

Krzysztof Radziszewski

REFLECTIONS IN EQUIDISTANT HYPERSURFACES II.
GEOMETRIC CHARACTERIZATION OF THE GROUP
GENERATED BY REFLECTIONS

1. Introduction

The group generated by reflections in equidistant hypersurfaces of degenerate hyperbolic space (\mathbb{H}_k^n) was described analitically in [5]. In this paper we give a geometric characterization of this group — first for $k = 1$ and next for $k > 1$. In the paper we shall use the notions and notations of [2], [3], [4], [5].

2. Results

In the family $\text{Aut}(\overline{\mathbb{H}}_k^n)$ we define a group of transformations.

DEFINITION 1. Let

$$G_k = \{f \in \text{Aut}(\overline{\mathbb{H}}_k^n) : (\forall T \in \mathcal{I}_k^n)[f(T) = T \wedge f|_T \text{ — equiaffine}]\}.$$

Note that

PROPOSITION 1. If $k = 1$ and $T \in \mathcal{I}_k^n$, then $\dim(T) = 1$ and $h : T \mapsto T$ is equiaffine iff for any $a, b \in T$ we have $ab \equiv_1 h(a)h(b)$, where $ab \equiv_1 cd \Leftrightarrow (\exists f \in G(\Sigma(\mathbb{H}_k^n)))[f(a) = c \wedge f(b) = d] \wedge ab \text{ — isotropic}$.

Just from the definition of \equiv_1 we have

PROPOSITION 2. If $\dim(T) = 1$, $a, b, c, d \in T$, $a = (a_1, \dots, a_n)$, $b = (b_1, \dots, b_n)$, $c = (c_1, \dots, c_n)$ and $d = (d_1, \dots, d_n)$, then $ab \equiv_1 cd \Leftrightarrow |a_n - b_n| = |c_n - d_n|$.

PROPOSITION 3. If $\sigma = \sigma_A^\theta \in \Sigma(\mathbb{H}_k^n)$, $T \in \mathcal{I}_k^n$, then $\sigma|_T = \sigma_{T \cap A|_T}$.

Hence we have

PROPOSITION 4. $G(\Sigma(\mathbb{H}_1^n))|_T$ is the group consisting of central symmetries and translations of T .

To give a geometric characterization of the groups $G(\Lambda(\mathbb{H}_1^n))$ and $G(\Lambda(\mathbb{H}_k^n))$ with $k > 1$, we need some more definitions and facts. We begin with the following rigidity condition.

PROPOSITION 5. *If $h \in G_1$, $E \in \mathfrak{G}$, $q \in \mathbb{C}_1^n$, $q \notin E$, $h(q) = q$, and $h|_E = \text{id}_E$, then $h = \text{id}$.*

Easily we get

PROPOSITION 6. $G(\Lambda(\mathbb{H}_k^n)) \subseteq G_k$.

Now from Proposition 5, 6, and Corollaries 2.14, 2.15 in [2], we directly get

THEOREM 1. $G(\Lambda(\mathbb{H}_1^n)) = G_1$.

DEFINITION 2.

Considering G_k for $k > 1$ is more complicated. Let $k > 1$. We define a star of \mathbb{H}_k^n to be a family of equidistant hypersurfaces $\mathbb{E} = \{E_1, \dots, E_k\}$ satisfying the following conditions

- (i) $E_i \in \mathfrak{G}$ for $1 \leq i \leq k$;
- (ii) $\bigcap_{i=1}^k \mathbb{V}(E_i) = \emptyset$, where $\mathbb{V}(E_i)$ is the top of E_i .

Stars are preserved by mappings from G_k , i.e.

PROPOSITION 7. *If E is a star of \mathbb{H}_k^n and $f \in G_k$, then $f(E)$ is a star of \mathbb{H}_k^n .*

Stars admit all possible reflections.

PROPOSITION 8. *If $\{E_1, \dots, E_k\}$ is a star of \mathbb{H}_k^n , $1 \leq i < j \leq k$, and $q \in \bigcap_{s \neq i, j} \mathbb{V}(E_s) \setminus (\mathbb{V}(E_i) \cup \mathbb{V}(E_j))$, then there exists $E \in \mathfrak{G}$ such that $\sigma_E^q(E_i) = E_j$ and $\sigma_E^q(E_s) = E_s$ for $s \neq i, j$.*

Moreover, the group $G(\Lambda(\mathbb{H}_k^n))$ acts transitively on stars.

PROPOSITION 9. *If $\mathbb{F} = \{F_1, \dots, F_k\}$ and $\mathbb{E} = \{E_1, \dots, E_k\}$ are stars of \mathbb{H}_k^n , then there exists a transformation $g \in G(\Lambda(\mathbb{H}_k^n))$ such that $g(F_i) = E_i$ for $1 \leq i \leq k$.*

Using stars we can formulate for $k > 1$ an analogue of rigidity condition Proposition 5.

PROPOSITION 10. *If $\{E_1, \dots, E_k\}$ is a star of \mathbb{H}_k^n , $k > 1$, $g \in G_k$, $a \notin \bigcup_{i=1}^k E_i$, $g(a) = a$, and $g(E_i) = E_i$ for $1 \leq i \leq k$, then $g = \text{id}$.*

Now from Theorem 1, Definition 2, Propositions 6, 10, 11, 12, 13 we get

THEOREM 2. $G(\Lambda(\mathbb{H}_k^n)) = G_k$.

3. Proofs and auxiliary lemmas

Proof of Proposition 5. Let $E = E_p[a]$ and $E_i = E_p[q]$. By Corollaries 2.14, 2.15 in [2], $E \cap E_1 = \emptyset$. Moreover $q \in h(E_i)$. Now we prove that $h|_{E_1} = \text{id}_{E_1}$. Let $x \in E_1$, $y \in E$, and let xy be isotropic. From Definition 1 and Proposition 1 we have $xy \equiv_1 h(x)y$. Now, from Proposition 2 follows $h(x) = \sigma_y(x)$ or $h(x) = x$. But if $h(x) = \sigma_y(x)$, then $h(E) \cap h(E_1) \neq \emptyset$. Whence $E \cap E_1 \neq \emptyset$ — contradiction. Thus $h|_{E_1} = \text{id}_{E_1}$.

Let $z \notin E \cap E_1$, $z_1 \in E$, $z_2 \in E_1$, and zz_1, zz_2 be isotropic. Because $h(z_1) = z_1$ and $h(z_2) = z_2$, therefore from Proposition 2, we have the thesis of Proposition 5. ■

LEMMA 1. *If $E \in \mathfrak{G}$, $P : x_n = 0$ is a base of E , $T \in \mathcal{I}_k^n$, then $E \cap T$ is a $(k-1)$ -dimensional hyperplane of T .*

Proof. From Theorem 2.9 and 2.11 in [2], E has the equation $c^2(-1 + x_1^2 + \dots + x_{n-k}^2) + x_n^2 = 0$ with $c \geq 0$. Hence T is described by a set of equations $\{x_1 = a_1, x_2 = a_2, \dots, x_{n-k} = a_{n-k}\}$. Thus $E \cap T$ is defined by a system of conditions: $x_1 = a_1, x_2 = a_2, \dots, x_{n-k} = a_{n-k}$, and $x_n = \varepsilon c \sqrt{1 - \sum_{i=1}^{n-k} a_i^2}$, where $\varepsilon = -1$ for $x_n < 0$ and $\varepsilon = 1$ for $x_n > 0$. Hence we have the thesis. ■

As a direct consequence of Lemma 2.6, Theorem 2.7 in [2], and Lemma 1 we infer

LEMMA 2. *If $E \in \mathfrak{G}$ and $T \in \mathcal{I}_k^n$, then $E \cap T$ is a $(k-1)$ -dimensional hyperplane of T .*

LEMMA 3. *If $f \in \Lambda$ and $T \in \mathcal{I}_k^n$, then $f|_T$ is a symmetry of T .*

Proof. Let $f = \sigma_E^x$. Now, from Definition 1 in [5] and by the affine definition of symmetry we have $\sigma_{E|T}^x = \sigma_{E \cap T}^x$. Next, from Lemma 2, $\sigma_{E \cap T}^x$ is a symmetry of T . ■

From Lemma 3 we obtain the following:

COROLLARY 1. *If $f \in \Lambda$ and $T \in \mathcal{I}_k^n$, then $f|_T$ is equiaffine.*

Proof of Proposition 6. Proposition 6 is a direct consequence of Theorem 1,2 in [5] and Corollary 1. ■

Proof of Theorem 1. From Proposition 6 we have $G(\Lambda(\mathbb{H}_1^n)) \subseteq G_1$. Let $f \in G_1$ and $E \in \mathfrak{G}$. Let P be a base of E and let P' be a base of $E' = f(E) \in \mathfrak{G}$. There exists a symmetry $g \in G(\Lambda(\mathbb{H}_1^n))$ such that $g(P') = P$. Let $g(E') = E''$. Let us see that P is a base of E and E'' . Let K be an isotropic line of \mathbb{H}_k^n , and let $\varrho = K \cap E$, $\varrho'' = K \cap E''$. There exists an equidistant hypersurface H such that P is a base of H and $\sigma_H^x(\varrho'') = \varrho$.

Let $\sigma_H^x(E'') = E_0$. From Corollaries 2.14, 2.15 in [2], $E_0 = E$. Whence $\sigma_H^x(E'') = E$. If $h = \sigma_H^x \circ g \circ f$ then $h(E) = E$ and $h \in G_1$, because $\sigma_H^x, g \in G(\Lambda(\mathbb{H}_1^n)) \subseteq G_1$. Whence $h|_E = \text{id}_E$. If there exists a point $q \in \mathbb{C}_1^n$ such that $q \notin E$ and $h(q) = q$, then, from Proposition 5, $h = \text{id}$. Thus $f = g^{-1} \circ \sigma_H^x \circ h \in G(\Lambda(\mathbb{H}_1^n))$. If there does not exist a point $q \in \mathbb{C}_1^n$ such that $q \notin E$ and $h(q) = q$, then we consider a transformation $h' = \sigma_E^x \circ h$. Of course h' satisfies the assumptions of Proposition 5, whence $h' = \text{id}$ and $h = \sigma_E^x \in G(\Lambda(\mathbb{H}_1^n))$. Thus also in this case $f = g^{-1} \circ \sigma_H^x \circ h \in G(\Lambda(\mathbb{H}_1^n))$. Hence $G_1 \subseteq G(\Lambda(\mathbb{H}_1^n))$. ■

Analysing the proof of Lemma 1 we can see that the following lemma is true.

LEMMA 4. *If $E \in \mathfrak{G}$, $P : x_n = 0$ is a base of E , and $T_1, T_2 \in \mathcal{I}_k^n$, then $E \cap T_1 \parallel E \cap T_2$.*

Now as a direct consequence of Lemma 2.6, Theorem 2.7 in [2], and Lemma 4 we infer.

LEMMA 5. *If $E \in \mathfrak{G}$ and $T_1, T_2 \in \mathcal{I}_k^n$, then $E \cap T_1 \parallel E \cap T_2$.*

Note that the following lemma is true.

LEMMA 6. *If X_1, X_2, Y_1, Y_2 are subspaces of the affine space with equal dimensions, $X_1 \cap X_2, Y_1 \cap Y_2 \neq \emptyset$, and $X_1 \parallel Y_1, X_2 \parallel Y_2$, then $X_1 \cap X_2 \parallel Y_1 \cap Y_2$.*

LEMMA 7. *If L_1, L_2 are isotropic lines of \mathbb{H}_k^n , $T_1, T_2 \in \mathcal{I}_k^n$, $T_1 \neq T_2$, and $L_1 \subset T_1, L_2 \subset T_2$, then the following conditions are equivalent:*

- (i) $L_1 \parallel L_2$;
- (ii) *there exist $E_1, E_2, \dots, E_{n-2} \in \mathfrak{G}$ such that $L_i = T_i \cap E_1 \cap E_2 \cap \dots \cap E_{n-2}$ for $i = 1, 2$.*

Proof. (ii) \Rightarrow (i) Let $L_i = T_i \cap E_1 \cap E_2 \cap \dots \cap E_{n-2}$. Thus $L_i = (T_i \cap E_1) \cap (T_i \cap E_2) \cap \dots \cap (T_i \cap E_{n-2})$. From Lemma 5, we have that $T_1 \cap E_1 \parallel T_2 \cap E_1, \dots, T_1 \cap E_{n-2} \parallel T_2 \cap E_{n-2}$. Now, from Lemma 6, we get $L_1 \parallel L_2$. ■

(i) \Rightarrow (ii) Let $L_1 \parallel L_2$. Thus there exists a plane Q generated by lines L_1, L_2 . Whence $L_i = Q \cap T_i$ for $i = 1, 2$. Let a_n be a direction vector of L_1, L_2 and $a \in L_1, b \in L_2$. Whence the vector $a_1 = \overrightarrow{ab}$ is non isotropic and Q is generated by the point a and two vectors a_1 and a_n ($Q = a + \langle a_1, a_n \rangle$). The vectors a_1 and a_n are not parallel, because the vector a_n is isotropic. Let (a_1, a_2, \dots, a_n) with a_{n-k+1}, \dots, a_n isotropic be a base of \mathbb{A}_n ; thus $\mathbb{A}_n = a + \langle a_1, a_2, \dots, a_n \rangle$. Now we define $(n-2)$ non isotropic hyperplanes such that Q is the intersection of them. Let $P_i = a + \langle a_1, a_2, \dots, a_{n-k+(i-1)}, a_{n-k+(i+1)}, \dots, a_n \rangle$ for $i = 1, \dots, k-1$. Let us see that $a_{n-k+i} \notin P_i$ for $i = 1, \dots, k-1$. Whence P_i for $i = 1, \dots, k-1$, is a non isotropic hyperplane. Let $R_i = a + \langle a_1, \dots, a_i, a_{i+1} - a_{n-1}, a_{i+2}, \dots, a_{n-2}, a_n \rangle$ for $i = 1, \dots, n-k-1$. From easy considerations we have that $a_{n-1} \notin R_i$ for

$i = 1, \dots, n - k - 1$ and the set of vectors $(a_1, \dots, a_i, a_{i+1} - a_{n-1}, a_{i+2}, \dots, a_{n-2}, a_n)$ is linearly independent for $i = 1, \dots, n - k - 1$. Whence R_i is a non isotropic hyperplane for $i = 1, \dots, n - k - 1$. Note that $P = \bigcap_{i=1}^{k-1} P_i = a + \langle a_1, \dots, a_{n-k}, a_n \rangle$. Now we have $P \cap \bigcap_{i=1}^{n-k-1} R_i = a + \langle a_1, a_n \rangle = Q$. However, $P_i \in \mathfrak{G}$ for $i = 1, \dots, k - 1$ and $R_i \in \mathfrak{G}$ for $i = 1, \dots, n - k - 1$. Hence the thesis. ■

LEMMA 8. *If K_1, K_2 are isotropic lines of \mathbb{H}_k^n and $f \in G_k$, then $K_1 \parallel K_2$ iff $f(K_1) \parallel f(K_2)$.*

Proof. Because G_k is a group we need to prove only that $K_1 \parallel K_2 \Rightarrow f(K_1) \parallel f(K_2)$. If there exists $T \in \mathcal{I}_k^n$ such that $K_1, K_2 \subset T$, then, by Definition 1, we have the thesis. Let $K_1 \subset T_1, K_2 \subset T_2, T_1, T_2 \in \mathcal{I}_k^n$, and $T_1 \neq T_2$. Let $K_1 \parallel K_2$. Thus, by Lemma 7, there exist $E_1, E_2, \dots, E_{n-2} \in \mathfrak{G}$ such that $K_i = T_i \cap E_1 \cap E_2 \cap \dots \cap E_{n-2}$ for $i = 1, 2$. Whence $f(K_i) = T_i \cap f(E_1) \cap f(E_2) \cap \dots \cap f(E_{n-2})$ for $i = 1, 2$. From Definition 1 we obtain $f(E_i) \in \mathfrak{G}$ for $i = 1, \dots, n - 2$ and $f(K_i)$ is an isotropic line for $i = 1, 2$. Now, by Lemma 7, we have $f(K_1) \parallel f(K_2)$. ■

We observe that any $f \in G_k$ determines the transformation $f^v : \mathbb{V}(\mathbb{C}_k^n) \rightarrow \mathbb{V}(\mathbb{C}_k^n)$ defined by the condition:

$f^v(q) = q'$ iff there exists an isotropic line K of \mathbb{H}_k^n such that $q \in \bar{K}$ and $q' \in f(K)$.

From Definition 1 and Lemma 8 we get that the definition of f^v is correct.

Proof of Proposition 7. Let $\{E_1, E_2, \dots, E_k\}$ be a star of \mathbb{H}_k^n and let $f \in G_k$. Whence $f(E_i) \in \mathfrak{G}$ for $1 \leq i \leq k$. Let $\bigcap_{i=1}^k \mathbb{V}(f(E_i)) \neq \emptyset$. Thus there exists a point x such that $x \in \mathbb{V}(f(E_i))$ for $1 \leq i \leq k$. However, $f^{v^{-1}}(x) \in \mathbb{V}(E_i)$ for $1 \leq i \leq k$. Whence $\bigcap_{i=1}^k \mathbb{V}(E_i) \neq \emptyset$ — contradiction. Hence $\{f(E_1), f(E_2), \dots, f(E_k)\}$ is a star of \mathbb{H}_k^n . ■

As a direct consequence of Lemma 5 and Definition 1 from [5] we infer.

LEMMA 9. *If $q \in \mathbb{V}(E)$, $q \notin \mathbb{V}(F)$, and $E, F \in \mathfrak{G}$, then $\sigma_F^q(E) = E$.*

LEMMA 10. *If $F_i \in \mathfrak{G}$ for $i = 1, 2$, then for any q such that $q \in \mathbb{V}(\mathbb{C}_k^n) \setminus (\mathbb{V}(F_1) \cup \mathbb{V}(F_2))$ there exists $E \in \mathfrak{G}$ such that $q \notin \mathbb{V}(E)$ and $\sigma_E^q(F_1) = F_2$.*

Proof. For $i = 1, 2$ let Q_i be a base of F_i . We assume that $q \in \mathbb{V}(\mathbb{C}_k^n) \setminus (\mathbb{V}(F_1) \cup \mathbb{V}(F_2))$. (Such a point may exist because $\dim(\mathbb{V}(\mathbb{C}_k^n)) = k - 1$ and $\dim(\mathbb{V}(F_i)) = k - 2$ for $i = 1, 2$.)

Let K be a isotropic line such that $q \in \bar{K}$ and, if $Q_1 \neq Q_2$, then $\bar{K} \cap (\bar{Q}_1 \cap \bar{Q}_2) = \emptyset$. Let $q_i = K \cap Q_i$ for $i = 1, 2$.) We construct now a hyperplane P and an equidistant hypersurface E with the base P .

We assume first that $Q_1 \neq Q_2$, then of course we have $q_1 \neq q_2$. Let a be the affine centre of a segment $q_1 q_2$. Since $\bar{Q}_1 \cap \bar{Q}_2$ is an $(n - 2)$ -dimensional

hyperplane of \mathbb{P}_n , then there exists $(n-1)$ -dimensional non isotropic hyperplane P such that $a \in P$ and $\bar{Q}_1 \cap \bar{Q}_2 \subset \bar{P}$.

Now we assume that $Q_1 = Q_2$; then $P = Q_1$. Of course $K \subset F_i$ for $i = 1, 2$. Thus, by Lemma 1 (i), (ii) in [5], there exist points $d_i = K \cap F_i$ for $i = 1, 2$. Let b be a affine centre of a segment $d_1 d_2$. Let E an equidistant hypersurface such that $b \in E$ and P is a base of E . Note that $q \notin \mathbb{V}(E)$. Consider the symmetry σ_E^q . From definition, Lemma 3 in [5], and Corollaries 2.14, 2.15 in [2] we have the thesis. ■

Proof of Proposition 8. Proposition 8 is a direct consequence of Lemma 9 and 10.

Let us see that for any $E \in \mathfrak{G}$, $\mathbb{V}(E) \subset \mathbb{V}(\mathbb{C}_k^n)$, $\dim(\mathbb{V}(E)) = k - 2$, and $\dim(\mathbb{V}(\mathbb{C}_k^n)) = k - 1$. Whence $\mathbb{V}(E)$ is a hyperplane of $\mathbb{V}(\mathbb{C}_k^n)$. Hence we get

LEMMA 11. *If $\{E_1, E_2, \dots, E_k\}$ is a star of \mathbb{H}_k^n , then there exists a point x such that $x = \bigcap_{i=2}^k \mathbb{V}(E_i)$.*

LEMMA 12. *If $\{E_1, E_2, \dots, E_k\}$ and $\{E'_1, E_2, \dots, E_k\}$ are stars of \mathbb{H}_k^n , then there exists $f \in G(\Lambda(\mathbb{H}_k^n))$ such that $f(E_1) = E'_1$ and $f(E_i) = E_i$ for $2 < i \leq k$.*

Proof. If $\{E'_1, E_2, \dots, E_k\}$ is a star of \mathbb{H}_k^n , then, from Lemma 11, there exists a point x such that $x = \bigcap_{i=2}^k \mathbb{V}(E_i)$ and $x \notin \mathbb{V}(E'_1), \mathbb{V}(E_1)$. Now, from Lemma 10, there exists $E \in \mathfrak{G}$ such that $x \notin \mathbb{V}(E)$ and $\sigma_E^x(E_1) = E'_1$. From Lemma 9 we have $\sigma_E^x(E_i) = E_i$ for $2 < i \leq k$. ■

LEMMA 13. *If $\{E_1, E_2, \dots, E_k\}$ and $\{F_1, F_2, \dots, F_k\}$ are stars of \mathbb{H}_k^n , then there exists a permutation σ of the set $\{1, 2, \dots, k\}$ such that for any $i \{E_{\sigma(1)}, \dots, E_{\sigma(i)}, F_{i+1}, \dots, F_k\}$ is a star of \mathbb{H}_k^n .*

Proof. A desired permutation is defined by induction on i .

First we consider $i = 1$. Whence we prove that there exists z in the set $\{1, 2, \dots, k\}$ such that $\{E_z, F_2, \dots, F_k\}$ is a star of \mathbb{H}_k^n .

From Lemma 11, there exists a point q_1 such that $q_1 = \bigcap_{i=2}^k \mathbb{V}(F_i)$. Because $\{E_1, E_2, \dots, E_k\}$ is a star of \mathbb{H}_k^n , thus there exists $z \in \{1, 2, \dots, k\}$ such that $q_1 \notin \mathbb{V}(E_z)$. We set $\sigma(1) = z$. Hence $\{E_{\sigma(1)}, F_2, F_3, \dots, F_k\}$ is a star of \mathbb{H}_k^n .

Now we prove that if $\{E_{\sigma(1)}, \dots, E_{\sigma(i)}, F_{i+1}, \dots, F_k\}$ is a star of \mathbb{H}_k^n , then there exists z in the set $\{1, 2, \dots, k\}$ such that $\{E_{\sigma(1)}, \dots, E_{\sigma(i)}, E_z, F_{i+2}, \dots, F_k\}$ is a star of \mathbb{H}_k^n .

From Lemma 11, there exists a point q_{i+1} such that

$$q_{i+1} = \bigcap_{m=1}^i \mathbb{V}(E_{\sigma(m)}) \cap \bigcap_{m=i+2}^k \mathbb{V}(F_m).$$

Because $\{E_1, E_2, \dots, E_k\}$ is a star of \mathbb{H}_k^n , thus there exists $z \in \{1, 2, \dots, k\}$ such that $q_{i+1} \notin \mathbb{V}(E_z)$. Of course $z \neq \sigma(1), \sigma(2), \dots, \sigma(i)$. Set $\sigma(i+1) = z$. Thus $\{E_{\sigma(i)}, \dots, E_{\sigma(i+1)}, F_{i+2}, \dots, F_k\}$ is a star of \mathbb{H}_k^n .

Hence we have the thesis of Lemma 13. ■

LEMMA 14. *If $\mathbb{E} = \{E_1, E_2, \dots, E_k\}$ and $\mathbb{F} = \{F_1, F_2, \dots, F_k\}$ are stars of \mathbb{H}_k^n , then there exists $f \in G(\Lambda(\mathbb{H}_k^n))$ such that $f(\mathbb{F}) = \mathbb{E}$.*

Proof. Let \mathbb{F}, \mathbb{E} be stars of \mathbb{H}_k^n . Thus, from Lemma 13, there exists a permutation σ of the set $\{1, 2, \dots, k\}$ such that $\mathbb{F}_i = \{E_{\sigma(1)}, \dots, E_{\sigma(i)}, F_{i+1}, \dots, F_k\}$ is a star of \mathbb{H}_k^n for $0 \geq i \geq k$. Note $\mathbb{F}_0 = \mathbb{F}$ and $\mathbb{F}_k = \mathbb{E}$. Now, from Lemma 12, there exists $f_i \in G(\Lambda(\mathbb{H}_k^n))$ such that $f_i : \mathbb{F}_{i-1} \mapsto \mathbb{F}_i$ for $1 \geq i \geq k$. Thus we see that $f = f_k \circ \dots \circ f_2 \circ f_1 \in G(\Lambda(\mathbb{H}_k^n))$ and $f(\mathbb{F}) = \mathbb{E}$. ■

Since every permutation is a superposition of a finite number of transpositions, then as a direct consequence of Lemma 11 and Proposition 8 we infer

LEMMA 15. *If $\{E_1, E_2, \dots, E_k\}$ is a star of \mathbb{H}_k^n and σ is a permutation of the set $\{1, 2, \dots, k\}$, then there exists $f \in G(\Lambda(\mathbb{H}_k^n))$ such that $f(E_i) = E_{\sigma(i)}$ for $1 \leq i \leq k$.*

Proof of Proposition 9. If \mathbb{F} and \mathbb{E} are stars of \mathbb{H}_k^n , then, from Lemma 14, there exists $f_1 \in G(\Lambda(\mathbb{H}_k^n))$ such that $f_1(\mathbb{F}) = \mathbb{E}$. Whence $f_1(F_i) = E_{\sigma(i)}$ where σ is some permutation of the set $\{1, 2, \dots, k\}$. Now, from Lemma 15, there exists $f_2 \in G(\Lambda(\mathbb{H}_k^n))$ such that $f_2(E_{\sigma(i)}) = E_i$ for $1 \leq i \leq k$. Hence $g = f_1 \circ f_2 \in G(\Lambda(\mathbb{H}_k^n))$ and $g(F_i) = E_i$ for $1 \leq i \leq k$. ■

Now we define the following relation α :

$$\begin{aligned} \alpha(E, F) : \Leftrightarrow E, F \in \mathfrak{G} \wedge E \cap F = \emptyset \wedge \mathbb{V}(E) = \mathbb{V}(F) \wedge \\ \wedge (\exists x \notin E \cup F)(\exists !G \in \mathfrak{G})[x \in G \wedge G \cap E = \emptyset = G \cap F] \text{ or } E = F. \end{aligned}$$

From this definition we get

Remark 1. Let $E, F \in \mathfrak{G}$. Then $\alpha(E, F)$ iff $E = F$ or $E \neq F$ and there exists a hyperplane P which is a common base of E and F .

Proof of Proposition 10. Let $T = \langle a, \mathbb{V} \rangle \setminus \mathbb{V}$. From the assumptions we get $g(E_i \cap T) = E_i \cap T$ for $1 \leq i \leq k$. From Lemma 2, $E_i \cap T$ is a $(k-1)$ -dimensional hyperplane of T , for $1 \leq i \leq k$. Because the set $\{E_1, E_2, \dots, E_k\}$ is a star of \mathbb{H}_k^n therefore $\dim(\bigcap_{i=1}^k (E_i \cap T)) = 0$. Whence we can consider a coordinate system given by hyperplanes $E_i \cap T$ for $1 \leq i \leq k$. From assumptions, g is affine, $a \notin \bigcup_{i=1}^k E_i$, and $g(a) = a$, thus $g|_T = \text{id}$. Let $x \in \mathbb{C}_k^n$ and $x \notin T$. Let the set $\{F_1, F_2, \dots, F_k\}$ be a star of \mathbb{H}_k^n such that $x \in F_i$ and E_i, F_i have a common base Q_i for $1 \leq i \leq k$. Of course $T \cap F_i \subset T$, $g|_T = \text{id}$, thus $g(T \cap F_i) = T \cap F_i$ for $1 \leq i \leq k$. By Remark 1, $\alpha(E_i, F_i)$ for $1 \leq i \leq k$. However, $g \in G_k$, whence $\alpha(E_i, F_i) \Leftrightarrow \alpha(g(E_i), g(F_i))$. Thus Q_i

is a base of $g(F_i)$ for $1 \leq i \leq k$. But we have $g(T \cap F_i) = T \cap F_i$ for $1 \leq i \leq k$, thus $g(F_i) = F_i$ for $1 \leq i \leq k$. Let $T_1 = \langle x, \mathbb{V} \rangle \setminus \mathbb{V}$. Then $g(T_1) = T_1$ and $x = \bigcap_{i=1}^k (F_i \cap T_1)$. Hence $g(x) = x$. ■

Proof of Theorem 2. From Theorem 1 we get the thesis for $k = 1$.

Let $k > 1$. From Proposition 6 we have $G(\Lambda(\mathbb{H}_k^n)) \subseteq G_k$.

Let $f \in G_k$, and let $\{E_1, E_2, \dots, E_k\}$ be a star of \mathbb{H}_k^n such that $E_i : x_{n-k+i} = 0$ for $1 \leq i \leq k$. Set $E'_i = f(E_i)$ for $1 \leq i \leq k$. From Proposition 7, $\{E'_1, E'_2, \dots, E'_k\}$ is a star of \mathbb{H}_k^n . Now, from Proposition 9, there exists $g \in G(\Lambda(\mathbb{H}_k^n))$ such that $g(E'_i) = E_i$ for $1 \leq i \leq k$. Let $f_1 = g \circ f$. Whence $f_1 \in G_k$ and $f_1(E_i) = E_i$ for $1 \leq i \leq k$. Let $q = (0, 0, \dots, 0, 1, \dots, 1)$. Note that $q \notin E_i$ for $1 \leq i \leq k$. Set $q' = f_1(q)$.

Assume $q' = q$. Thus, from Proposition 10, $f_1 = \text{id}$. Whence $g \circ f = \text{id}$, thus $f = g^{-1}$, hence $f \in G(\Lambda(\mathbb{H}_k^n))$.

Now we assume that $q' \neq q$. Let $T = \langle q, \mathbb{V} \rangle \setminus \mathbb{V}$. Whence $E_i \cap T$ is described by the set of equations $\{x_1 = 0, x_2 = 0, \dots, x_{n-k} = 0, x_{n-k+i} = 0\}$ for $1 \leq i \leq k$.

(1) Let $\lambda \in F$, $\lambda \neq 0$, and let $g_1 : T \mapsto T$ be a transformation defined by

$$\begin{aligned} g_1((x_{n-k+1}, x_{n-k+2}, x_{n-k+3}, x_{n-k+4}, \dots, x_n)) &= \\ &= (\lambda x_{n-k+2}, (1/\lambda)x_{n-k+1}, x_{n-k+3}, x_{n-k+4}, \dots, x_n). \end{aligned}$$

Let $\alpha_1, \alpha_2 \in F$, $\alpha_1, \alpha_2 \neq 0$, and let $\varrho = [0, 0, \dots, 0, \underset{(k)}{\alpha_1, \alpha_2}, 0, \dots, 0]$. Thus $\varrho \in \bigcap_{i=1}^k \mathbb{V}(E_i) \setminus (\mathbb{V}(E_1) \cup \mathbb{V}(E_2))$. From Proposition 8, there exists $E \in \mathfrak{G}$ such that $\sigma_E^\varrho(E_1) = E_2$ and $\sigma_E^\varrho(E_i) = E_i$ for $3 \leq i \leq k$. Of course we have $\sigma_E^\varrho \in G_k$, $\sigma_{E|T}^\varrho(E_i \cap T) = E_i \cap T$ for $3 \leq i \leq k$, and $\sigma_{E|T}^\varrho(E_1 \cap T) = E_2 \cap T$. Now from this and from Lemma 2, 3 we get that $\sigma_{E|T}^\varrho$ is described in T by a $k \times k$ matrix M such that

$$M = \begin{bmatrix} 0 & x_2 & 0 & 0 & \dots & 0 \\ y_1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & & & & & \\ 0 & 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

where $\det(M) = -1$. Let L be a line such that $\varrho, q \in \bar{L}$. Thus L is described by the set of equations

$$\{x_{n-k+1} = 1 + \alpha_1 t, x_{n-k+2} = 1 + \alpha_2 t, x_{n-k+3} = 1, x_{n-k+4} = 1, \dots, x_n = 1\}$$

where $t \in F$. Whence $L \cap E_1 = (0, 1 - (\alpha_2/\alpha_1), 1, 1, \dots, 1)$ and $L \cap E_2 =$

$(1 - (\alpha_1/\alpha_2), 0, 1, 1, \dots, 1) \cdot \sigma_E^\ell(L \cap E_1) = L \cap E_2$, thus

$$M = \begin{bmatrix} 0 & (-\alpha_1/\alpha_2) & 0 & 0 & \dots & 0 \\ (-\alpha_2/\alpha_1) & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & & & & & \\ 0 & 0 & 0 & 0 & \dots & 1 \end{bmatrix}.$$

Let $(-\alpha_1/\alpha_2) = \lambda$. Whence we see that for any g_1 there exists $\sigma_E^\ell \in G(\Lambda(\mathbb{H}_k^n))$ such that $\sigma_{E|_T}^\ell = g_1$ and $\sigma_E^\ell(E_i) = \begin{cases} E_{3-i} & \text{for } i \leq 2 \\ E_i & \text{for } 3 \leq i \leq k. \end{cases}$

(2) Let $\lambda \in F$, $\lambda \neq 0$ and let $h_1 : T \mapsto T$ be a transformation defined by

$$\begin{aligned} h_1((x_{n-k+1}, x_{n-k+2}, x_{n-k+3}, \dots, x_n)) &= \\ &= (\lambda x_{n-k+1}, (1/\lambda)x_{n-k+2}, x_{n-k+3}, x_{n-k+4}, \dots, x_n). \end{aligned}$$

Let g_1, g_2 be transformations such that

$$\begin{aligned} g_1((x_{n-k+1}, x_{n-k+2}, x_{n-k+3}, x_{n-k+4}, \dots, x_n)) &= \\ &= ((1/\lambda)x_{n-k+2}, \lambda x_{n-k+1}, x_{n-k+3}, x_{n-k+4}, \dots, x_n), \\ g_2((x_{n-k+1}, x_{n-k+2}, x_{n-k+3}, x_{n-k+4}, \dots, x_n)) &= \\ &= (x_{n-k+2}, x_{n-k+1}, x_{n-k+3}, x_{n-k+4}, \dots, x_n). \end{aligned}$$

From (1) we get $\bar{g}_1, \bar{g}_2 \in G(\Lambda(\mathbb{H}_k^n))$ such that $\bar{g}_{j|_T} = g_j$ and $\bar{g}_j(E_i) = \begin{cases} E_{3-i} & \text{for } i \leq 2 \\ E_i & \text{for } 3 \leq i \leq k \end{cases}$ for $j = 1, 2$. Let $g = g_2 \circ g_1$. Note that $h_1 = g_2 \circ g_1$. Whence for any h_1 there exists a transformation $\bar{h}_1 \in G(\Lambda(\mathbb{H}_k^n))$ such that $\bar{h}_{1|_T} = h_1$ and $\bar{h}_1(E_i) = E_i$ for $1 \leq i \leq k$.

(3) At the beginning of this proof we defined the transformation f_1 . From this definition we have that $f_{1|_T}$ is described in T by a $k \times k$ matrix N such that

$$N = \begin{bmatrix} \beta_1 & 0 & \dots & 0 \\ 0 & \beta_2 & \dots & 0 \\ \vdots & & & \\ 0 & 0 & \dots & \beta_k \end{bmatrix},$$

where $\prod_{i=1}^k \beta_i = \pm 1$. We remember that $f_1(q) = q'$. Let

$$q' = (0, 0, \dots, 0, q'_{n-k+1}, q'_{n-k+2}, \dots, q'_n).$$

Thus $q'_{n-k+i} = \beta_i$ for $1 \leq i \leq k$. Whence $\prod_{i=1}^k q'_{n-k+i} = \pm 1$. Let h_i be a

transformation such that

$$h_i(x)_j = \begin{cases} x_j & \text{for } n - k + 1 \leq j < n - k + i \\ \lambda_i x_{n-k+i} & \text{or } n - k + i + 1 < j \leq n \\ (1/\lambda_i) x_{n-k+i+1} & \text{for } j = n - k + i \\ & \text{for } j = n - k + i + 1, \end{cases}$$

where $\lambda_i \in F$, $\lambda_i \neq 0$, and $1 \leq i \leq k - 1$. From considerations analogous to (1) and (2) for any h_i we get a transformation $\bar{h}_i \in G(\Lambda(\mathbb{H}_k^n))$ such that $\bar{h}_{i|T} = h_i$ and $\bar{h}_i(E_r) = E_r$ for $1 \leq r \leq k$. Let $\lambda_1 = q'_{n-k+1}$, $\lambda_2 = q'_{n-k+1} q'_{n-k+2}$, \dots , $\lambda_{k-1} = \prod_{i=1}^{k-1} q'_{n-k+i}$, and let $h = h_{k-1} \circ h_{k-2} \circ \dots \circ h_1$.

Let us see that if $\prod_{i=1}^k q'_{n-k+i} = 1$, then $h(q) = q'$ and there exists $\bar{h} \in G(\Lambda(\mathbb{H}_k^n))$ such that $\bar{h}|_T = h$ and $\bar{h}(E_i) = E_i$ for $1 \leq i \leq k$. Now going to the beginning of this proof we have $\bar{h}^{-1} f_1(q) = q$, $\bar{h}^{-1} f_1(E_i) = E_i$ for $1 \leq i \leq k$, and $\bar{h}^{-1} \circ f_1 \in G_k$. From Proposition 10 we have $\bar{h}^{-1} \circ f_1 = \text{id}$. But $f_1 = g \circ f$, where $g \in G(\Lambda(\mathbb{H}_k^n))$. Thus $f = g^{-1} \circ f_1 = g^{-1} \circ \bar{h}$. Hence $f \in G(\Lambda(\mathbb{H}_k^n))$.

Let $\prod_{i=1}^k q'_{n-k+i} = -1$. Let $\varrho = \bigcap_{i=1}^{k-1} \mathbb{V}(E_i)$ and let $h^* = \sigma_{E_{k|T}}^\varrho \circ h$. Note that $h^*(q) = q'$ and there exists $\bar{h}^* \in G(\Lambda(\mathbb{H}_k^n))$ such that $\bar{h}^*|_T = h^*$ and $\bar{h}^*(E_i) = E_i$ for $1 \leq i \leq k$. Now again coming back to the beginning of this proof, analogously, we have $f \in G(\Lambda(\mathbb{H}_k^n))$. ■

References

- [1] K. Borsuk, *Geometria analityczna wielowymiarowa*. Warszawa 1977.
- [2] K. Radziszewski, *Cyclic hypersurfaces in degenerate hyperbolic spaces*, Atti. Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur. vol. 72 (Italy 1996). 233–248.
- [3] K. Radziszewski, *Group of dilatations of degenerate hyperbolic spaces*, Zeszyty Nauk. Geometria 19 (1991) 55–65.
- [4] K. Radziszewski, *On some inversion-like transformations of degenerate hyperbolic plane*, Zeszyty Nauk. Geometria 18 (1990). 53–61.
- [5] K. Radziszewski, *Reflections in equidistant hypersurfaces I*, Demonstratio Math. 29 (1995) 205–215.

INSTITUTE OF MATHEMATICS
GDAŃSK UNIVERSITY
ul. Wita Stwosza 57
80-952 GDAŃSK, POLAND

Received April 15, 1994.