

Ram Nivas, J.P. Singh

INVARIANT SUBMANIFOLDS OF A MANIFOLD
ADMITTING $f_\lambda(2\nu + 3, -1)$ -STRUCTURE

Invariant submanifolds of an almost complex manifold M^{2n} have been studied by Yano and Schouten [6]. Yano and Ishihara also studied invariant submanifolds of almost contact manifolds [4]. The purpose of the present paper is to study the invariant submanifolds of $f_\lambda(2\nu + 3, -1)$ -structure manifold. Some interesting results have been stated and proved.

1. Preliminaries

Let \widetilde{M} be an m -dimensional C^∞ Riemannian manifold imbedded in another n -dimensional C^∞ Riemannian manifold M , $m < n$. We denote the imbedding by $\phi : \widetilde{M} \rightarrow M$ and by B the mapping induced by ϕ from $T(\widetilde{M})$ to $T(M)$, where $T(\widetilde{M})$ and $T(M)$ denote the tangent bundles of the manifolds \widetilde{M} and M , respectively. Let $T(\widetilde{M}, M)$ be the set of all vector fields in M tangent to \widetilde{M} . Then the mapping $B : T(\widetilde{M}) \rightarrow T(\widetilde{M}, M)$ is an isomorphism [5].

The set of all vectors normal to $\phi(\widetilde{M})$ forms a vector bundle $N(\widetilde{M}, M)$ over $\phi(\widetilde{M})$ and is called the normal bundle of \widetilde{M} . The vector bundle induced from $N(\widetilde{M}, M)$ by ϕ is denoted by $N(\widetilde{M})$. Let us denote $\psi : N(\widetilde{M}) \rightarrow N(\widetilde{M}, M)$, the natural isomorphism.

Throughout this paper, we shall use the following notations and conventions:

(i) $\mathcal{I}_s^r(\widetilde{M})$ denotes the set of all C^∞ tensor fields of type (r, s) associated with $T(\widetilde{M})$.

(ii) $\mathcal{U}_s^r(\widetilde{M})$ denotes the space of all C^∞ tensor fields of type (r, s) normal to \widetilde{M} .

An element of $\mathcal{I}_0^1(\widetilde{M})$ is a vector field on \widetilde{M} and an element of $\mathcal{U}_0^1(\widetilde{M})$ is a vector field normal to \widetilde{M} .

Let X, Y be any vector fields defined along $\phi(\widetilde{M})$ and tangential to

$\phi(\widetilde{M})$. Let \bar{X} and \bar{Y} be local extension of X and Y , respectively. Then $[\bar{X}, \bar{Y}]$ is a vector field tangential to M and its restriction $[\bar{X}, \bar{Y}]/\phi(\widetilde{M})$ to $\phi(\widetilde{M})$ can be determined independently from the choice of local extensions \bar{X} and \bar{Y} . Thus we can define $[X, Y]$ by

$$(1.1) \quad [X, Y] = [\bar{X}, \bar{Y}]/\phi(\widetilde{M}).$$

Since B is an isomorphism, for all $\tilde{X}, \tilde{Y} \in \mathcal{I}_0^1(\widetilde{M})$ we have

$$(1.2) \quad [B\tilde{X}, B\tilde{Y}] = B[\tilde{X}, \tilde{Y}].$$

Suppose that on the ambient manifold M there exists a C^∞ tensor field f of type (1.1) satisfying

$$(1.3) \quad f_\lambda^{2\nu+3} - \lambda^2 f = 0,$$

where λ is a non-zero complex number. Then we say that the manifolds M admits an $f_\lambda(2\nu+3, -1)$ -structure [1]. If we put in such manifold

$$(1.4) \quad s = \left(\frac{f^{\nu+1}}{\lambda} \right)^2, \quad t = I - \left(\frac{f^{\nu+1}}{\lambda} \right)^2,$$

where I denotes the identity tensor field, then we have

$$(1.5) \quad s^2 = s, \quad t^2 = t, \quad s + t = I, \quad st = ts = 0.$$

Thus the operators s and t are complementary projection operators. Consequently, there exist complementary distributions S and T corresponding to the projection operators s and t , respectively. The projection operators s and t satisfy the following relations

$$(1.6) \quad \begin{cases} fs = sf = f, \quad ft = tf = 0, \\ (f^{\nu+1})^2 s = \lambda^2 s, \quad (f^{\nu+1})^2 t = 0. \end{cases}$$

Thus $f^{\nu+1}$ acts on S as a π -structure operator and on T as a null operator [1].

Such a manifold M always admits a Riemannian metric G such that

$$(1.7) \quad \tilde{G}(\tilde{X}, \tilde{Y}) = \tilde{G}(f\tilde{X}, f\tilde{Y}) + \tilde{G}(t\tilde{X}, \tilde{Y})$$

for all $\tilde{X}, \tilde{Y} \in \mathcal{I}_0^1(\widetilde{M})$. Thus, in view of (1.6) and (1.7), we get

$$(1.8) \quad \tilde{G}(\tilde{X}, f\tilde{Y}) = \tilde{G}(f\tilde{X}, f^2\tilde{Y}) + \tilde{G}(t\tilde{X}, f\tilde{Y})$$

and

$$(1.9) \quad \tilde{G}(f\tilde{X}, \tilde{Y}) = \tilde{G}(f^2\tilde{X}, f\tilde{Y}).$$

Now, let us define \tilde{g} and g^* as

$$(1.10) \quad \tilde{g}(\tilde{X}, \tilde{Y}) = \tilde{G}(B\tilde{X}, B\tilde{Y}) \circ \phi$$

and

$$(1.11) \quad g^*(N, N') = G(\psi N, \psi N')$$

for all $\tilde{X}, \tilde{Y} \in \mathcal{I}_0^1(\widetilde{M})$ and $N, N' \in \mathcal{U}_0^1(\widetilde{M})$, respectively.

It can be easily shown that \tilde{g} is a Riemannian metric tensor on \tilde{M} called the induced metric tensor on \tilde{M} and g^* is a tensor field which defines an inner product in $N(\tilde{M})$. The tensor field g^* is called the induced metric tensor of $N(\tilde{M})$.

Let $\bar{\nabla}$ be the Riemannian connection induced by the metric tensor \tilde{G} on M . Then $\bar{\nabla}$ induces a connection ∇ in $\phi(\tilde{M})$ defined by (cf. [4])

$$(1.12) \quad \nabla_X Y = \bar{\nabla}_X Y / \phi(\tilde{M}),$$

where X, Y are C^∞ vector fields defined along $\phi(\tilde{M})$ and tangential to $\phi(\tilde{M})$.

2. Invariant submanifolds of $f_\lambda(2\nu + 3, -1)$ -structure manifold

Let \tilde{M} be a C^∞ m -dimensional manifold imbedded in a C^∞ $f_\lambda(2\nu + 3, -1)$ -manifold M endowed with an $(1, 1)$ -tensor field f satisfying the equation (1.3). We say that \tilde{M} is an invariant submanifold of M , if the tangent space $T_p(\phi(\tilde{M}))$ of $\phi(\tilde{M})$ is invariant by f at each point p of $\phi(\tilde{M})$, that is

$$(2.1) \quad fB\tilde{X} = BX^\circ,$$

where X° is some vector field in \tilde{M} . Thus we define an $(1, 1)$ -tensor field \tilde{f} in \tilde{M} as

$$(2.2) \quad \tilde{f}(\tilde{X}) = X^\circ.$$

Thus from (2.1) and (2.2) we have

$$(2.3) \quad f(B\tilde{X}) = B\tilde{f}(\tilde{X}).$$

THEOREM 1. *Let N and \tilde{N} be Nijenhuis tensors of M and \tilde{M} formed with $(1, 1)$ -tensor field f and \tilde{f} , respectively. Then N and \tilde{N} are related by*

$$(2.4) \quad N(B\tilde{X}, B\tilde{Y}) = B\tilde{N}(\tilde{X}, \tilde{Y}).$$

Proof. In view of the equations (1.2), (2.3) and of the definition of Nijenhuis tensor, we have

$$\begin{aligned} N(B\tilde{X}, B\tilde{Y}) &= [fB\tilde{X}, fB\tilde{Y}] - f[B\tilde{X}, fB\tilde{Y}] - f[fB\tilde{X}, B\tilde{Y}] + f^2[B\tilde{X}, B\tilde{Y}] \\ &= B\{[\tilde{f}\tilde{X}, \tilde{f}\tilde{Y}] - \tilde{f}[\tilde{f}\tilde{X}, \tilde{Y}] - \tilde{f}[\tilde{X}, \tilde{f}\tilde{Y}] + \tilde{f}^2[\tilde{X}, \tilde{Y}]\} = B\tilde{N}(\tilde{X}, \tilde{Y}) \end{aligned}$$

which proves (2.4).

For the invariant submanifold \tilde{M} of $f_\lambda(2\nu + 3, -1)$ -manifold M we shall consider the following two cases.

Case I. The distribution T is nowhere tangential to $\phi(\tilde{M})$.

Case II. The distribution T is everywhere tangential to $\phi(\tilde{M})$.

Let us consider the first case in which the distribution T is nowhere tangential to the invariant submanifold $\phi(\tilde{M})$. In this case, any vector field

of type $t\tilde{X}$ is independent of any vector field of the same frame $B\tilde{X}$ for $\tilde{X} \in \mathcal{I}_0^1(\tilde{M})$. In view of the equation (2.3), applying f further $(2\nu + 1)$ times, we get

$$(2.5) \quad f^{2\nu+2}(B\tilde{X}) = B\tilde{f}^{2\nu+2}(\tilde{X}).$$

Since any vector field tangential to $\phi(\tilde{M})$ is not contained in the distribution T , the vector fields of the type $B\tilde{X}$ are in the distribution S . Thus, in consequence of the equation (1.6), we have $B\tilde{f}^{2\nu+2}(\tilde{X}) = \lambda^2 B\tilde{X}$. Hence, we have

$$(2.6) \quad \tilde{f}^{2\nu+2}(\tilde{X}) = \lambda^2 \tilde{X}.$$

Thus the tensor field $f^{\nu+1}$ acts as a π -structure on the invariant submanifold \tilde{M} .

Let us define a tensor field \bar{S} of type (1,2) on M as follows

$$(2.7) \quad \bar{S}(\bar{X}, \bar{Y}) = N(\bar{X}, \bar{Y}) + \bar{\nabla}_{\bar{X}}(t\bar{Y}) - \bar{\nabla}_{\bar{Y}}(t\bar{X}) - t[\bar{X}, \bar{Y}]$$

for any vector fields $\bar{X}, \bar{Y} \in \mathcal{I}_0^1(M)$.

THEOREM 2. *Let the distribution T be nowhere tangential to $\phi(\tilde{M})$. Then the tensor field \bar{S} defined on M by (2.7) satisfies the relation*

$$(2.8) \quad \bar{S}(B\tilde{X}, B\tilde{Y}) = N(B\tilde{X}, B\tilde{Y}) = BN(\tilde{X}, \tilde{Y})$$

for $\tilde{X}, \tilde{Y} \in \mathcal{I}_0^1(\tilde{M})$.

Proof. Since any vector field tangential to $\phi(\tilde{M})$ is not contained in the distribution T , hence in consequence of the equation (1.6) we have $t(B\tilde{X}) = 0$ for $\tilde{X} \in \mathcal{I}_0^1(\tilde{M})$. Hence, in view of the equations (2.4) and (2.7), the result follows.

3. Some other results

We say that the $f_\lambda(2\nu + 3, -1)$ -structure is normal, if $\bar{S} = 0$. Now we have the following theorem.

THEOREM 3. *An invariant submanifold \tilde{M} imbedded in $f_\lambda(2\nu + 3, -1)$ -structure manifold M such that the distribution T is nowhere tangential to $\phi(\tilde{M})$ is a π -manifold with induced π -structure $\tilde{f}^{\nu+1}$. If the structure on the ambient manifold M is normal, the π -structure $\tilde{f}^{\nu+1}$ is integrable on \tilde{M} .*

Proof. The proof follows easily, by virtue of equation (2.4), (2.6) and (2.7).

Now, consider the case in which the distribution T is everywhere tangential to the invariant submanifold $\phi(\tilde{M})$. Thus, for $\tilde{X} \in \mathcal{I}_0^1(\tilde{M})$, we have

$$(3.1) \quad tBX = BX^\circ,$$

where X° is some vector field in \tilde{M} .

Let us define an $(1,1)$ -tensor field \tilde{t} in \tilde{M} such that $\tilde{t}\tilde{X} = x^o$. Then the equation (3.1) can be expressed as

$$(3.2) \quad tB\tilde{X} = B\tilde{t}\tilde{X}.$$

Also we can define $(1,1)$ -tensor field \tilde{s} on \tilde{M} as

$$(3.2') \quad sB\tilde{X} = B\tilde{s}\tilde{X}.$$

Since in M the relation $s + t = I$ holds therefore $(1,1)$ -tensor fields \tilde{s} and \tilde{t} on \tilde{M} are well defined.

THEOREM 4. *The $(1,1)$ -tensor fields \tilde{s} and \tilde{t} on \tilde{M} defined by the equations (3.2) and (3.2') satisfy the following relations*

$$(3.3) \quad \begin{cases} \tilde{s} + \tilde{t} = \tilde{I}, & \tilde{s}\tilde{t} = \tilde{t}\tilde{s} = 0, \\ \tilde{s}^2 = \tilde{s}, & \tilde{t}^2 = \tilde{t}. \end{cases}$$

P r o o f. As for the ambient manifold M there is $s + t = I$. Operating the above equation by $B\tilde{X}$, we get $sB\tilde{X} + tB\tilde{X} = IB\tilde{X}$. In view of (3.2) and (3.2'), it takes form $B\tilde{s}\tilde{X} + B\tilde{t}\tilde{X} = B\tilde{I}\tilde{X}$, or

$$(3.4) \quad \tilde{s} + \tilde{t} = \tilde{I}.$$

Again operating $st = ts = 0$ by $B\tilde{X}$ and making use of the same equations (3.2) and (3.2'), we get $B\tilde{s}\tilde{t}\tilde{X} = B\tilde{t}\tilde{s}\tilde{X} = 0$, or

$$(3.5) \quad \tilde{s}\tilde{t} = \tilde{t}\tilde{s} = 0.$$

Similarly, making use of the same equations (3.2) and (3.2') in (1.5), we can prove that

$$(3.6) \quad \tilde{s}^2 = \tilde{s}, \quad \tilde{t}^2 = \tilde{t}.$$

Thus the operators \tilde{s} and \tilde{t} given by

$$\tilde{s} = \left(\frac{\tilde{f}^{\nu+1}}{\lambda} \right)^2 \quad \text{and} \quad \tilde{t} = I - \left(\frac{\tilde{f}^{\nu+1}}{\lambda} \right)^2,$$

respectively, when applied to tangent space of \tilde{M} at a point, are complementary projection operators on \tilde{M} . This proves Theorem 4.

Now in consequence of the equations (1.3) and (2.3) we have

$$(3.7) \quad \begin{aligned} B\tilde{f}^{2\nu+3}(\tilde{X}) &= f^{2\nu+3}(B\tilde{X}) = \lambda^2 B\tilde{f}\tilde{X}, \\ \tilde{f}^{2\nu+3} - \lambda^2 \tilde{f} &= 0. \end{aligned}$$

Hence, \tilde{f} acts as $f_\lambda(2\nu + 3, -1)$ -structure operator on \tilde{M} and thus the induced structure on \tilde{M} is $f_\lambda(2\nu + 3, -1)$ -structure. The induced Riemannian metric \tilde{g} is given by (cf. [4])

$$(3.8) \quad \tilde{g}(\tilde{X}, \tilde{Y}) = \tilde{g}(\tilde{f}\tilde{X}, \tilde{f}\tilde{Y}) + \tilde{g}(\tilde{t}\tilde{X}, \tilde{Y}).$$

Let $\tilde{\nabla}$ be the connection induced in \tilde{M} from the Riemannian connection $\bar{\nabla}$ on M . Then

$$(3.9) \quad \bar{\nabla}_{B\tilde{X}} B\tilde{Y} = B\tilde{\nabla}_{\tilde{X}} \tilde{Y}.$$

It can be easily shown that $\tilde{\nabla}$ is also a Riemannian connection on \tilde{M} .

Let us define a tensor field \tilde{S} of type (1,2) on the submanifold \tilde{M} as follows

$$(3.10) \quad \tilde{S}(\tilde{X}, \tilde{Y}) = N(\tilde{X}, \tilde{Y}) + \tilde{\nabla}_{\tilde{X}} \tilde{t}\tilde{X} - \tilde{\nabla}_{\tilde{Y}} \tilde{t}\tilde{X} - \tilde{t}[\tilde{X}, \tilde{Y}],$$

when $\tilde{X}, \tilde{Y} \in \mathcal{I}_0^1(\tilde{M})$.

It can be easily shown that

$$(3.11) \quad \tilde{S}(B\tilde{X}, B\tilde{Y}) = B\tilde{S}(\tilde{X}, \tilde{Y}).$$

THEOREM 5. *An invariant submanifold \tilde{M} imbedded in a normal $f_\lambda(2\nu + 3, -1)$ -manifold such that the distribution T is tangential to $\phi(\tilde{M})$ is a $f_\lambda(2\nu + 3, -1)$ -structure manifold and the induced structure is normal in \tilde{M} .*

Proof. Proof follows easily, by virtue of equations (2.7), (3.7) and (3.10).

Acknowledgement. The second author is thankful to U.G.C., New Delhi, for providing financial support in the form of Junior Research Fellowship.

References

- [1] D. Demetropoulou-Psomopoulou, *Invariant submanifolds of a manifold admitting an $f(2\nu + 3, 1)$ -structure*, *Tensor*, N.S. 51 (1992), 133–137.
- [2] V. C. Gupta, Renu Dubey, *Invariant submanifolds of f_λ -manifold*, *Demonstratio Math.* 15 (1992), 333–342.
- [3] M. D. Upadhyay, V. C. Gupta, *Integrability conditions of a structure f_λ satisfying $f^3 - \lambda^2 f = 0$* , *Publ. Math. Debrecen* 24 (1977), 249–255.
- [4] K. Yano, S. Ishihara, *Invariant submanifolds of an almost contact manifold*, *Kodai Math. Sem. Rep.*, 21 (1969), 350–367.
- [5] K. Yano, S. Ishihara, *On integrability conditions of a structure f satisfying $f^3 + f = 0$* , *Quart. J. Math. Oxford, Ser. 15* (1964), 217–222.
- [6] K. Yano, J. A. Schouten, *On invariant subspace in almost complex X^{2n}* , *Indiana Math. J.* 17 (1968), 261–267.

DEPARTMENT OF MATHEMATICS
LUCKNOW UNIVERSITY
LUCKNOW-226007, INDIA

Received March 21st, 1994; revised version March 26, 1996.