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INVARIANT SUBMANIFOLDS OF A MANIFOLD
ADMITTING f,(2v + 3,— 1)-STRUCTURE

Invariant submanifolds of an almost complex manifold M?2" have been
studied by Yano and Schouten [6]. Yano and Ishihara also studied invariant
submanifolds of almost contact manifolds [4]. The purpose of the present
paper is to study the invariant submanifolds of fi(2v + 3,—1)-structure
manifold. Some interesting results have been stated and proved.

1. Pfl:gliminaries

Let M be an m-dimensional C* Riemannian manifold imbedded in an-
other n-dimensional C*° Riemannian manifold M, m < n. We denote the
imbedding by ¢ : M — M and by B the mapping mduced by ¢ from T(M ) to

T(M), where T(M ) and T'(M) denote the tangent bundles of the manifolds
M and M, respectively. Let T(]T/f , M) be the set of all vector fields in M tan-
gent to M. Then the mapping B : T(M) — T(H , M) is an isomorphism [5].

The set of all vectors normal to ¢(M) forms a vector bundle N(M, M)
over ¢(H ) and is called the normal bundle of M. The vector bundle induced
from N(H,M) by ¢ is denoted by N(ﬁ) Let us denote ¢ : N(M) —
N (H , M), the natural isomorphism.

Throughout this paper, we shall use the following notations and conven-

tions:
(1) I:(ﬁ ) denotes the set of all C™ tensor fields of type (7, s) associated

with T(M).

(i) U:(Mv) denotes the space of all C* tensor fields of type (r, s) normal
to M.

An element of I&(]Tf ) is a vector field on M and an element of Z,IOI(H ) is

a vector field normal to M. ~
Let X, Y be any vector fields defined along ¢(M) and tangential to
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d)(ﬁ ). Let X and Y be local extension of X and Y, respectively. Then
[X,Y] is a vector field tangential to M and its restriction [X,Y]/$(M) to

¢>(ﬁ ) can be determined independently from the choice of local extensions
X and Y. Thus we can define [X,Y] by

(11) X, Y] = [X,V)/$(M).
Since B is an isomorphism, for all X,¥ € Z}(M) we have
(1.2) [BX,BY] = B[X,Y).

Suppose that on the ambient manifold M there exists a C'™ tensor field
f of type (1.1) satisfying
(1.3) A - Xf =0,
where A is a non-zero complex number. Then we say that the manifols M
admits an f)(2v + 3, —1)-structure [1]. If we put in such manifold

» = (L2 e (2,

where I denotes the identity tensor field, then we have

(1.5) sf=s,t2=t, s+t=1, st=1ts=0.

Thus the operators s and ¢ are complementary projection operators. Con-
sequently, there exist complementary distributions S and T corresponding
to the projection operators s and ¢, respectively. The projection operators
s and t satisfy the following relations

(1.6) { (f;ufl‘;éfs::f/{fgf —(——fi{-1:)2?’= 0.

Thus f“*! actson § as a 7-structure operator and on T as a null operator [1].
Such a manifold M always admits a Riemannian metric G such that

(L.7) G(X,Y)=G(fX,fY)+ G(tX,Y)

for all X,Y € Z}(M). Thus, in view of (1.6) and (1.7), we get
(18) G(X,fY) = G(fX, Y)+ G(X, fY)

and

(1.9) G(fX,Y)=G(f*X, fY).

Now, let us define g and g* as

(1.10) §(X,Y)=G(BX,BY)o¢

and

(1.11) g"(N,N") = G(yN,$N')

for all X,Y € I&(H) and N,N' ¢ U&(ﬁ), respectively.
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It can be easily shown that § is a Riemannian metric tensor on M called

the induced metric tensor on M and g* is a tensor field which defines an
inner product in N(M). The tensor field g* is called the induced metric

tensor of N (M). 5
Let V be the Riemannian connection induced by the metric tensor G on
M. Then V induces a connection V in ¢(M) defined by (cf. {4])

(1.12) VxY = VxY/4(M)
where X, Y are C® vector fields defined along ¢(M) and tangential to ¢(M).

2. Invariant submanifolds of f\(2v + 3, —1)-structure manifold

Let M be a C® m-dimensional manifold imbedded in a C* H(2v +
3, —1)-manifold M endowed with an (1, 1)-tensor field f satisfying the equa-

tion (1.3). We say that M is an invariant submanifold of M, if the tangent
space Tp(¢(M)) of ¢(M) is invariant by f at each point p of ¢(M), that is
(2.1) fBX = BX®,

where X° is some vector field in M. Thus we define an (1,1)-tensor field f
in M as

(2.2) f(X)=Xx°.
Thus from (2.1) and (2.2) we have
(2.3) f(BX) = Bf(X).

THEOREM 1. Let N and J:\:f be Nijenhuis tensors of M_and M formed
with (1,1)-tensor field f and f, respectively. Then N and N are related by

(2.4) N(BX,BY) = BN(X,Y).
Proof. In view of the equations (1.2), (2.3) and of the definition of
Nijenhuis tensor, we have
N(BX,BY)=[fBX,fBY]- f[BX,fBY]| - f{fBX,BY] + f’|BX, BY]
= B{[fX, Y] - JIfX,Y] - fIX, Y]+ PIX,Y]} = BN(X,Y)
which proves (2.4).
For the invariant submanifold M of f,(2v + 3, —1)-manifold M we shall
consider the following two cases. ~
Case I. The distribution T is nowhere tangential to ¢(M).
Case II. The distribution 7 is everywhere tangential to ¢(M).
Let us consider the first case in which the distribution T is nowhere
tangential to the invariant submanifold ¢(M ). In this case, any vector field
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of type th is independent of any vector field of the same frame BX for
X € Z}(M). In view of the equation (2.3), applying f further (2v + 1)
times, we get

(2.5) f42(BX) = B ().

Since any vector field tangential to ¢(f/f ) is not contained in the distri-
bution T, the vector fields of the type BX are in the distribution . Thus,
in consequence of the equation (1.6), we have Bf2+2(X) = A2BX. Hence,
we have
(2.6) (X)) = N X

Thus the tensor field f¥t1 acts as a m-structure on the invariant sub-
manifold M. B

Let us define a tensor field S of type (1,2) on M as follows
(2.7) S(X,Y)=N(X,Y)+ Vg(tY) - V¢ (tX) - t[X, Y]
for any vector fields X,Y € I} (M).

THEOREM 2. Let the distribution T be nowhere tangential to ¢>(]\7) Then
the tensor field S defined on M by (2.7) satisfies the relation

(2.8) 5(BX,BY)= N(BX,BY)=BN(X,Y)
for X,Y € I}(M).

Proof. Since any vector field tangential to qﬁ(ﬁ ) is not contained in
the distribution 7', hence in consequence of the equation (1.6) we have

t(BX) = 0 for X € I}(M). Hence, in view of the equations (2.4) and
(2.7), the result follows.

3. Some other results B
We say that the fi(2v + 3,—1)-structure is normal, if S = 0. Now we
have the following theorem.

THEOREM 3. An invariant submanifold M imbedded in H(2v +3,-1)-
structure manifold M such that the distribution T' is nowhere tangential to
$(M) is a ©-manifold with induced -structure FU+1. If the structure on the

ambient manifold M is normal, the T-structure f"*‘1 is integrable on M.
Proof. The proof follows easily, by virtue of equation (2.4), (2.6) and
(2.7).
Now, consider the case in which the distribution T is everywhere tan-
gential to the invariant submanifold ¢(M )- Thus, for Xe}(M ), we have

(3.1) tBX = BX°,

where X° is some vector field in M.
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Let us define an (1,1)-tensor field £ in M such that iX = z°. Then the
equation (3.1) can be expressed as

(3.2) tBX = BiX.
Also we can define (1,1)-tensor field s on M as
(3.2") sBX = B3X.

Since in M the relation s+ ¢ = I holds therefore (1,1)-tensor fields § and ¢
on M are well defined.

THEOREM 4. The (1,1)-tensor fields § and t on M defined by the equa-
tions (3.2) and (3.2') satisfy the following relations

$4+4f=1, 5 =1=0,
(3:3) A

Proof. As for the ambient manifold M there is s+t = I. Operating the
above equation by BX  we get sBX + tBX = IBX. In view of (3.2) and

(3.2'), it takes form B5X + BiX = BIX, or

(3.4) s+i=1

Again operating st = ts = 0 by BX and making use of the same equations
(3.2) and (3.2'), we get B5iX = B{5X =0, or

(3.5) St=15=0.

Similarly, making use of the same equations (3.2) and (3.2') in (1.5), we
can prove that

(3.6) #=3
Thus the operators 3 and ¢ given by

- fv+1 2 . fu+l 2
s-( 3 and t=1- 3 ,

respectively, when applied to tangent space of M at a point, are comple-
mentary projection operators on M. This proves Theorem 4.
Now in consequence of the equations (1.3) and (2.3) we have

Bf*+3(X) = f+3(BX) = N*BfX,
f2u+3 - /\2};: 0.
Hence, f acts as fr(2v + 3, —1)-structure operator on M and thus the in-

duced structure on M is fy(2v+3,—1)-structure. The induced Riemannian
metric g is given by (cf. [4])

(3.8) J(X,Y) =§(fX, fY) +§(IX,Y).

=t

-

(3.7)
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Let V be the connection induced in M from the Riemannian connection V
on M. Then

(3.9) Vo zBY = BV;Y.

It can be easily shown that Vis also a Riemannian connection on M "
Let us define a tensor field S of type (1,2) on the submanifold M as

follows
(3.10) S(X,Y)=N(X,Y)+ VztX - Vot X - 1[X,Y],
when X,Y € I} (M).
It can be easily shown that
(3.11) S(BX,BY) = BS(X,Y).

THEOREM 5. An invariant submanifold M imbedded in a normal
[r(2v + 3, —1)-manifold such that the distribution T is tangential to ¢(M)
is a fr(2v + 3, —1)-structure manifold and the induced structure is normal
in M.

P roof. Proof follows easily, by virtue of equations (2.7),(3.7) and (3.10).
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