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I N V A R I A N T SUBMANIFOLDS OF A MANIFOLD 
A D M I T T I N G /A(2v + 3 1 ) - S T R U C T U R E 

Invariant submanifolds of an almost complex manifold M2n have been 
studied by Yano and Schouten [6]. Yano and Ishihara also studied invariant 
submanifolds of almost contact manifolds [4]. The purpose of the present 
paper is to study the invariant submanifolds of f\(2v + 3, — l)-structure 
manifold. Some interesting results have been stated and proved. 

1. Preliminaries 
Let M be an m-dimensional C°° Riemannian manifold imbedded in an-

other ra-dimensional C°° Riemannian manifold M, m < n. We denote^the 
imbedding by (j>' M M and by B the mapping induced by <fr from T(M) to 
T(M), where T(M) and T(M) denote the tangent bundles of the manifolds 
M and M, respectively. Let T(M, M) be the set of all vector fields in M tan-
gent to M. Then the mapping B : T(M) —>• T(M, M) is an isomorphism [5]. 

The set of all vectors normal to <f>(M) forms a vector bundle N(M, M) 
over 4>{M) and is called the normal bundle of M. The vector bundle induced 
from N(M,M) by <t> is denoted by N(M). Let us denote rj} : N(M) —> 
N(M,M), the natural isomorphism. 

Throughout this paper, we shall use the following notations and conven-
tions: 

(i) TT
S(M) denotes the set of all C°° tensor fields of type (r, s) associated 

with T(M). 
(ii) Ul(M) denotes the space of all C°° tensor fields of type (r, s) normal 

to M. _ __ _ 
An element of Z\(M) is a vector field on M and an element of UQ (M) is 

a vector field normal to M. 
Let X, Y be any vector fields defined along <j>{M) and tangential to 
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<f>{M). Let X and Y be local extension of X and Y, respectively. Then 
[X, Y] is a vector field tangential to M and its restriction [X,Y]/(f>(M) to 
4>{M) can be determined independently from the choice of local extensions 
X and Y. Thus we can define [X,Y] by 

(1.1) [X,Y] = [X,Y]/<f>(M).^ 

Since B is an isomorphism, for all X,Y G (M) we have 

(1.2) [BX,BY] = B[X,Y]. 
Suppose that on the ambient manifold M there exists a C°° tensor field 

/ of type (1.1) satisfying 
(1.3) / f + 3 - A2/ = 0, 
where A is a non-zero complex number. Then we say that the manifols M 
admits an f\(2v -f 3, —l)-structure [1]. If we put in such manifold 

fv+i \ 2 / yH-i x 2 

( 1 . 4 ) , t = I v a 

where I denotes the identity tensor field, then we have 
(1.5) 52 = s, t2 = i, s + t = I, st = ts = 0. 
Thus the operators s and t are complementary projection operators. Con-
sequently, there exist complementary distributions S and T corresponding 
to the projection operators s and t, respectively. The projection operators 
s and t satisfy the following relations 

n S f s = sf = f , f t = tf = 0, 
\ ( / " + 1 ) 2 5 = A2s, ( /"+1)2 i = 0. 

Thus acts on S as a 7r-structure operator and on T as a null operator [1]. 
Such a manifold M always admits a Riemannian metric G such that 

(1.7) G(X,Y) = G ( f X , f Y ) + G(tX,Y) 
for all X, Y 6 2 j (M) . Thus, in view of (1.6) and (1.7), we get 

(1.8) G(X, f Y ) = G ( f X , f Y ) + G(tX, f Y ) 
and 
(1.9) G(fX,Y) = G(f2X,fY). 
Now, let us define g and g* as 
(1.10) g(X,Y) = G(BX,BY)o4> 
and 
(1.11) g*(N,N') = G(ipN,ipN') 
for aU X , Y € IQ(M) and N , N' 6 UQ(M), respectively. 
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It can be easily shown that g is a Riemannian metric tensor on M called 
the induced metric tensor on M and g* is a tensor field which defines an 
inner product in N(M). The tensor field g* is called the induced metric 
tensor of N(M). 

Let V be the Riemannian connection induced by the metric tensor G on 
M. Then V induces a connection V in <fi(M) defined by (cf. [4]) 

(1.12) VXY = VxY/^M), 

where X, Y are C°° vector fields defined along <j>(M) and tangential to <j>{M). 

2. Invariant submanifolds of f\(2v + 3 , - l ) - s tructure manifold 
Let M be a C°° TO-dimensional manifold imbedded in a C°° f\(2v + 

3, -l)-manifold M endowed with an (1, l)-tensor field / satisfying the equa-
tion (1.3). We say that M is an invariant submanifold of M, if the tangent 
space Tp(<j>(M)) of <j>(M) is invariant by / at each point p of <ft(M), that is 

(2.1) fBX = BX°, 

where X° is some vector field in M. Thus we define an (1, l)-tensor field / 
in M as 

(2.2) f ( X ) = 1 ° . 

Thus from (2.1) and (2.2) we have 

(2.3) f(BX) = B f ( X ) . 

T H E O R E M 1. Let N and N be Nijenhuis tensors of M and M formed 
with (1,1)-tensor field f and / , respectively. Then N and N are related by 

(2.4) N(BX, BY) = BN(X,Y). 

P r o o f . In view of the equations (1.2), (2.3) and of the definition of 
Nijenhuis tensor, we have 

N(BX, BY) = [ f B X , fBY] - f[BX, fBY) - f [ f B X , BY] + f2[BX, BY] 

= B { [ f X , f Y ) - f [ f X , Y ] - J[XJY] + f2[X,Y}} = BN(X,Y) 
which proves (2.4). 

For the invariant submanifold M of f\(2i> -f 3, -l)-manifold M we shall 
consider the following two cases. ^ 

Case I. The distribution T is nowhere tangential to <j>{M). 
Case II. The distribution T is everywhere tangential to <j>{M). 
Let us consider the first case in which^the distribution T is nowhere 

tangential to the invariant submanifold <f>(M). In this case, any vector field 
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of type tX is independent of any vector field of the same frame BX for 
X 6 XQ(M). In view of the equation (2.3), applying / further (2V + 1) 
times, we get 
(2.5) f2l/+2 (BX) = Bf2l/+2 (X). 

Since any vector field tangential to <J>{M) is not contained in the distri-
bution T, the vector fields of the type BX are in^the distribution jS . Thus, 
in consequence of the equation (1.6), we have Bf2u+2(X) = X2BX. Hence, 
we have 
(2.6) f2"+2(X) = X2X. 

Thus the tensor field / "+ 1 acts as a 7r-structure on the invariant sub-
manifold M. 

Let us define a tensor field S of type (1,2) on M as follows 
(2.7) S(X, Y) = N(X, Y) + V X ( ¿ y ) - Vv(tX) - t[X, Y] 
for any vector fields X,Y € Z¿ (M). 

T H E O R E M 2 . Let the distribution T be nowhere tangential to 4>{M). Then 
the tensor field S defined on M by (2.7) satisfies the relation 

( 2 . 8 ) S(BX, BY) = N(BX, BY) = BN(X, Y) 

for X , Y £ 1Q(M). 

P r o o f . Since any vector field tangential to <F>(M) is not contained in 
the distribution T, hence in consequence of the equation (1.6) we have 
t(BX) = 0 for X G JQ(M). Hence, in view of the equations (2.4) and 
(2.7), the result follows. 

3. Some other results 
We say that the f\(2v + 3, —l)-structure is normal, if S = 0. Now we 

have the following theorem. 

T H E O R E M 3. An invariant submanifold M imbedded in f\(2v + 3, — 1 ) -

structure manifold M such that the distribution T is nowhere tangential to 
4>{M) is a 7r-manifold with induced ir-structure /"+1. If the structure on the 
ambient manifold M is normal, the n-structure is integrable on M. 

P r o o f . The proof follows easily, by virtue of equation (2.4), (2.6) and 
(2.7). 

Now, consider the case in which the_distribution T is everywhere tan-
gential to the invariant submanifold <f>(M). Thus, for X € 2g(M), w e have 
(3.1) tBX = BX°, 

where X o is some vector field in M. 
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Let us define an (l , l )-tensor field t in M such that tX = x°. Then the 
equation (3.1) can be expressed as 

(3.2) tBX = BtX. 

Also we can define ( l , l )-tensor field s on M as 

(3.2') sBX = BsX. 

Since in M the relation s + t = I holds therefore (l, l )-tensor fields s and t 

on M are well defined. 

THEOREM 4. The (1,1)-tensor fields s and t on M defined by the equa-

tions (3.2) and (3.2') satisfy the following relations 

/o js + t = I,st = ts = 0, 
( 3 ' 3 ) I s 2 = y , P = i. 

P r o o f . As for the ̂ ambient manifold M there is 5 + 1 = /. Operating the 
above equation by BX, we get sBX + tBX — IBX. In view of (3.2) and 
(3.2'), it takes form BsX + BtX = BIX, or 

(3.4) 7+t = I. 

Again operating st = ts = 0 J>y BX and making use of the same equations 
(3.2) and (3.2'), we get BstX = BtsX = 0, or 

(3.5) st = ts = 0. 

Similarly, making use of the same equations (3.2) and (3.2') in (1.5), we 
can prove that 

(3.6) s2 = s, ? = t. 

Thus the operators s and t given by 
yi/+i\2 ____ / J1/+1 

and t — I — 

respectively, when applied to tangent space of M at a point, are comple-
mentary projection operators on M . This proves Theorem 4. 

Now in consequence of the equations (1.3) and (2.3) we have 

Bf2u+3(X) = f2u+3{BX) = A 2B}X, 

(3'7) f2u+3-X2f = 0. 

Hence, / acts as f\(2u + 3, —l)-structure operator on M and thus the in-
duced structure on M is f\(2v + 3, — l)-structure. The induced Riemannian 
metric g is given by (cf. [4]) 

(3.8) g(X, Y) = g ( f X , fY) + g(tX, Y). 
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Let V be the connection induced in M from the Riemannian connection V 
on M. Then 
(3.9) V b~BY = BV~Y. 

It can be easily shown that V is also a Riemannian connection on M . ^ 
Let us define a tensor field S of type (1,2) on the submanifold M as 

follows 
(3.10) S(X,Y) = N(X,Y) + V~tX - V~tX - t[X,Y], 

when X,Y el£(M). 
It can be easily shown that 

(3.11) S(BX, BY) = BS(X, Y). 

T H E O R E M 5 . An invariant submanifold M imbedded in a normal 
fx(2u + 3, —1 )-manifold such that the distribution T is tangential to <f>(M) 
is a f\(2u + 3, —1 )-structure manifold and the induced structure is normal 
in M. 

P r o o f . Proof follows easily, by virtue of equations (2.7), (3.7) and (3.10). 
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