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SOME RESULTS ON COMMON FIXED POINTS
OF COMPATIBLE MAPPINGS

1. Introduction

Let (X,u) be a uniform space. A family D = {dy : a@ € I,I be-
ing an indexing} of pseudometrics on X is called an associated family of
pseudometrics for u if the family 8 = {V(a,7) : « € I,r > 0}, where
V(a,r) = {(z,y): 2,y € X,do(z,y) < r} is a subbase for the uniformity u.
We may assume f itself to be a base by adjoining finite intersection of mem-
bers of 4. The corresponding family of pseudometrics is called an augmented
associated family for u (cf. Thron [17]). We shall denote this family by D*.

DEFINITION 1.1. Mappings f,g : X — X will be called compatible if
and only if for each dy € D*, lim, do(fg(zn),9f(zn)) = 0, whenever {z,}
is a sequence in X such that lim, g(z,) = ¢ for some t € X.

The notion of compatible mappings in metric spaces was first introduced
by Jungck [4] and was extended to probabilistic metric spaces (PM-spaces)
by the author in [9]. The above notion of compatible mappings is a gen-
eralization of the same. By now, it is well-known that these mappings are
more general than commuting mappings and weakly commuting mappings
studied by Sessa [14]. For details we refer to Jungck [5, 6]. '

Uniform spaces are the natural generalization of PM-spaces, where the
uniformity is generated by a family of pseudometrics associated with the
probabilistic metric, and the Hausdorff topology induced by the probabilis-
tic metric coincides with the uniform topology.

Motivated with this idea, we first prove common fixed point theorems for
two pairs of compatible mappings on a uniform space and, subsequently, de-
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rive their analogues in metric and PM-spaces. Finally, we extend our results
to 2-metric spaces for the same class of mappings.

2. Common fixed point theorems in uniform spaces
Throughout this section, X will denote a sequentially complete Hausdorff
uniform space defined by D* = {d, : a € I}.

LemMma 2.1. If f,g : X — X are compatible with f continuous and
f(zn),9(zn) — t as n — oo, where {z,} is a sequence in X, then gf(z,) —
f(t) as n — .

Proof. We note that if g(z,) — ¢, then fg(z,) — f(t) since f is con-
tinuous. Further, we have for any d, € D*,
da(9f(zn), f(1) < da(9f(2n), f9(7n)) + da(fg(zn), f(£)) = 0 asn— oo
since f is compatible. This proves the lemma.

LeMMA 2.2. Let A, B, S and T be self mappings of X such that A(X) C
T(X) and B(X) C S(X), and 29 € X. If for each d, € D*, there is a
constant ky € (0,1) such that for all z,y € X, we have
(1)  da(A(z), B(y))

< ko max{da(A(2), §(2)), da( B(y), T(y)), da(5(2), T(¥)),

1

51da(A(2), T(y)) + da(B(y), S(2))]},
then a sequence {yn }nen beginning at zo and defined by
(2) Yan—1 = T(22n-1) = A(22n-2), Yan—2 = S(225) = B(22n-1)

1s a Cauchy one.

Proof. Since A(X) C T(X) and B(X) C S(X), we may choose z; and
zy in X such that y; = T(z1) = A(zo) and y2 = S(z3) = B(«1). In general,
we may choose 3,1 and 2, in X such that yon—1 = T(22,-1) = A(T2—2)
and yon, = S(z2n) = B(22n-1). Hence the existence of the sequence {y,} as
required above is ensured. Further, from (1) and (2) it follows that

do(T(z2n+1), S(T2n42)) = do(A(Z2n), B(T2n+1))
Ska max{da(T($2n+1)a S($2n)), da(5($2n+2), T(z2n+1))a %da(s(z2n+2), S(mZn))}
<ka max{da(S(m2n+2), T(z2n+1)), do(T(22n41), S(220))}
because
%da(5($2n+2), S(zqn)) < %[da(s(m2n+2)a T(zant1))+do(T(z2nt1), S(z2r))
< max{da(5($2n+2), T($2n+1)), da(T(x2n+1)7 S(a:?ﬂ))}
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Since ko € (0,1), the relation do(T(22n+41), S(22n42)) < kalda(T(T2n+1);
S(x2n+2)) is not possible. Therefore we have do(T(z2n+1), S(T2n42)) <
kada(T($2n+1)7S(z2n))- Similarl% da(T("zZn-}-B)a S(z2n+2)) S kada
(S(z2n+2, T(z2n41)). Consequently, do(Yns1,¥n) < kadoa(Yn,Yn-1) for all
n and hence {y,} is a Cauchy sequence.

THEOREM 2.1. Let A, B, S and T be self mappings of X. Suppose
that S and T are continuous, the pairs A, S and B,T are compatible, and
A(X)C T(X) and B(X) C S(X). If for each d, € D*, there is a k, € (0,1)
such that the condition (1) is satisfied for all x,y € X, then A,B,S5 and T
have a unique common fized point in X.

Proof. By Lemma 2.2, there is a sequence {z,} in X such that {y,}
defined in (2) is a Cauchy sequence. Therefore by the sequential complete-
ness of X, {yn} converges to a point z € X. Consequently, the subsequences
{A(z20)}, {S(z20)}, {B(22n-1)} and {T(z2,~1)} also converge to z. Hence
the continuity of S and T, together with the compatibility of A, S and B, T
and Lemma 2.1, implies that

SS(zan) — S(2), AS(22n) — S(2)
and
TT(zan—1) — T(2), BT (23n-1) — T(2).
Now setting z = S(z2,) and y = T(z3,—1) in (1) and allowing n — oo
we get
do(5(2),T(2)) £ kqmax{0,0,ds(S5(2),T(z)),da(S(2),T(2))}.
Therefore §(z) = T(z).
A similar arguments with z = z and y = T(z3,-1) in (1) yields A(z) =
T(z).
( I‘)‘inally, taking z = y = z in (1) we get
A(z) = B(2) = S(z) = T(2).
To prove that z is a common fixed point of A, B, S and T, observe that
do(A(22n), B(2)) < ko max{da(A(z2n), 5(220)), da( B(2), T(2)),
da(5(220), T(2)), %da(A(an), T(2)) + do(B(2), S(22n))]}-

Making n — oo and using B(z) = T'(z), we have dy(z, B(2)) < kqdy(2, B(2))
proving
z = B(z).
Hence
A(2)=B(2)=8(:2)=T(z) ==z
and thus z is a common fixed point of A, B, S and T
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The uniqueness of 2 as a common fixed point of A, B, S and T can be
easily verified.

THEOREM 2.2. Let S and T be self mappings of X, and let A,B : X —
S(X)NT(X). Suppose that S and T are continuous, and the pairs A, S and
B,T are compatible. If for each d, € D*, there is a constant k, € (0,1)
such that the condition (1) is satisfied for all z,y € X, then A,B,S and T
have a unique common fized point in X.

Proof. Since A,B: X — S(X)NT(X), it follows that A(X) C T(X)
and B(X) C S(X). Hence all the hypotheses of Theorem 2.1 are satisfied.
Therefore the result follows.

3. Common fixed point theorems in PM-spaces

A nonnegative real valued function f defined on the reals R is called a
distribution function if it is nondecreasing, left continuous with inf f = 0
and sup f = 1. A PM-space is a pair (X, F'), where X is a nonempty set
and F' is a mapping from X X X to the set of all distribution functions. The
value of F' at (p,q) € X x X is denoted by Fj 4, and F, ; are supposed to
satisfy the following conditions:

() Fog(z)=1ifp=gq,2>0 (ii) Fp4(0) =0 (iii) F, 4 = Fyp,

(iv) If F, q(z) =1 and Fy . (y) = 1, then Fp . (z+y) =1forall p,q,r€ X
and z,y > 0.

The mapping F is called a probabilistic metric on X. Further, a Menger
space is a triplet (X, F,t), where (X, F) is a PM-space and ¢ is a t-norm (cf.
Schweizer and Sklar [11}) such that

(V) Fpﬂ‘(x + y) Z t{Fqu(x)7FQy7‘(y)} for all P,q,T € X and T,y 2 0.

It is known that the collection §* = {U(z,¢,A) : ¢ € X,¢e,A > 0},
where U(z,¢,A) = {y € X : Fy 4(€) > 1 — A}, is a subbase for the Haus-
dorff topology induced by the probabilistic metric F' (cf. [11]). It is also
known that this topology is induced by a uniformity with a countable
basis and hence is metrizable (cf. [12]). It was shown by Cain and Kas-
riel {1] that for each @ € (0,1), there is a pseudometric d, defined by
do(z,y) = sup{v : F; 4(v) < 1— a} such that dy(z,y) = 0iff £ = y and d,
is nondecreasing left continuous function of a with F, ,(da(z,y)) < 1 - a.
Further, F; ,(¢) > 1 — o iff do(z,y) < €, and the topology generated by the
family of pseudometrics {d, : @ € (0,1)} associated with the probabilistic
metric F' coincides with the Hausdorff topology induced by F. Hence the
following results are the direct consequences of Theorems 2.1 and 2.2.

THEOREM 3.1. Let A, B, S and T be self mappings of a compatible Men-
ger space (X, F,t), where t is continuous and t(z,z) > z for all z € [0,1].
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Suppose that S and T are continuous, the pairs A,S and B,T are compati-
ble, and that A(X) C T(X) and B(X) C S(X). If for each a € (0,1), there
is a constant ko € (0,1) such that for all z,y € X and v > 0, we have

(3)  Fa),By)(ka®) 2 U{Faz),5(5)(0): U Fp(y), 13 (0), U Fs(),15) (V)5
t(Fa(z),T(») (2v), FB(y),5(2)(27)))))

whenever F; ,(v) > 1—a, then A,B,S and T have a unique common fized
point in X.

THEOREM 3.2. Let S and T be self mappings of a complete Menger space
(X, F,t) where t is continuous and t(z,z) > = for all z € [0,1] and let
A,B: X — S(X)NT(X). Suppose that S and T are continuous and the
pairs A, S and B, T are compatible. If for each o € (0, 1), there is a constant
ko € (0,1) such that the condition (3) is satisfied for all z,y € X and v > 0,
then A,B,S and T have a unique common fized point in X.

Since each metric space (X,d) is a PM-space (cf. [13]) via F,4(z) =
H(z — d(p,q)), where H is the distribution function defined by H(z) = 0 if
z <0, H(z) =1if z > 0, we have the following corollaries as consequences
of Theorems 3.1 and 3.2.

CoROLLARY 3.1 [5, Theorem 3.1]. Let A, B, S and T be self mappings
of a metric space (X,d). Suppose that S and T are continuous, the pairs
A,S and B,T are compatible, and that A(X) C T(X) and B(X) C §(X).
If there is a constant k € (0,1) such that for all z,y € X we have

(1) d(AG), B()) < kmax{d(A(=), (=), d(B(3), T(»)), d(S(2), T(w),
SA(A), T@w) + d(B(), S},

then A, B,S and T have a unique common fized point in X .

COROLLARY 3.2. Let S and T be self mappings of a metric space (X, d),
and let A,B : X — S(X)NT(X). Suppose that S and T are continuous,
and the pairs A, S and B,T are compatible. If there is a constant k € (0,1)
such that the condition (4) is satisfied for all z,y € X, then A,B,S and T

have a unique common fized point in X.

4. Common fixed point theorems in 2-metric spaces

We shall first recall some preliminaries on 2-metric spaces from Gahler
[3]-

DEFINITION 4.1. Let X be a nonempty set. A nonnegative real valued

function d on X x X X X is called a 2-metric on X if the following conditions
hold:
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(i) to each pair of distinct points z,y € X, there exists a point z € X
such that d(z,y,2) # 0.

(ii) d(z,y,z) = 0 when at least two of the points z,y and z of X are
equal.

(iil) d(z,y,2) = d(y,2,¢) = d(z,z,y) for all z,y,2 € X.

(iv) d(z,y,2) < d(z,y,w) + d(z,w,2) + d(w, y, 2) for all z,y,2,w € X.

The pair (X, d) is called a 2-metric space.

Just as a metric abstracts the properties of the length function, a 2-
metric space has its topology given by a real function of point triples which
abstracts the properties of the area function for Euclidean triangles. In the
above topology we have the following:

DEFINITION 4.2. A sequence {z,} in X is said to be convergent to a
point z € X iff lim,, d(zn,z,a) = 0 for all a € X. Further, the sequence {z,}
is called a Cauchy sequence iff lim, », d(2m,2n,a) = 0 for all @ € X. Finally
X is said to be complete if every Cauchy sequence in X is convergent.

A 2-metric d on X is said to be continuous if it is continuous in two
of its three arguments. If d is continuous in any two arguments, then it is
continuous in all the three arguments.

LEMMA 4.1. (Singh [15]). Let {z,} be a sequence in a 2-metric space
(X,d). If there exists a constant k € (0,1) such that d(z,,Zn41,a) <
kd(z,-1,2n,a) for all naturals n, then {z,} is a Cauchy sequence.

DEFINITION 4.3. Self mappings f and g of a 2-metric space (X, d) are
called compatible if lim, d(fg(zn),gf(z.),a) = 0 for all a € X, whenever
{z.} is a sequence in X such that lim, f(z,) = lim, g(z,) = t for some
teX.

The following results are the analogues of the results proved in section
2. We shall outline the main sketch of the proof of these results and omit
the routine details.

LEMMA 4.2. Let f and g be compatible self mappings of a 2-metric space
(X,d), and let lim,, f(z,,) = lim, g(z,) =t for some t € X. If f is contin-
uous, then lim, g f(z,) = f(?).

LEMMA 4.3. Let A, B,S and T be self mappings of a 2-metric space
(X,d) such that A(X)C T(X) and B(X) C S(X), and let zo € X. If there
is a constant k € (0,1) such that for all z,y,a € X, we have

(5)  d(A(z), B(y),a)
< kmax{d(5(z), A(z),a), d(T(y), B(y), a),d(5(x), T(y),a),

%[d(S(z), B(y),a)+ d(T(y), A(z),a)]},
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then there is a Cauchy sequence {yn }nen in X defined by (2).

Proof. The existence of the sequence {y,} follows as in the case of
Lemma 2.2. By condition (5), for all a € X, we have

(6)  d(Y2nt1,Y2n+2,0) = d(A(Z2n), B(T2n41), @)
1
< kmax{d(yz2n, Yon+1, @), A(Y2n+1, Y2nt2, ), Ed(y2m Y2n+2,0)}
and

d(Yan, Yan+2, @) < d(Y2n, Yant2, Yont1) + A(Y2n, Y2nt1,8) + d(Y2nt1, Yony2, @)
= d(Yont1, Y2n+2, Y2n) + AY2n, Y2nt+1,8) + A(Y2n41, Yont2, @)
= d(Y2n, Y2nt1, @) + d(Yant1, Yons2, @)

as d(Yan+1, Y2nt2, Y2n) = 0 follows from (5).

Therefore 2d(y2n, Y2nt2,6) < 3[d(¥2n, Y2n+1,8) + d(Yans1, Yonsg2,0)] <
max{d(Yzn, Y2n+1,2), d(Y2n+1, Y2n+2, @) }. Thus using this fact in (6) and fol-
lowing the arguments of Lemma 2.2, the result follows.

Now we state without proof the following theorems. The proofs can be
similarly constructed on the lines of the proofs of Theorems 2.1 and 2.2.

THEOREM 4.1. Let A, B, S and T be self mappings of a complete 2-metric
space (X,d) with d continuous. Suppose that S and T are continuous, the
pairs A,S and B,T are compatible, and that A(X) C T(X) and B(X) C
S(X). If there is a constant k € (0,1) such that the condition (5) holds for
allz,y,a € X, then A, B, S and T have a unique common fized point in X .

THEOREM 4.2. Let S and T be self mappings of a complete 2-metric space
(X,d) with d continuous, and let A,B: X — S(X)NT(X). Suppose that S
and T are continuous and the pairs A, S and B,T are compatible. If there
is a constant k € (0, 1) such that the condition (5) holds for all z,y,a € X,
then A, B, S and T have a unique common fized point in X .

5. Remarks

(1) Theorem 4.1 improves a result of Kubiak [8, Theorem 1] in the sense
that the requirement of compatibility is more general than that of commu-
tativity.

(ii) With the proper choice of the mappings A, B, S and T it is easy to
see that our results generalize the results of Khan and Fisher 7, Theorem
1], Rhoades [10, Theorem 4] and Singh, Tiwari and Gupta [16, Theorem 1].

(iii) Continuity requirements for the mappings A and B in Ding [2] can
be dispensed with.
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