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ON SOME OPTIMISATION PROBLEM IN A SET
OF SOLUTIONS OF NONLINEAR OPERATOR EQUATION
IN BANACH SPACES.
GALERKIN APPROXIMATION

In the paper we shall present the Galerkin approximation of some opti-
misation problem concerning minimization of convex functional on the set
of solutions of a certain nonlinear operator equation with the monotone
operator.

1. Introduction

Let V be a real, reflexive separable Banach space with the norm || - ||.
By V* we denote its dual with the duality relation (:,-) between V* and V.

Let us consider an operator A: V — V* (see [2], [3]).

DEeFINITION 1.1. We say that A is monotone if (Au — Av,u—v) > 0 for
all u,v € V and strictly monotone if (Au — Av,u — v) > 0 for u # v.

DerINITION 1.2. The operator A is said to be coercive if there exists
a real function ¥ : [0,00) — R such that lim y(s) = +oo and (Au,u) >
S$—00

¥([|u|)l|ul| for every u € V.

DEFINITION 1.3. We say that A is radially continuous if for all u,v € V
the real function s — (A(u + sv),v) is continuous on {0, 1].

DEFINITION 1.4. The operator A has the S-property if for every sequence
{vn}nen C V such that: v, — v weakly in V and (Av, ~ Av,v,—v) — 0
n—o00

n—oo

we have that v, — v strongly in V.
n—0oo
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Let J : V — R be a continuous, strictly convex, and coercive functional

(i.e. | llilm J(v) = +00) and let A: V — V* be a monotone, coercive, and

radially continuous operator. We shall consider the following optimization
problem:

ProBLEM P. Find y° € V (if it exists) such that
0y _ .
J(y") = min J(y),
where Vo4 is a set of solutions of the equation
(1.1) Ay=f
for a given f € V*.
In what follows we shall use the following theorem (see [3]).

BROWDER-MINTY THEOREM. If A : V — V* is a monotone, radially
continuous and coercive operator then the set of solutions of the equation
(1.1) is a closed, convez and non-empty subset of V.

It is known that any continuous and strictly convex functional J : V - R
is weakly lower semi-continuous. Moreover, in a closed, convex set V,4 the
optimisation problem (P) has a unique solution y° (see [1]).

2. Galerkin approximation
Consider a family {V}}xeq of finite-dimensional subspaces of V', which
satisfies following conditions

U V=V, Vhi,hy €G (h1 > hy = V), CVy,),
hEG

where the set G C (0,1] of parameters h has an accumulation point at 0
(see [4]). We shall give a variational formulation of the equation (1.1)

(2.1) (Ay,v) = (f,v) YveV.
Any function y, € V, which is a solution of the equation
(2.2) (Ayn,vn) = (fion) Yon € Vi

will be called an approximate solution of (2.1).

Let us denote by I, the embedding operator from V, to V, and by
Iy : V* — V¥ the adjoint operator to Ij. Then the equation (2.2) can be
presented in the following operator form

(2.3) Aryn = [,

where Ay, = I}AL, fr = I;f, so A, satisfies the assumptions of the
Browder-Minty theorem.
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Therefore the set of solutions of equations (2.3) is a closed convex non-

empty subset of Vj.
We shall consider the following approximative problem (P) in the space

Vh.
PROBLEM (P}). Find y)) € V), such that
J(y3)= min J
() = min (Yr)

where V,qn 15 a set of solutions of equation (2.3).
Similarly we can prove that the problem (P,) has a unique solution yJ.

3. Convergence of the approximation
Let us now consider the problem of the convergence of the approximation.

LEMMA Let A :V — V* be a monotone radially continuous and coercive
operator. Then for all y € V,4 there ezists (yn) such that yn € V,qy and
Yn 2y strongly in V.

Proof. Let B : V — V* be any fixed, radially continuous, strictly
monotone operator with S-property. Let g € V* be any fixed element and
(e:) a sequence of positive real numbers convergent to zero.

From (3] it follows that the operators A + ¢;B; i = 1,2,... are strictly
monotone, radially continuous, coercive and with S-property. Then the equa-
tions

((A+e;B)y,v) = (f +eig,v) YoeV

have unique solutions yj for 1,2,...
Therefore the sequence (y}) is convergent to some g € V4

y{; — yp strongly in V,
1— 00

and yp is a unique solution of the inequality

(3.1) (Byo — g,v— ) >0 Vv € V.
Analogously, for ¢t = 1,2,..., the equation
(3.2) ((A+eiB)yn,vn) = (f +€ig,vn) Yon €V

has a unique solution g, therefore a sequence (y3,) is strongly convergent
in V to yor € Vadn-

From [3] it follows that for all fixed i = 1,2,..., a sequence of approxi-
mate solutions (y;, ) of equation (3.2) is convergent to any y§ € V

yéh — y('; strongly in V.
h—o00
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From this and the inequality

0 < [|yon — voll < llvon — ¥6nll + llvén — voll + 116 — woll
it follows that
Yor — Yo strongly in V.
h—co

We prove that for a certain yo € Vg4 there exists a sequence (yon) of
solutions of the approximated problem (Pi), yorn € Vadn and that the se-
quence converges strongly to yo in V. From the uniqueness of the solution
yo of inequality (3.1), where B and g can be selected arbitrarily, we can de-
duce that a sequence (yon) exists for every yo € V,q. In order to inequality’s
unique solution is any yo € V,q it is enough to put g = By.

Now we shall prove that the sequence (y?) of solutions of problem (Py)
is convergent to the solutions of problem (P).

THEOREM 1. Let A be @ monotone, coercive, radially continuous operator
from a reflezive Banach space V into V*, and let J be a continuous strictly
convez and coercive functional from V into R. Then a sequence of optimal
solutions (y?) of problem (Py) is weakly convergent to an optimal solution
y° of the problem (P)

y?l s y° weakly in V.

Proof. Since J is continuous and coercive, then there exists a positive
constant My < oo such that

(3.3) lvall < My Vh.

Taking into account that V is a reflexive Banach space we can deduce
that the sequence () contains a subsequence, which will be also denoted
(y%), weakly convergent to j

yo = 7y weakly in V.
We prove that § € V4. Since the equation (2.2) is satisfied for vy, € Vj,

we can put v, = ¥ and get from (3.3) that there exists a positive constant
M, < oo such that

(Ayh, vn) = (fs98) < I fllv-lIvhll < M.
Then from [3] we conclude that there exists a positive constant M3 < oo
such that

(3.4) | Agpllv- < Ms.
Putting in the equation (2.2) v, = €;;¢ = 1,2,...,m(h) = dim Vj, where
(e1,€2,...,em(n)) is a basis of V,, we see that

(Ayd,e:) = (f,e;) i=1,2,...,m(h).
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Consequently
. m(h) AL m(h) N
<Ayh, Z a,e,> <f, Z a,e,>
i=1 i=1

for any a; € R and therefore (Ay?,e) = (f,€) Ve € V.
Then there exists a limit

. 0 _
lim (A3, e) = (f,e) Vee LhJVh-

Thus by (3.4) we obtain
(3.5) Aygh——sf weakly in V*.

From %irrh(Ayg,yg) = %inh(f, y?) = (f,7) it follows that Ay = f.

Let (y1), Yn € Vaan be any sequence strongly convergent to y° in V. The
existence of a sequence (y,) is ensured by Lemma.
Because J is weakly lower semi-continuous it is easy to prove that

J() < liminf J(y3) < lim inf J(y3) = J(3°).
In fact from the definition of %0 it follows that
7=1"

Due to the uniqueness of the solution not only a subsequence, but the

whole sequence (y)) is weakly convergent to y°, the optimal solution of (P)
in V.

THEOREM 2. Let the assumption of Theorem 1 be satisfied. If the opera-
tion A has S-property then the sequence of optimal solutions (y?) of problem
(Pyr) is strongly convergent to an optimal solution y° of problem (P)

yg = y° strongly in V.

Proof. From Theorem 1 we conclude that y) = y® weakly in V. Thus
with (3.5) we obtain Ay? — f weakly in V*. It follows that
lim (Ayh — Ay’,vh - ¥°)
= lim ((Ayz, 9) — (A¥°,9h) + (49, 8°) - (49°,9°)) = 0.
Due to the S-property of A we have

2 — y° strongly in V.
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4. An example
The method of the previous sections has been applied to a variety of
problems. We present here one selected result.

A typical functional appearing in optimisation problems is the quadratic
functional:

J(y) = 1E(y - va)ll&
where F € L(V,H), H is a Hilbert space, yq4 is a given element of V.
In particular, let V = Wy'P(2), H = L*(2), yg = 0, where 2 C R™ s
set of C class (see [3]) with boundary I
Let F be an embedding operator from V into H. The cost functional is
equivalent to:

41)  J@)= [ E*y)d2, where EX(y) = (E(y), E(y))n.
i

We introduce the operator A : V — V* V*=W-19(2),p~1 441 =1
and

.0
Ay = - E 1: _a?iai(m7w) + an+1($aw), z €42,
1=

where
we (9Y Oy dy = ( )
= 8:1:1’851:2"”’8:1:n’y = \W1,W2, ...y Wn,y Wi,

n+1
Let ai(z,w) = ®(z,|w[P~Y|w[P~? Y bjjw; i = 1,2,...,n 4+ 1, where
=)

jwl = (ZI12g bijwiw;)' V2, bij € L(2), bij = by 6,5 = 1,2,...,m + 15
P22,

n+1 n+1

Y bidid; > b)Y d?, b=const. >0, di€eR i=12,...,n+1.

i,j=1 =1

We assume that

(a) Vs € [0,00) a function z — ®(z, s) is measurable in 2.

(b) for almost all z € {2 a function s — ®(z, s) is continuous in [0, 00).
(c) IM > 0 Vs € [0,00) for a.a. z € 2 &(z,s) < M.

THEOREM 3. If p > 2, the function ® fulfils conditions (a)+(c), there
ezists a positive constant ! such that: ®(z,s) > 1 > 0 for a.a. ¢ € 12 and any
s € [0,00) and the function s — ®(z, s)s is increasing, then the operator A
is demicontinuous, monotone and coercive (see [3)]).

As an optimisation problem (P) we shall consider the following:
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Find y® € V which minimizes the functional
= [ EX(y)dn,
Q

where y is solution of equation

n n+l o
(4.2) Z NP WP bijw;
1 1=1
n+1
+ ®(z, [P WP Y bijw; = f(=);
=1

few=ti(n).
As an approximation of problem (Pj) we sha]l consider the following:
Find yh € V;, which minimizes the functional J

m(h)
J(yn) = f Vid2, yn= Z ae;,

where dim V}, = m(h) and (ag), aglm(h )) is the solution of the system of
algebraic equations following to (4.2)
n+1

< Za Q(z,lwhlp l)lwhlp Zzbz]ng)
n+1

+0(a, lonPDlwnlP? Y b, ;) = (£e5)

i=1
for j =1,2,...,m(h), where

(1) @ (b1 ) _ K~ () D
wh = (W Wy wy ), Wy =Z Jaz]
=1 !
fori=1,2,...,n; wg nt) _ = Yn, where the elements ¢;, ¢ = 1,2,...,m(h)

form the basis of subspace V-
In this way the optimisation problem (P) has been reduced to a typical
problem of mathematical programming (Py).
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