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A CHARACTERIZATION OF THE MONGE PROPERTY
AND ITS CONNECTION TO STATISTICS

1. Introduction
Consider the two-dimensional array ¢ : N,, x N, — R, where N, =
{0,...,n}. g is called a Monge array or Monge for short if

(1.1) 9(z1,91) + 9(22,92) > 9(z1,%2) + 9(z2,11)
for all z; < z9 and y; < y2. Furthermore, g is called monotone if g(.,y)

and g(z,.) are nondecreasing functions. Finally, if (1.1) holds with “<” in
the first inequality we call ¢ reverse Monge, where monotonicity means
“nonincreasing” for the reverse case.

Define now

Qg(z,9) = 9(z,9) —9(z,y - 1) —9(z - L, y) + 9(z - 1,y - 1),
where we assume g¢(s,?) to vanish for any negative argument s or t.
We can equivalently define g to be Monge by

(1.2) Og(z,y) >0 foral z,y> 1.
If
(1.3) Og¢(z,y) >0 forall (z,y) € N, x N, - (0,0),

then g is Monge and monotone.

The Monge property is named in honor of the French mathematician
G. Monge who studied the property in the eighteenth century [Mon81]. It
was rediscovered in 1961 by A.J. Hoffman [Hof61], when he showed that a
transportation problem can be solved by a greedy method if the underlying
costs are Monge.
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Recently the Monge property has again been shown to be useful in diverse
fields: in the speedup dynamic programs for the study of DNA as well as
other problems [Ya080, LS90, EGG88], problems in computational geometry
[AP88], statistics [FP89], and the theory of greedy algorithms. Finally the
classical Monge property has been generalized to higher dimensions (see
(BBP92)).

Notice that g is Monge if it is linearly separable, i.e. g(z,y) = u(z) +
v(y). In this case (1.2) holds with equality. In fact this stronger property
underlies some of the speed-up results in dynamic programming [Yao80]. In
the study of integer programs, Gilmore and Gomory [GG64] have given a
rather general way to generate Monge arrays that are not linearly generated
via certain integrals.

In this paper we give a characterization of the Monge property that
encompasses their result in a natural way. We will now give the characteri-
zation and show its validity in Section 2. Section 3 shows that our result is
a natural generalization of the Gilmore-Gomory result.

A function F : N, x N, — R* is called a distribution function if it is of
the form
(14) F(z,9)= ) pij

i<z,j<y
for nonnegative p;;.
We are now ready to formulate our result:

THEOREM 1.1. Let g : N, X N, — R be a Monge array. Then, there ezxists
a distribution function F : N, x N, — R*% and functions u,v: N, — R
such that
(1.5) 9(z,y) = u(z) + v(y) + F(z,9).

THEOREM 1.2. Let g : N, X N, — R be a reverse Monge array. Then,
there ezists a distribution function F : N, X N, — Rt and functions u,v :
N,, — R such that

(1.6) 9(z,y) = u(z) + v(y) — F(z,y).

2. Proof of characterization

We will only prove Theorem 1.1, the proof of Theorem 1.2 is entirely
analogous, mutatis mutandis, to the proof of Theorem 1.1. We first show
that a function that has the form (1.5) is Monge:

Remark 2.1. Given a distribution function F : N, x N, — Rt and
functions u,v : N, — R with

9(z,y) = u(z) + v(y) + F(z,y),
then g is Monge.



Characterization of the Monge property 453

Proof. First notice that u(z), u(z —1), v(y),v(y—1) cancel out in (1.2).
Therefore,

Og¢(z,y) =psy 20. m
Now, we shall show that (1.5) is also necessary.
LEMMA 2.1. Let g: N, Xx N, — R with
(2.1) Og(z,y)=0 forall N, x N,, —(0,0).
Then, there erist functions u,v : N, — R such that
9(z,9) = u(z) + v(y)-
Proof. Due to (2.1) we have
90,00= Y g(i,5) = 9(z,y) - 9(2,0) - 9(0,3) + ¢(0,0).
0<i<z,0<<y
Therefore,
9(z,9) = 9(z,0) + 9(0,y) := u(z) + v(y). =

LEMMA 2.2, Let g : N, X N, — R. Then, there ezist functions u,v :
N,. — R such that g(z,y) = u(z) + v(y) is monotone.

Proof. First consider the first two “columns” ¢(0,y) and g(1,y). If the
two functions are not monotone, add a constant u(1). Then proceed with
columns 1,2; 2,3 and so forth. Repeat the process for rows to obtain v(y). =

Notice that if ¢ is Monge, so is ¢ + u + v.

LEMMA 2.3. Let g : N, X N, — R be Monge and monotone. Furthermore
let

(2.2) F(z,y):= Z pij with p;;:=0g(¢,5), ,j€ Np.
: i<z,j<y
Then, F is a distribution function and
O(F -—g)=0.

Proof. All we have to show is that p;; > 0 for all 4,5 € N,,. But this
follows from the fact that g is Monge for nonzero pairs ¢j and else from the
fact that g is monotone. =

Now, we are ready to prove our result:

Proof. [of Theorem 1.1]: Due to Lemma 2.2 we can assume that g is
indeed monotone. Then, let F be as in Lemma 2.3 to obtain the result from
Lemma 2.1. =
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3. The Gilmore-Gomory results

We shall now show that our characterization is a natural generalization
of the results of Gilmore and Gomory. We will consider the reverse Monge
case where they consider arrays of the form:

o ff,.’ f(¥)dy a; <B;
(31) ’w(h]) = {f;;; g(y)dy ﬂj < a‘z,

where f and g are given nonnegative integrable functions? and ap < ...a,,
Bo < ...Bn are given real parameters.

Let F,G be the primitives of f and g respectively. Equation (3.1) can be
written as

(3.2) w(i,j) = max(0, F(8;) — F(es)) + max(0, G(as) — G(8;))

(3.3) = G(B;) = F(a;) + max(F(8;), F(a:)) + max(G(a;), G(B;))-
Then, we have
(3.4) Dw(i,j) = Omax(F(B;), F(a:)) + Omax(G(a:), G(8;)),
which can be seen to be
) F+G)m)-(F+G
(3.5) Ow(i,j) = {( )(!/1)0 ( )(v2) 33;': ; Z:’
where
(3.6) % = max(a;-1,f;-1) and y = min(a;, 5;).
Thus to define the F in (1.6) we set
3.7 pi,j = —0w(i, j).

Equation (3.5) shows that characterization (1.6) is a proper generaliza-
tion of the Gilmore-Gomory result (3.1), since y; > y, will always hold in
(3.5) for some pairs ¢,j and thus some p; ; are 0. Thus while the Gilmore-
Gomory result covers many important Monge arrays, it does not characterize
all Monge situations.

4. Applications to statistics

Consider the problem of integration of two surveys. It is proposed to
carry out two surveys (S5, P) and (7,Q) on Z. Let p;, i = 1,...,m, denote
the probability of selection associated with the sample s; in § for the first
survey, » .p; = 1. Similarly let ¢;, j = 1,...,n, denote the probability of
selection associated with the sample ¢; in T for the second survey.

2 Gilmore and Gomory also make the assumption f +g > 0, our results hold for that
case as well.
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An integrated survey is a joint probability distribution (sampling pro-
gram) on S X T which assigns a probability z;; to the pair (s;,t;) and realizes
the marginal probability distributions P and @ required for the two respec-
tive surveys. An optimal integrated survey is an integrated survey which
given a distance (cost) function minimizes the expected distance between
the two marginal surveys. (This is equivalent to maximizing the expected
overlap between the two marginal surveys). In terms of the transportation
problem, the problem of the optimal integration of two surveys is as follows:

Integration of two surveys:

Minimize E(d) = E E dijzi;
j

i

subject to Zz,'jzp; (i=1,...,n)

j
Z:z:,-quj (]= 1,...,m)
i

z;; >0 forall:and j.

This problem is known as the Hitchcock transportation problem (see
e.g. Chvital [Chv83). We note that the problem of controlled selection has
the same formulation except for a few changes in the terminology. In the
integration of surveys, the objective function is to be minimized, whereas in
controlled selection this function is to be maximized. The function d in the
context of controlled selection is referred to as the distance function and is
taken to represent a measure of preference.

Hoffman [Hof61] showed the now classical result that above transporta-
tion problem can be solved by the "north-west corner rule” if the underlying
cost matrix satisfies the Monge condition in the case of maximization and
reverse Monge property in the case of minimization. (see [Hof61] for details).
Whereas the best known algorithms for the general transportation problem
has complexity O(mn?logn + n?log® n), in the Monge case an optimal so-
lution can be found in O(m + n).

We use our technique to establish the optimality of the Goodman-Kish
approach [GK50] to the problem of controlled selection. There are two strata.
Stratum 1 contains six PSU’s, A, B, C, D, E and F of which A, D and E are
inland while B, C and F are coastal. Stratum 2 contains five PSU’s a, b, ¢,
d, and e of which only a is coastal and the others are inland. The object is to
design a joint sampling scheme which maximizes the probability of selecting
a pair of dissimilar units, i.e., an inland unit from one stratum and a coastal
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from the other according to the following probabilities:

Stratum 1 Stratum 2
Units A B C D E F Units a b ¢ d e
Prob. .1 .15.1 .2 25 .2 Prob. .2 3 .1 .15 .25

Let the distance between PSU’s from the two strata be zero if the two
units are of the same type and one otherwise. The distance matrix is, there-
fore, as follows:

Stratum 2

a b ¢ d e

A1 0 0 0 O

D1 0 0 0 0

Stratum1l E 1 0 0 0 0
B 0 1 1 1 1

cC 01 1 1 1

F 0 1 1 1 1

The distance matrix is a Monge matrix and therefore the north-west
corner rule gives the following optimal solution.

Stratum 2
a b c e d
A 1 0 0 0 0 1
D 1 .1 0 0 0 2
Stratum1l E 0 2 .05 0 0 .25
B 0 0 .05 .1 0 .15
C 0 0 0 1 0 1
F 0 0 0 .05 .15 2
2 3 .1 .25 .15

In the next example, we establish the “optimality” of Lahiri’s selection
scheme [Lah54]. Under this scheme, PSU’s from a given geographical area
are listed on the sampling frame in a serpentine order. To minimize the
travel cost, a variant of the Northwest Algorithm is used for selecting two
sample units. For details, we refer the reader to Lahiri’s paper [Lah54].

In this method, the cost of the survey is assumed to be proportional to
the distance between the PSU’s and is taken to be d(%, j) = |i—j|. The matrix
d(%,7) is reverse Monge (this follows from the fact that d is a distribution
function), which implies that Lahiri’s selection scheme does indeed minimize
the expectation of this distance function.

In fact, these techniques have enabled us to generalize the Lahiri re-
sult to the integration of k surveys under a min-max distance function
d(il, oo ,ik) = maX;<k ’ij - miank ij, see [BBP92].
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