such that x E V ( f ( E i ) ) for 1 < i < k. However, 
f v ~ \ x ) G V(Ei) for 1 < i < k. Whence f)?=i V(£i) ^ 0 — contradiction. 
Hence { f ( E 1 ) , f ( E 2 ) , . . . . , f ( E k ) } is a star of H^. • 

As a direct consequence of Lemma 5 and Definition 1 from [5] we infer. 

L E M M A 9 . If q e V ( E ) , q $ V ( F ) , and E,Fe<8, then <rq
F{E) = E. 

L E M M A 10. If Fi G © for i - 1 , 2 , then for any q such that q E V ( < C £ ) \ 

( V ( f \ ) U V ( f 2 ) ) there exists E G © such that q V ( E ) and (t%{Fx) = F2. 

P r o o f . For i = 1,2 let Qi be a base of Fi. We assume that q G V(C£) \ 
( V ( J F i ) U V(F2)). (Such a point may exist because dim(V(Q)) = k - 1 and 
dim(V(fi)) = k - 2 for i = 1,2.) 

Let K be a isotropic line such that q G K and, if Qi ^ Q2, then K fl 
(Qi ^ Q i ) — 0- Let qi — KC[Qi for i = 1,2.) We construct now a hyperplane 
P and an equidistant hypersurface E with the base P. 

We assume first that Q\ / Q2, then of course we have qi q2. Let a be 
the affine centre of a segment q\q2- Since Qi fl Q2 is an (n — 2)-dimensional 
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hyperplane of P„, then there exists (n — 1)-dimensional non isotropic hyper-
plane P such that a £ P and Q\ fl Q2 C P. 

Now we assume that Q\ = Q2', then P = Q\. Of course K C Fi for 
1 = 1,2. Thus, by Lemma 1 (i), (ii) in [5], there exist points d{ — K f1 Fi 
for i = 1, 2. Let 6 be a affine centre of a segment d\¿2- Let E an equidistant 
hypersurface such that b £ E and P is a base of E. Note that q £ V(E). 
Consider the symmetry crqE. From definition, Lemma 3 in [5], and Corollaries 
2.14, 2.15 in [2] we have the thesis. • 

P r o o f of P r o p o s i t i o n 8. Proposition 8 is a direct consequence of 
Lemma 9 and 10. 

Let us see that for any E G <8, V(E) C V(<C£), dim(V(£)) = k - 2, and 
dim(V(<C£)) = k - 1. Whence V(E) is a hyperplane of V ( Q ) . Hence we get 

L E M M A 11. If {Ei,E2,..-,Ek} is a star of , then there exists a point 
x such that x = f]f=2 ^(Fi). 

L E M M A 1 2 . If {EUE2,.. .,Ek} and {E[,E2,.. .,Ek} are stars o / H £ , 
then there exists f G G(A(]H^)) such that f {Ex) = E[ and f(E,) = E{ for 
2 < i < k . 

P r o o f . If {E[, E2,..., Ek} is a star of , then, from Lemma 11, there 
exists a point x such that x = f]i=2 and x £ V(E[), V(-Ei). Now, from 
Lemma 10, there exists E G <5 such that x £ V(E) and a%(Ei) — E[. From 
Lemma 9 we have a^(Ei) = E{ for 2 < i < k. m 

L E M M A 1 3 . If {E1,E2,...,Ek} and {F1,F2,.. .,Fk} are stars o / H £ , 

then there exists a permutation a of the set { 1 , 2 , . . . , A;} such that for any 
i{EaW,..., Ea(i),Fi+1,..., Fk} is a star of H£. 

P r o o f . A desired permutation is defined by induction on i. 
First we consider i — 1. Whence we prove that there exists 2 in the set 

{1 ,2 such that {Ez, F2,..., Fk} is a star of 
From Lemma 11, there exists a point q\ such that q\ = V(Fi). 

Because {E\,E2, ..., Ek} is a star of , thus there exists z £ { 1 , 2 , . . . , k} 
such that <71 g V(EZ). We set <r(l) = 2;. Hence {Ea^), F2, F3,..., Fk} is a 
star of H£. 

Now we prove that if { E . . . , -Fi+i, • • •, Fk} is a star of H^, then 
there exists ^ in the set { 1 , 2 , . . . , A;} such that ..., Ez, i ^ + 2 , 

..., Fk} is a star of H\. 
From Lemma 11, there exists a point qi+i such that 

i i 
qi+1 = f | V(Ea{m)) n f ] V(Fm). 

m=1 m=i+2 
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Because {EI,E2, • • •, Ek} is a star of thus there exists z G { 1 , 2 , . . . , k} 
such that qi+i g V(EZ). Of course z ^ a{ 1), < r ( 2 ) , . . . , a(i). Set a(i + 1 ) = z. 

Thus { E t r ( i h . . . , E f f ( i + 1 ) , F i + 2 , . . . , F k } is a star of HJJ. 
Hence we have the thesis of Lemma 13. • 

L E M M A 14. 7 / E = { E 1 : E 2 , . . . , E k j and F = { F i , F 2 , . . . , Fk] are stars 

o / H £ , then there exists f G G(A(H£)) such that / ( F ) = E . 

P r o o f . Let F, E be stars of . Thus, from Lemma 13, there exists a per-
mutation a of the set { 1 , 2 , . . . , k} such that F; = { E a ( ! ) , . . . , -E^,), Fi+1,..., 
Fk} is a star of H£ for 0 > i > k. Note F0 = F and Wk - E. Now, from Lemma 
12, there exists fi G G(A(H£)) such that fi : Fi_a Fj for 1 > i > k. Thus 
we see that / = / l o . . , o / 2 o / 1 e G(A(H£ )) and / (F ) = E. • 

Since every permutation is a superposition of a finite number of trans-
positions, then as a direct consequence of Lemma 11 and Proposition 8 we 
infer 

L E M M A 15. I f { E \ , E 2 , . . . , Ek} is a star O / H £ and a is a permutation of 

the set { 1 , 2 , . . . , k } , then there exists f G G f(A(lÇ)) such that f ( E i ) = E 

for 1 < i < k. 

P r o o f of P r o p o s i t i o n 9. If F and E are stars of H^, then, from 
Lemma 14, there exists / x e G(A(H£)) such that / i (F) = E. Whence 
/l(-Fi) = E<?(i) where a is some permutation of the set { 1 , 2 , . . . , k}. Now, 
from Lemma 15, there exists f2 G G(A(IÇ)) such that f2(Ea(¿)) = E{ for 
1 < i < k . Hence g = / x o / 2 e G(A(H£)) and g(Fi) = Et for 1 < i < k. a 

Now we define the following relation a : 

a ( E , F ) : & E , F e ® A E n F = 0A V ( E ) = V ( F ) A 

A (3® £ E U F)(3\G G 0)[x 6 G A G n £ = 0 = G n F ] o r £ = F. 

From this definition we get 

R e m a r k . 1. Let E , F e <5. Then a(E,F) iff E = F or E ± F and there 
exists a hyperplane P which is a common base of E and F. 

P r o o f of P r o p o s i t i o n 10. Let T = (a, V) \ V. From the assump-
tions we get g(Ei n T) = E{ fi T for 1 < i < k. From Lemma 2, E{ n T 
is a (k - l)-dimensional hyperplane of T, for 1 < i < k. Because the set 
{ E X , E 2 , . . . , Ek} is a star of HjJ therefore d i m ^ L i ^ ^ ) ) = 0. Whence we 
can consider a coordinate system given by hyperplanes Ei f l T for 1 < i < k. 
From assumptions, g is affine, a £ (Ji=i and g(a) = a, thus gy? = id. Let 
x G C£ and x <jt T. Let the set {Fl,F2, . . . , F k } be a star of H£ such that 
a: £ Fi and EÌ,FÌ have a common base Q, for 1 < i < k. Of course TnFi C T, 

g\T = id, thus g(T n F{) = T n F{ for 1 < i < k. By Remark 1, a(Ei,Fi) for 
1 < i < k. However, g G Gk, whence a(Ei,Fi) a(g(Ei),g(Fi)). Thus Qi 
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is a base of g(Fi) for 1 < i < k. But we have g(TnFi) = TnFi for 1 < i < k, 
thus g(Fi) = Fi for 1 < i < k. Let Tx = (x,V) \ V. Then g(T{) = Ti and 
x = f | f = 1 (Fi n Ti). Hence $r(s) = x. m 

P r o o f of T h e o r e m 2. From Theorem 1 we get the thesis for k = 1. 
Let k > 1. From Proposition 6 we have G(A(H£)) Ç Gk-
Let / G Gk, and let {E\, E2, •.., Ek} be a star of such that E{ : 

xn-k+i = 0 for 1 < i < k. Set E\ = f(Ei) for 1 < i < k. From Proposition 
7, { E [ , E 2 , . . . ,E ' k} is a star of Now, from Proposition 9, there exists 
g G G(A(H£)) such that g(E[) = E{ for 1 < i < k. Let fx = g 0 / . Whence 
fi G Gk and = E{ for 1 < i < k. Let q = ( 0 , 0 , . . . , 0 , 1 , . . . , 1). Note 
that q <£ E{ for 1 < i < k. Set q' = fx(q). 

Assume q' — q. Thus, from Proposition 10, /1 = id. Whence g 0 f = id, 
thus f = g-\ hence / G G(A(H£)). 

Now we assume that q' q. Let T — (q, V)\V. Whence Eif)T is described 
by the set of equations {a^ — 0,x2 = 0 , . . . , z n _ f c = 0,xn_k+i = 0} for 
1 < i < k. 

(1) Let A G F, A ̂  0, and let g\ : T T be a transformation defined by 

9l((Xn-k+l, Xn-k+2, Xn-k+3, %n-k+4, • • •, Xn)) = 
= (1/A)xn_ f c + 1 , X n - k + 3 , Xn-k+4, •••, X n ) . 

Let ai,a2 G F, a i , a 2 0, and let g — [0,0 , . . . , 0 , a i , a 2 , 0 , . . .,0]. Thus 
(*) 

Q G n f = i \ ( V ( ^ i ) U V(^2))- From Proposition 8, there exists E G 0 
such that crg(Ei) = E2 and (r^(Ei) = Ei for 3 < i < k. Of course we have 
<4 G Gk, ae

E{T (Ei n T) = Ei n T for 3 < t < and (Ex n T) = E2 n T. 
Now from this and from Lemma 2, 3 we get that <T£|t is described in T by 
a k x k matrix M such that 

• 0 x2 0 0 . . 0" 
yi 0 0 0 . . 0 

M - 0 0 1 0 . . 0 

. 0 0 0 0 . . 1. 

where d e t ( M ) = —1. Let L be a line such that g,q G L. Thus L is described 
by the set of equations 

{xn-k+l = 1 + Xn-k+2 = l + a2t, Xn-k+3 = 1, Zn- fc+4 = 1, . . . , Xn = 1 ) 

where t G F. Whence i i l £ i = (0,1 - (a2/a 1), 1 , 1 , . . . , 1) and L n E2 = 



Reflections in equidistant hypersurfaces 

(1 - ( a x / a 2 ) , 0 , 1 , 1 , . . . , 1). 4 | t ( Z n Ex) = L n E2, thus 

0 ( - a i / a 2 ) 0 0 . . . 0 
( ~ a 2 / a i ) 0 0 0 . . . 0 

0 0 1 0 . . . 0 

0 0 0 0 . . . 1 
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Let ( - a i / « 2 ) = A. Whence we see that for any g\ there exists ae
E 6 

G(A(HJf)) such that ^ = 9 l and *•(£,•) = { ^ j ^ 

(2) Let A 6 i1 , A / 0 and let hi : T T be a transformation defined by 

hi((xn-k+i,xn-k+2,xn-.k+3,... , x n ) ) = 

= (Aa;n-fc+l) (l/tyXn-k+2, Xn-k+3,Xn-k+4, • • •, ^n)-

Let ffi, <72 be transformations such that 

9l((Xn-k+l,Xn-k+2,Xn-k+3,Xn-k+4, • • •,£«)) = 

(( l /A)a;n_i+2, Ain_fc+ i , a;n_fc+3, . . . , £„), 

52((®n-fc+lj®n-fc+25®n-fe+35®n-A;+4j • • - ^ n ) ) = 
= (Xn — fc+2 > ®n —fc+1; fc+3 > ®n—fc+4) • • • j 

From (1) we get <71,52 G G(A(H£)) such that gj lT = g j and gj(Ei) — 

{ E 3 ' 1 f o r 3 < \ < k f°r J = 1,2~ L e t 9 = 92 ° 91' N ° t e t h a t h l = 92 ° 91' 

Whence for any hi there exists a transformation hi € G(A(H£)) such that 
hi\T = hi and hi(Ei) = Ei for 1 < i < k. 

(3) At the beginning of this proof we defined the transformation f\. From 
this definition we have that / i | T is described in T by a k x k matrix N such 
that 

"A 0 . . . 0 
0 fa ... 0 

N = 

0 0 . . . (5k\ 

where n£=i A = We remember that fi(q) = q'. Let 

q' = (0,0,...,0,q'n_k+i,q'n_k+2,...,q'n). 

Thus q'n_k+j = Pi for 1 < i < k. Whence I | f= i Qn-k+i = Let be 
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transformation such that 

hi(x)j = < 

xj for n — k + 1 < j < n — k + i 

o r n - k + i + l < j < n 

Xix n - k + i for j = n - k + i 
{ ( l / \ i ) x n - k + i + i f o r j = n - k + i + 1 , 

where A, £ F, Xt ^ 0, and 1 < i < k — 1. From considerations analogous 
to (1) and (2) for any hi we get a transformation hi G G(A(H£)) such 
that hiiT = hi and hi(Er) = Er for 1 < r < k. Let Ai = q'n_k+1, X2 = 

?i,-fc+lin-fc+2» • • • ' = n f j / q'n-k+H a n d l e t h = hk-l 0 hk-2 © . . . O ^ . 

Let us see that if I l iLi Qn-k+i = then K ? ) = a n d there exists 
h G G(A(H£)) such that h\T = h and h(Ei) = E, for 1 ^ i < k. Now going 
to the beginning of this proof we have h~l f\(q) = q, h~l/i(-Ej) = Ei for 
1 < i < k, and h o / i £ From Proposition 10 we have h~l o fi = id. 
But ft = g o / , where g G G(A(HJJ)). Thus / = ¿T1 o fx = g~x o h. Hence 
f e G ( A(HJ)). 

L e t n ? = i v'n-k+i = L e t e = n - = " i V ( - E 0 a n d l e t h * = ° e u
 o h • N o t e 

that h*(q) = q' and there exists h* G G(A(0£)) such that h^T = h* and 
h*(Ei) = Ei for 1 < i < k. Now again coming back to the beginning of this 
proof, analogously, we have / G G(A(HJJ)). • 
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