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ON SOME OPTIMISATION PROBLEM IN A SET 
OF SOLUTIONS OF NONLINEAR OPERATOR EQUATION 

IN B A N A C H SPACES. 
G A L E R K I N APPROXIMATION 

In the paper we shall present the Galerkin approximation of some opti-
misation problem concerning minimization of convex functional on the set 
of solutions of a certain nonlinear operator equation with the monotone 
operator. 

1. Introduction 
Let V be a real, reflexive separable Banach space with the norm || • ||. 

By V* we denote its dual with the duality relation (•, •) between V* and V. 
Let us consider an operator A : V —> V* (see [2], [3]). 

DEFINITION 1 . 1 . We say that A is monotone if (Au - Av, u - v) > 0 for 
all u, v € V and strictly monotone if (Au — Av, u - v) > 0 for u ^ v. 

DEFINITION 1 .2 . The operator A is said to be coercive if there exists 
a real function 7 : [0,oo) —> R such that lim 7(s) = +00 and (Au,u) > 

S—KX> 
7(||u||)||u|| for every u G V. 

DEFINITION 1 .3 . We say that A is radially continuous if for all u, v £ V 
the real function s —> (A{u + sv), v) is continuous on [0,1]. 

DEFINITION 1 .4 . The operator A has the 5-property if for every sequence 
{vn}neN c V such that: vn —• v weakly in V and (Avn — Av, vn — v) —• 0 

n—>oo n—"-oo 
we have that vn —• v strongly in V. 

n—• 00 
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Let / : V —• R be a continuous, strictly convex, and coercive functional 
(i.e. lim J(v) = +00) and let A : V —• V* be a monotone, coercive, and 

IM|-*oo 
radially continuous operator. We shall consider the following optimization 
problem: 

P R O B L E M P . Find y° G V (if it exists) such that 

J(y°) = min J(y), 
ySVad 

where Vad is a set of solutions of the equation 

(1.1) Ay = f 

for a given f G V*.-
In what follows we shall use the following theorem (see [3]). 

B R O W D E R - M I N T Y T H E O R E M . If A : V V* is a monotone, radially 
continuous and coercive operator then the set of solutions of the equation 
(1.1) is a closed, convex and non-empty subset ofV. 

It is known that any continuous and strictly convex functional J : V —> R 
is weakly lower semi-continuous. Moreover, in a closed, convex set Vad the 
optimisation problem (P) has a unique solution y° (see [1]). 

2. Galerkin approximation 
Consider a family {Vh}heG of finite-dimensional subspaces of V, which 

satisfies following conditions 

= ^ V / I L 5 h 2 G G [ h > h2 ^ vhl C VFCJ, 
heG 

where the set G C (0,1] of parameters h has an accumulation point at 0 
(see [4]). We shall give a variational formulation of the equation (1.1) 

(2.1) (Ay,v)=(f,v) VveV. 

Any function yh G Vh which is a solution of the equation 

(2.2) (Ayh,vh) = (f,vh) VvheVh 

will be called an approximate solution of (2.1). 
Let us denote by Ih the embedding operator from Vh to V, and by 

IH : V* the adjoint operator to Ih. Then the equation (2.2) can be 
presented in the following operator form 

(2.3) Ahyh = fh, 

where Ah = 11 Alh, fh = ¡hfi so Ah satisfies the assumptions of the 
Browder-Minty theorem. 
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Therefore the set of solutions of equations (2.3) is a closed convex non-
empty subset of Vh-

We shall consider the following approximative problem (Ph) in the space 

Vh. 

PROBLEM {Ph)- Find y° e Vh such that 

J(y°h) = mm J{yh) yh&vadh 

where Vadh is a set of solutions of equation (2.3). 
Similarly we can prove that the problem (Ph) has a unique solution y°. 

3. Convergence of the approximation 
Let us now consider the problem of the convergence of the approximation. 

LEMMA. Let A : V —• V* be a monotone radially continuous and coercive 
operator. Then for all y £ Vad there exists (yh) such that yh 6 Vadh and 
yh —> y strongly in V. 

h-> 0 

P r o o f . Let B : V —»• V* be any fixed, radially continuous, strictly 
monotone operator with 5-property. Let g G V* be any fixed element and 
(£j) a sequence of positive real numbers convergent to zero. 

From [3] it follows that the operators A + £{B\ i = 1 , 2 , . . . are strictly 
monotone, radially continuous, coercive and with ¿'-property. Then the equa-
tions 

((A + £iB)y,v) = (f + eig,v) Vv e V 

have unique solutions for 1 , 2 , . . . 
Therefore the sequence (J/q) is convergent to some y0 € Vad 

Vo .—• yo strongly in V, l—*oo 

and yo is a unique solution of the inequality 

(3.1) ( B y o - g , v - y o ) > 0 Vu G Vad. 

Analogously, for ¿ = 1 , 2 , . . . , the equation 

(3.2) {(A + £iB)yh,vh) = {f + eig,vh) Vvh£Vh 

has a unique solution yloh, therefore a sequence (ylQh) is strongly convergent 
in V to y0h e Vadh. 

From [3] it follows that for all fixed i = 1 , 2 , . . . , a sequence of approxi-
mate solutions (ylQh) of equation (3.2) is convergent to any y'o £ V 

Voh ,—• Vo strongly in V. 
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From this and the inequality 

o < \\y0h - foi l < \\yoh - 2/0/1II + WvL - yi>II + II2/0 - ¡toll 

it follows that 

Voh —• Vo strongly in V. 

h—> oo 

We prove that for a certain yo G Vad there exists a sequence (yoh) of 
solutions of the approximated problem (Ph ) , yoh G Vadh and that the se-
quence converges strongly to yo in V. From the uniqueness of the solution 
yo of inequality (3.1), where B and g can be selected arbitrarily, we can de-
duce that a sequence (yoh) exists for every yo G Vad- In order to inequality's 
unique solution is any yo £ Vad it is enough to put g = Byo-

Now we shall prove that the sequence of solutions of problem (Ph) 

is convergent to the solutions of problem (P). 

THEOREM 1. Let A be a monotone, coercive, radially continuous operator 

from a reflexive Banach space V into V*, and let J be a continuous strictly 

convex and coercive functional from V into R. Then a sequence of optimal 

solutions (j/®) of problem (Ph) is weakly convergent to an optimal solution 

y° of the problem (P) 

y\ —s- y° weakly in V. 
h—>0 

P r o o f . Since J is continuous and coercive, then there exists a positive 
constant M\ < oo such that 

(3.3) ||2/°J < M1 Vh. 

Taking into account that V is a reflexive Banach space we can deduce 
that the sequence ( y c o n t a i n s a subsequence, which will be also denoted 
(y®), weakly convergent to y 

y° — • y weakly in V . 

We prove that y 6 Vad. Since the equation (2.2) is satisfied for Vh € Vh, 
we can put Vh = y® and get from (3.3) that there exists a positive constant 
M2 < oo such that 

(Aylyl) = (f,y0h)<\\f\\v.\\y°h\\<M2. 

Then from [3] we conclude that there exists a positive constant M 3 < oo 
such that 

(3.4) < M 3 . 

Putting in the equation (2.2) Vh = ef, i = 1 ,2 , . . . , m(h) = dim Vh, where 
(e i , e-i-,. • •, em (^ ) ) is a basis of Vh, we see that 

(Ay°h,ei) = (f,ei) i = 1,2,..., m(h). 
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Consequently 
m(h) m(h) 

(Ayl, a i e i ) = (f> S a i € i ) 
i=1 ¿=1 

f o r a n y at £ R a n d t h e r e f o r e (Ay°h,e) = ( f , e ) Ve € Vh. 
Then there exists a limit 

l i m d A y ° h , e ) = ( f , e ) V e € ( J ^ -
h—vO 

h 

Thus by (3.4) we obtain 

(3.5) AyS—j; /weakly in V*. 

From lim (Ay°h,y°h) = lim (f,y°h) = ( f , y ) it Mows that Ay = / . 
h—+0 h—i-O 

Let (yh), Vh € Vadh be any sequence strongly convergent to y° in V. The 
existence of a sequence (yh) is ensured by Lemma. 

Because J is weakly lower semi-continuous it is easy to prove that 

J(y) < liminf J(y°h) < liminf J(yh) = J(y°). 

In fact from the definition of y° it follows that 

y = »°. 

Due to the uniqueness of the solution not only a subsequence, but the 
whole sequence (y°h) is weakly convergent to y°, the optimal solution of (P) 
in V. 

THEOREM 2. Let the assumption of Theorem 1 be satisfied. If the opera-
tion A has S-property then the sequence of optimal solutions ( y® ) of problem 
(Ph) is strongly convergent to an optimal solution y° of problem (P) 

y°h —• V° strongly in V. 

P r o o f . From Theorem 1 we conclude that yh —• y weakly in V. Thus 
h—>0 

with (3.5) we obtain Ay® —• / weakly in V*. It follows that 
/i—»-0 

Km(Ay0
h-Ay0,y0

h-y°) 
h—* 0 

= l i m - (Ay°,y°h) + ( A y l y 0 ) - (Ay°,y°)) = 0. 
n— 

Due to the 5-property of A we have 

y°h y° Strongly in V. 
h-+ 0 
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4. An example 
The method of the previous sections has been applied to a variety of 

problems. We present here one selected result. 
A typical functional appearing in optimisation problems is the quadratic 

functional: 
J { y ) = \ \ E { y - y d ) \ \ \ I 

where E G L(V, H), H is a Hilbert space, yd is a given element of V. 
In particular, let V = W j ' p ( f 2 ) , H = L 2 ( 0 ) , yd = 0, where Q C R n is 

set of C° class (see [3]) with boundary J1. 
Let E be an embedding operator from V into H. The cost functional is 

equivalent to: 

(4.1) J ( y ) = j E \ y ) d i 2 , where E \ y ) = ( E ( y ) , E{y))„. 

n 

We introduce the operator A : V V*, V* = p + q~l = 1 
and 

n Q 
Ay= - y ^ - z — a i ( x , u ) + a n + 1 ( x , L j ) , x £ f2, 0 X i 

where 
f d y d y d y \ 

n+1 
Let a,i(x, u ) = $(z, \u\p-1)\cj\p~2 £ b i j u j i = 1 , 2 , . . . , » + 1, where 

3=1 

M = ( E " S i bii">i«>j)1/2, bij G bij = bji; i , j = 1 , 2 , . . . , » + 1; 
P> 2, 

n + l n+1 
^ bijdidj > b ^ ^ d j , b = const. > 0, ¿ ¡ e R i = 1,2, . . . , n + 1. 

i,j=1 ¿=1 

We assume that 
(a) Vs € [0,oo) a function x —»• $(a:,.s) is measurable in i?. 
(b) for almost all x G Q a function s —»• $(z , . s ) is continuous in [0, oo). 
(c) 3M > 0 Vs G [0, oo) for a.a. x G i2 s) < Af. 

T H E O R E M 3. I f p > 2, i/ie function $ /u//i/s conditions (a)-R(c), fAere 
exists a positive constant I such that: > I > 0 for a.a. x G f l and any 

s G [ 0 , o o ) and the function s —»• is increasing, then the operator A 

is demicontinuous, monotone and coercive (see [ 3 ] ) . 

As an optimisation problem (P) we shall consider the following: 
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Find y° £ V which minimizes the functional 

J(y) = J E\y)dQ, 
Q 

where y is solution of equation 
n r, n+1 • 

(4.2) - M P - 1 ) M P ~ 2 E M i 
¿=1 * j=1 

n+1 

i=i 

/ G W - 1 ' 9 ^ ) . 
As an approximation of problem ( i ^ ) we shall consider the following: 

Find € VJi which minimizes the functional J 
m(h) 

J(Vh)= f yldil, yh=Y^
ah)ei> 

a ¿=i 

where dim Vh = m(/i) and • • is the solution of the system of 
algebraic equations following to (4.2) 

n rj n+1 

(- E £:*(*> Wl)Kip"2 E ^ 
i=l 1 j = l 

n+1 

j=i 
for j = 1 ,2 , . . .,m(h), where 

m(/i) 
, ,L _ (, ,(*) , ,(2) (n+lK (t) _ V - (j) Ôei 

j=1 ' 

for i = 1,2 , . . . , n ; = yh, where the elements e*, i = 1 ,2 , . . ,,m(h) 
form the basis of subspace Vh-

In this way the optimisation problem (P) has been reduced to a typical 
problem of mathematical programming (Ph)-
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