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SOME RESULTS ON COMMON FIXED POINTS 
OF COMPATIBLE MAPPINGS 

1. Introduction 
Let (X, u) be a uniform space. A family D = {da : a £ 1,1 be-

ing an indexing} of pseudometrics on X is called an associated family of 
pseudometrics for u if the family (3 = {V(a , r ) : a G r > 0}, where 
V(a,r) = {(x,y): x,y G X,da(x,y) < r} is a subbase for the uniformity u. 
We may assume ¡3 itself to be a base by adjoining finite intersection of mem-
bers of ¡3. The corresponding family of pseudometrics is called an augmented 
associated family for u (cf. Thron [17]). We shall denote this family by D*. 

D E F I N I T I O N 1 . 1 . Mappings f,g : X X will be called compatible if 
and only if for each da 6 D*, ]imnda(fg(xn),gf(xn)) = 0, whenever 
is a sequence in X such that limn£r(a;Tl) = t for some i 6 J . 

The notion of compatible mappings in metric spaces was first introduced 
by Jungck [4] and was extended to probabilistic metric spaces (PM-spaces) 
by the author in [9]. The above notion of compatible mappings is a gen-
eralization of the same. By now, it is well-known that these mappings are 
more general than commuting mappings and weakly commuting mappings 
studied by Sessa [14]. For details we refer to Jungck [5, 6]. 

Uniform spaces are the natural generalization of PM-spaces, where the 
uniformity is generated by a family of pseudometrics associated with the 
probabilistic metric, and the Hausdorff topology induced by the probabilis-
tic metric coincides with the uniform topology. 

Motivated with this idea, we first prove common fixed point theorems for 
two pairs of compatible mappings on a uniform space and, subsequently, de-
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rive their analogues in metric and PM-spaces. Finally, we extend our results 
to 2-metric spaces for the same class of mappings. 

2. Common fixed point theorems in uniform spaces 
Throughout this section, X will denote a sequentially complete Hausdorff 

uniform space defined by D* = {da : a £ I}. 

LEMMA 2.1. If f,g : X —»• X are compatible with f continuous and 
f(xn),g(xn) —> t as n —• oo, where {xn} is a sequence in X, then gf(xn) —>• 
f ( t ) as n —> oo. 

P r o o f . We note that if g(xn) —> t, then fg(xn) —> f(t) since / is con-
tinuous. Further, we have for any da 6 D*, 

da(gf(xn), f ( t ) ) < dQ(gf(xn), fg(xn)) + da(fg(xn), f(t)) 0 as n ^ oo 

since / is compatible. This proves the lemma. 

LEMMA 2.2. Let A, B, S and T be self mappings of X such that A(X) C 
T(X) and B(X) C S(X), and x0 6 X. If for each da G D*, there is a 
constant ka E (0 ,1) such that for all x,y £ X, we have 

(1) da(A(x),B(y)) 

< ka ma,x{da(A(x), 5(®)), da{B(y), T(y)), da(S(x), T(y)), 

±[da(A(x),T(y)) + da(B(y),S(x))}}, 

then a sequence {j/n}ngM beginning at xo and defined by 

(2) V2n-1 = T(x2n-1) = A(x2n-2),y2n-2 = S( X2n) = B{x2n-\) 

is a Cauchy one. 

P r o o f . Since A(X) C T(X) and B{X) C S(X), we may choose XX and 
X2 in X such that yi = T(xi) = A{XQ) and t/2 = S(x2) = B(xi). In general, 
we may choose X2n-i and X2N in X such that y2N-\ — T{X2N-\) = A{X2N-2) 
and y2n — S(X2„) = B(X2n-i)- Hence the existence of the sequence {yn} as 
required above is ensured. Further, from (1) and (2) it follows that 

da{T{x2n+l), S(x2n+2)) = da(A(X2n), B(x2n+1)) 

<ka max{da(T(a;2n+i), S(x2n)), da(S(x2n+2), r(ar2n+i)), ^ d o( s ( x 2n+2 ) , ^ ( ^ n ) ) } 

< kaTaa,x{da(S(x2n+2),T(x2n+i)),da(T(x2n+i),S(x2n))} 

because 

^da(S(x2n+2), S(x2n)) < T(x2n+i))+da(T(x2n+i), s(x2n)) 

< max{d0l(S(x2n+2),T(x2n+i)),da(T(x2n+i),S(x2n))}. 
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Since ka G (0,1), the relation da{T(x2n+x), S(x2n+2)) < kada(T(x2n+i), 

S(x271+2)) is n o t possible. Therefore we have da(T(x2n+i), S(x2n+2)) < 

kada(T(x2n+1),S(x2n)). Similarly, da(T(x2n+3), S(x2n+2)) < kada 

(S , (x2n+2 , r ( i 2 n+ i ) ) . Consequently, da(yn+i,yn) < kada(yn,yn-1) for all 
n and hence {yn} is a Cauchy sequence. 

T H E O R E M 2.1. Let A, B, S and T be self mappings of X. Suppose 

that S and T are continuous, the pairs A,S and B,T are compatible, and 

A(X) C T(X) and B(X) C S(X). If for each da G D*, there is akae ( 0 , 1 ) 

such that the condition (1) is satisfied for all x,y G X, then A,B,S and T 

have a unique common fixed point in X. 

P r o o f . By Lemma 2.2, there is a sequence {xn} in X such that {yn} 
defined in (2) is a Cauchy sequence. Therefore by the sequential complete-
ness of X, {yn} converges to a point z G X. Consequently, the subsequences 
{A(x2n)}, (5 ,(x2n)}, {£(ar2 r i-i)} a n d

 {T{x2n-i)} also converge to 2. Hence 
the continuity of S and T, together with the compatibility of A, S and B, T 
and Lemma 2.1, implies that 

SS(x2n) -»• S(z),AS(x2n) S(z) 

and 
TT(x2n_!) T(z),BT(x2n-i) -> T(z). 

Now setting x = S(x2n) and y — T(x2n-\) in (1) and allowing n —> 00 

we get 

da{S(z),T{z)) < fcamax{0,0,da(S(z),T{z)),da(S(z),T{z))}. 

Therefore 5(«) = T(z). 
A similar arguments with x = z and y = T(x2n~\) in (1) yields A(z) = 

T(z). 

Finally, taking x = ?/ = z i n ( l ) w e get 

A(z) = B(z) = S(z) = T{z). 

To prove that 2 is a common fixed point of A, B, S and T, observe that 

da(A(x2n),B(z)) < kama,x{da(A(x2n),S(x2n)),da(B(z),T(z)), 

da(S(x2n), T{z)), ^da(A(x2n), T{z)) + da(B(z), S(x2n))]}. 

Making n 00 and using B(z) = T(z), we have da(z, B{z)) < kada(z, B(z)) 

proving 
2 = B{z). 

Hence 
A(z) = B{z) = S(z) = T{z) = z 

and thus is a common fixed point of A, B, S and T. 
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The uniqueness of 2 as a common fixed point of A, B, S and T can be 
easily verified. 

T H E O R E M 2.2. Let S and T be self mappings of X, and let A, B : X —• 
S(X) fl T(X). Suppose that S and T are continuous, and the pairs A, S and 
B,T are compatible. If for each da G D*, there is a constant ka G (0,1) 
such that the condition (1) is satisfied for all x,y £ X, then A, B, S and T 
have a unique common fixed point in X. 

P r o o f . Since A,B : X -»• S(X)nT(X), it follows that A(X) C T(X) 
and B(X) C S(X). Hence all the hypotheses of Theorem 2.1 are satisfied. 
Therefore the result follows. 

3. Common fixed point theorems in PM-spaces 
A nonnegative real valued function / defined on the reals R is called a 

distribution function if it is nondecreasing, left continuous with inf / = 0 
and sup / = 1. A PM-space is a pair (X,F), where X is a nonempty set 
and F is a mapping from X x X to the set of all distribution functions. The 
value of F at (p,q) G X x X is denoted by FPjq, and FPtq are supposed to 
satisfy the following conditions: 

(i) Fp,q(x) =lifp=q,x>0 (ii) FPi,(0) = 0 (iii) Fp,q = F„tP, 
(iv) If FPig(x) = 1 and Fq<T(y) = 1, then FPtT(x + y) = 1 for all p,q, r G X 

and x, y > 0. 
The mapping F is called a probabilistic metric on X. Further, a Menger 

space is a triplet (X, F, t), where ( X , F) is a PM-space and t is a f-norm (cf. 
Schweizer and Sklar [11]) such that 

(v) FPir(x + y)> t{FPtq(x), Fgir(y)} for all p,q,r £ X and x, y > 0. 
It is known that the collection f3* = {U(x,e,X) : x G X,€, X > 0}, 

where U(x,e, A) = {y G X : FX!y(e) > 1 — A}, is a subbase for the Haus-
dorff topology induced by the probabilistic metric F (cf. [11]). It is also 
known that this topology is induced by a uniformity with a countable 
basis and hence is metrizable (cf. [12]). It was shown by Cain and Kas-
riel [1] that for each a G (0,1), there is a pseudometric da defined by 
da(x, y) = sup{i> : FXiV(v) < 1 — a} such that da{x, y) = 0 iff x = y and da 

is nondecreasing left continuous function of a with FXiy(da(x,y)) < 1 — a. 
Further, FXty(e) > 1 — a iff da(x, y) < e, and the topology generated by the 
family of pseudometrics {da : a G (0,1)} associated with the probabilistic 
metric F coincides with the HausdorfF topology induced by F. Hence the 
following results are the direct consequences of Theorems 2.1 and 2.2. 

T H E O R E M 3.1. Let A,B,S andT be self mappings of a compatible Men-
ger space (X,F,t), where t is continuous and t(x,x) > x for all x G [0,1]. 
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Suppose that S andT are continuous, the pairs A,S and B,T are compati-
ble, and that A(X) C T{X) and B{X) C S(X). If for each a £ ( 0 , 1 ) , there 
is a constant ka £ (0,1) such that for all x, y £ X and v > 0, we have 

(3) FA(x)My)(kav) > t(FA{:c)ts(x)(v),t(FBiy)tT(y)(v),t{Fsix)tny)(v), 

KFA(x),T(y) (2u)> FB(yhsix)(2v))))) 
whenever FXty(v) > 1 - a, then A, B, S and T have a unique common fixed 
point in X. 

T H E O R E M 3 . 2 . Let S and T be self mappings of a complete Menger space 
(X,F,t) where t is continuous and t(x,x) > x for all x £ [0,1] and let 
A,B:X^> S(X) fl T(X). Suppose that S and T are continuous and the 
pairs A, S and B,T are compatible. If for each a £ ( 0 , 1 ) , there is a constant 
ka £ (0,1) such that the condition (3) is satisfied for all x, y £ X and v > 0, 
then A, B, S and T have a unique common fixed point in X. 

Since each metric space {X,d) is a PM-space (cf. [13]) via FP)9(x) = 
H{x — d(p,q)), where H is the distribution function defined by H(x) = 0 if 
x < 0, H(x) = 1 if a; > 0, we have the following corollaries as consequences 
of Theorems 3.1 and 3.2. 

C O R O L L A R Y 3 . 1 [5 , Theorem 3 . 1 ] . Let A,B,S and T be self mappings 
of a metric space (X,d). Suppose that S and T are continuous, the pairs 
A, S and B,T are compatible, and that A(X) C T(X) and B(X) C 
If there is a constant k £ (0,1) such that for all x, y £ X we have 

(4) d(A(x),B(y)) < k max{d(A(x), S(x)), d(B(y),T(y)), d(S(x),T(y)), 

\[d(A(x),T(y)) + d(B(y),S(x))}}, 

then A, B, S and T have a unique common fixed point in X. 

C O R O L L A R Y 3 . 2 . Let S and T be self mappings of a metric space (X,d), 
and let A, B : X —• S(X) fl T(X). Suppose that S and T are continuous, 
and the pairs A, S and B, T are compatible. If there is a constant k £ (0,1) 
such that the condition (4) is satisfied for all x,y £ X, then A,B,S and T 
have a unique common fixed point in X. 

4. Common fixed point theorems in 2-metric spaces 
We shall first recall some preliminaries on 2-metric spaces from Gahler 

[3]. 

D E F I N I T I O N 4.1. Let X be a nonempty set. A nonnegative real valued 
function d o n l x l x l i s called a 2-metric on X if the following conditions 
hold: 
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(i) to each pair of distinct points x,y £ X, there exists a point z £ X 
such that d(x,y,z) ^ 0. 

(ii) d(x,y,z) = 0 when at least two of the points x,y and z of X are 
equal. 

(iii) d(x, y, z) = d(y, z, x) — d(x, z, y) for all x, y, z £ X. 
(iv) d(x, y, z) < d(x, y, w) + d(x, w, z) -f d(w, y, z) for all x, y,z,w £ X. 
The pair (X, d) is called a 2-metric space. 
Just as a metric abstracts the properties of the length function, a 2-

metric space has its topology given by a real function of point triples which 
abstracts the properties of the area function for Euclidean triangles. In the 
above topology we have the following: 

D E F I N I T I O N 4.2. A sequence { x n } in X is said to be convergent to a 
point x £ X iff lim„ d(xn, x, a) = 0 for all a £ X. Further, the sequence {xn} 
is called a Cauchy sequence iff l imm i„ d(xm, xn, a) = 0 for all a £ X. Finally 
X is said to be complete if every Cauchy sequence in X is convergent. 

A 2-metric d on X is said to be continuous if it is continuous in two 
of its three arguments. If d is continuous in any two arguments, then it is 
continuous in all the three arguments. 

L E M M A 4.1. (Singh [15]). Let {xn} be a sequence in a 2-metric space 
(X,d). If there exists a constant k € (0,1) such that d(xn,xn+i,a) < 
kd(xn--i,xn,a) for all naturals n, then {xn} is a Cauchy sequence. 

D E F I N I T I O N 4 . 3 . Self mappings / and g of a 2-metric space (X,d) are 
called compatible if l imn d(fg(xn),gf(xn), a) = 0 for all a £ X , whenever 
{xn} is a sequence in X such that l i m n f ( x n ) = limng(a;„) = t for some 
t € X. 

The following results are the analogues of the results proved in section 
2. We shall outline the main sketch of the proof of these results and omit 
the routine details. 

LEMMA 4.2. Let f and g be compatible self mappings of a 2-metric space 
(X,d), and let lim„ f ( x n ) = limn <7(x„) = t for some t 6 X. If f is contin-
uous, then limn g f ( x n ) = f ( t ) . 

L E M M A 4 . 3 . Let A,B,S and T be self mappings of a 2-metric space 
(X,d) such that A(X) C T(X) and B(X) C S(X), and let xQ € X. If there 
is a constant k E (0,1) such that for all x,y,a £ X , we have 

(5) d(A(x),B(y),a) 
< k m a x { d ( S { x ) , A(z), a), d(T(y), B(y), a), d(S(x), T(y), a), 

B(y), a) + d(T(y), A(x), a)]}, 
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then there is a Cauchy sequence {j/„}„eM in X defined by (2). 

P r o o f . The existence of the sequence {yn} follows as in the case of 
Lemma 2.2. By condition (5), for all a £ X, we have 

(6) d(y2n+-i,y2n+2,a) = d(A(x2n), B(x2n+i), a) 

< k mSLx{d(y2n, V2n+1, a), <%2n+l, V2n+2,a), -d(y2n, V2n+2 ,«)} 

and 

d{y2n,y2n+2,a) < d(y2n,y2n+2,y2n+i) + d(y2n,y2n+i,a) + d(y2n+i,y2n+2,a) 
= d(V2n+l iV2n+2iV2n ) + d(s/2n? 2/271+1, a ) + d(y2n+i,y2n+2,a) 

= d(y2n,y2n+i,a) + d(y2n+1,y2n+2,a) 

as d(y2n+1,y2n+2,y2n) = 0 follows from (5). 
Therefore ¿d(y2n,y2n+2,a) < \[d(y2n,y2n+x,a) + d(y2n+1,y2n+2,a)] < 

m&x{d(y2n,y2n+1,a),d(y2n+1,y2n+2,a)}. Thus using this fact in (6) and fol-
lowing the arguments of Lemma 2.2, the result follows. 

Now we state without proof the following theorems. The proofs can be 
similarly constructed on the lines of the proofs of Theorems 2.1 and 2.2. 

THEOREM 4.1. Let A, B, S and T be self mappings of a complete 2-metric 
space (X,d) with d continuous. Suppose that S and T are continuous, the 
pairs A,S and B,T are compatible, and that C T(X) and B(X) C 
5 ( X ) . If there is a constant k £ (0,1) such that the condition (5) holds for 
all x,y,a £ X, then A, B, S and T have a unique common fixed point in X. 

THEOREM 4.2. Let S andT be self mappings of a complete 2-metric space 
(X,d) with d continuous, and let A, B : X S(X)C\T(X). Suppose that S 
and T are continuous and the pairs A,S and B,T are compatible. If there 
is a constant k £ (0,1) such that the condition (5) holds for all x,y,a £ X, 
then A, B, S and T have a unique common fixed point in X. 

5. Remarks 
(i) Theorem 4.1 improves a result of Kubiak [8, Theorem 1] in the sense 

that the requirement of compatibility is more general than that of commu-
tativity. 

(ii) With the proper choice of the mappings A, B, S and T it is easy to 
see that our results generalize the results of Khan and Fisher [7, Theorem 
1], Rhoades [10, Theorem 4] and Singh, Tiwari and Gupta [16, Theorem 1]. 

(iii) Continuity requirements for the mappings A and B in Ding [2] can 
be dispensed with. 
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