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A CHARACTERIZATION OF THE MONGE PROPERTY 
AND ITS CONNECTION TO STATISTICS 

1. Introduction 
Consider the two-dimensional array g : Nn x JV„ —• R, where Nn := 

{ 0 , . . . , n ) . g is called a Monge array or Monge for short if 

(1-1) 9(xi,yi) + g(x2,V2) > g(xi,y2) + g(x2,yi) 
for all i i < X2 and y\ < 3/2- Furthermore, g is called monotone if g(.,y) 
and g(x,.) are nondecreasing functions. Finally, if (1.1) holds with "<" in 
the first inequality we call g reverse Monge, where monotonicity means 
"nonincreasing" for the reverse case. 

Define now 

Og(x,y) = g(x,y)~ g(x,y- 1) - g(x - 1 ,y) + g(x - l , y - 1), 

where we assume g(s, t) to vanish for any negative argument 5 or t. 
We can equivalently define g to be Monge by 

(1.2) •<7(1,2/) > 0 for all x,y > 1. 
If 

(1.3) Og(x, y)>0 for all (x, y) e Nn x Nn - (0,0), 

then g is Monge and monotone. 
The Monge property is named in honor of the French mathematician 

G. Monge who studied the property in the eighteenth century [Mon81]. It 
was rediscovered in 1961 by A.J. Hoffman [Hof61], when he showed that a 
transportation problem can be solved by a greedy method if the underlying 
costs are Monge. 
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Recently the Monge property has again been shown to be useful in diverse 
fields: in the speedup dynamic programs for the study of DNA as well as 
other problems [Yao80, LS90, EGG88], problems in computational geometry 
[AP88], statistics [FP89], and the theory of greedy algorithms. Finally the 
classical Monge property has been generalized to higher dimensions (see 
[BBP92]). 

Notice that g is Monge if it is linearly separable, i.e. g(x,y) = u(x) + 
v(y). In this case (1.2) holds with equality. In fact this stronger property 
underlies some of the speed-up results in dynamic programming [Yao80]. In 
the study of integer programs, Gilmore and Gomory [GG64] have given a 
rather general way to generate Monge arrays that are not linearly generated 
via certain integrals. 

In this paper we give a characterization of the Monge property that 
encompasses their result in a natural way. We will now give the characteri-
zation and show its validity in Section 2. Section 3 shows that our result is 
a natural generalization of the Gilmore-Gomory result. 

A function F : Nn x Nn —> R+ is called a distribution function if it is of 
the form 
(1.4) F(x,y)= Y , P'J 

i<x,j<y 

for nonnegative pij. 
We are now ready to formulate our result: 
THEOREM 1.1. Let g : Nn X Nn —• R be a Monge array. Then, there exists 

a distribution function F : Nn x Nn —> R+ and functions u, v : Nn —> R 
such that 
(1.5) g(x,y) = u(x) + v(y) + F(x,y). 

THEOREM 1.2. Let g : Nn x Nn —» R be a reverse Monge array. Then, 
there exists a distribution function F : Nn x Nn R+ and functions u, v : 
Nn R such that 

(1.6) g(x,y) = u(x) + v(y)-F(x,y). 

2. Proof of characterization 
We will only prove Theorem 1.1, the proof of Theorem 1.2 is entirely 

analogous, mutatis mutandis, to the proof of Theorem 1.1. We first show 
that a function that has the form (1.5) is Monge: 

R e m a r k 2.1. Given a distribution function F : Nn X Nn —> R+ and 
functions u, v : Nn —• R with 

g(x, y) - u ( x ) + v{y) + F(x, y), 

then g is Monge. 
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P r o o f . First notice that u(x), u(x — 1), v(y),v(y— 1) cancel out in (1.2). 
Therefore, 

y) = Px,y > o. • 
Now, we shall show that (1.5) is also necessary. 

LEMMA 2 . 1 . Let g : Nn x Nn R with 

(2.1) ng(x,y) = 0 for all Nn x Nn - (0,0). 

Then, there exist functions u, v : Nn —• R such that 

g{x,y) = u(z) + c(y). 

P r o o f . Due to (2.1) we have 

0 ( 0 , 0 ) = Y , 9(hj) = g(x,y)-g(x,0)-g{0,y) + g(0,0). 

0<i<x,0<j<y 

Therefore, 

g(x, y) = g(x,0) + 5(0, y) := u(z) + v(y). m 
LEMMA 2.2. Let g : Nn x Nn R. Then, there exist functions u,v : 

Nn R such that g(x, y) = u(x) + v(y) is monotone. 

P r o o f . First consider the first two "columns" g(0,y) and g(l,y). If the 
two functions are not monotone, add a constant u(l) . Then proceed with 
columns 1,2; 2,3 and so forth. Repeat the process for rows to obtain v(y). m 

Notice that if g is Monge, so is g + u + v. 

LEMMA 2.3. Let g : Nn x Nn —• R be Monge and monotone. Furthermore 
let 

(2.2) F(x,y):= p t i with ptj := Qg{i,j), i,j£Nn. 

Then, F is a distribution function and 

D(F-g) = 0. 

P r o o f . All we have to show is that pij > 0 for all i,j £ Nn. But this 
follows from the fact that g is Monge for nonzero pairs i j and else from the 
fact that g is monotone. • 

Now, we are ready to prove our result: 

P r o o f , [of Theorem 1.1]: Due to Lemma 2.2 we can assume that g is 
indeed monotone. Then, let F be as in Lemma 2.3 to obtain the result from 
Lemma 2.1. • 
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3. The Gilmore-Gomory results 
We shall now show that our characterization is a natural generalization 

of the results of Gilmore and Gomory. We will consider the reverse Monge 
case where they consider arrays of the form: 

(3-D i ^ ? ! ? \i^9{y)dy Pj<<*i, 

where / and g are given nonnegative integrable functions2 and a 0 < . . . a n , 
0o < . . ./?n are given real parameters. 

Let F, G be the primitives of / and g respectively. Equation (3.1) can be 
written as 

(3.2) w(i,j) = max(0, - F{a{)) + max(0, G(a.) - <?(&)) 
(3.3) = - F(ai) + max(F(/3j ) , F(ai)) + max(G(a,), 

Then, we have 
(3.4) Ow(iJ) = D m a x ( F ( / J j ) , F(a,)) + •max(G(a l-),Gf(^ i)). 
which can be seen to be 

í ( F + G)(j/x) - (F + GX1/2) yi<y2 

I 0 yi> y2, 
where 

(3.6) yi =max(a,-_i,/9j_i) and y2 = min(a,-,/3j). 

Thus to define the F in (1.6) we set 

(3.7) pitj = -Ow(i,j). 
Equation (3.5) shows that characterization (1.6) is a proper generaliza-

tion of the Gilmore-Gomory result (3.1), since yi > 3/2 will always hold in 
(3.5) for some pairs i,j and thus some p¡¿ are 0. Thus while the Gilmore-
Gomory result covers many important Monge arrays, it does not characterize 
all Monge situations. 

4. Applications to statistics 
Consider the problem of integration of two surveys. It is proposed to 

carry out two surveys (5, P) and (T, Q) on Z. Let p¿, i = 1 , . . . , m, denote 
the probability of selection associated with the sample a,- in S for the first 
survey, Y^iPi — 1- Similarly let qj, j = l , . . . , n , denote the probability of 
selection associated with the sample tj in T for the second survey. 

2 Gilmore and Gomory also make the assumption / + g > 0, our results hold for that 
case as well. 

(3.5) • io ( i , j ) 
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An integrated survey is a joint probability distribution (sampling pro-
gram) on SxT which assigns a probability x^ to the pair (•»,-, t j ) and realizes 
the marginal probability distributions P and Q required for the two respec-
tive surveys. An optimal integrated survey is an integrated survey which 
given a distance (cost) function minimizes the expected distance between 
the two marginal surveys. (This is equivalent to maximizing the expected 
overlap between the two marginal surveys). In terms of the transportation 
problem, the problem of the optimal integration of two surveys is as follows: 

Integration of two surveys: 

Minimize E(d) = ^ ^ dijXij 
« i 

subject to ^ X{j = pi (t = 1 , . . . , n) 
j 

xij — (i=l,...,m) 
t 

Xij > 0 for all i and j. 

This problem is known as the Hitchcock transportation problem (see 
e.g. Chvatal [Chv83]. We note that the problem of controlled selection has 
the same formulation except for a few changes in the terminology. In the 
integration of surveys, the objective function is to be minimized, whereas in 
controlled selection this function is to be maximized. The function d in the 
context of controlled selection is referred to as the distance function and is 
taken to represent a measure of preference. 

Hoffman [Hof61] showed the now classical result that above transporta-
tion problem can be solved by the "north-west corner rule" if the underlying 
cost matrix satisfies the Monge condition in the case of maximization and 
reverse Monge property in the case of minimization, (see [Hof61] for details). 
Whereas the best known algorithms for the general transportation problem 
has complexity 0(mn2 logra + n2 log2 n), in the Monge case an optimal so-
lution can be found in 0(m + n). 

We use our technique to establish the optimality of the Goodman-Kish 
approach [GK50] to the problem of controlled selection. There are two strata. 
Stratum 1 contains six PSU's, A, B, C, D, E and F of which A, D and E are 
inland while B, C and F are coastal. Stratum 2 contains five PSU's a, b, c, 
d, and e of which only a is coastal and the others are inland. The object is to 
design a joint sampling scheme which maximizes the probability of selecting 
a pair of dissimilar units, i.e., an inland unit from one stratum and a coastal 
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from the other according to the following probabilities: 

Stratum 1 Stratum 2 
Units A B C D E F Units a b e d e 
Prob. .1 .15 .1 .2 .25 .2 Prob. .2 .3 .1 .15 .25 

Let the distance between PSU's from the two strata be zero if the two 
units are of the same type and one otherwise. The distance matrix is, there-
fore, as follows: 

Stratum 2 

Stratum 1 

The distance matrix is a Monge matrix and therefore the north-west 
corner rule gives the following optimal solution. 

Stratum 2 

a b c d e 
A 1 0 0 0 0 
D 1 0 0 0 0 
E 1 0 0 0 0 
B 0 1 1 1 1 
C 0 1 1 1 1 
F 0 1 1 1 1 

Stratum 1 

a b c e d 
A .1 0 0 0 0 .1 
D .1 .1 0 0 0 .2 
E 0 .2 .05 0 0 .25 
B 0 0 .05 .1 0 .15 
C 0 0 0 .1 0 .1 
F 0 0 0 .05 .15 .2 

.2 .3 .1 .25 .15 

In the next example, we establish the "optimality" of Lahiri's selection 
scheme [Lah54]. Under this scheme, PSU's from a given geographical area 
are listed on the sampling frame in a serpentine order. To minimize the 
travel cost, a variant of the Northwest Algorithm is used for selecting two 
sample units. For details, we refer the reader to Lahiri's paper [Lah54]. 

In this method, the cost of the survey is assumed to be proportional to 
the distance between the PSU's and is taken to be d(i,j) = |t—j|. The matrix 
d(i,j) is reverse Monge (this follows from the fact that d is a distribution 
function), which implies that Lahiri's selection scheme does indeed minimize 
the expectation of this distance function. 

In fact, these techniques have enabled us to generalize the Lahiri re-
sult to the integration of k surveys under a min-max distance function 
d ( t i , . . . , ik) := maxj<fc ij — minj<fc ij, see [BBP92]. 
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