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Introduction 
Properties of order convergence for partially defined difference and sum 

in abelian relative inverse posets, as a common generalization of quantum 
structures and positive cones of partially ordered abelian groups are shown. 
Conditions for order continuity of homomorphisms and some sufficient con-
ditions for the uniqueness of decompositions of homomorphisms are given. It 
is also shown that the set of all homomorphisms from an abelian RI-poset 
into an abelian RI-poset forms the abelian i2/-poset with pointwise defined 
partial order and difference. 

1. Order convergence in abel ian RI-posets 
Abelian i?/-posets (introduced in [8]) provide a common axiomatic base 

for positive cones of partially ordered abelian groups and quantum structures 
(e.g. orthomodular posets, orthoalgebras, effect algebras and D-posets). 
Moreover homomorphisms of abelian RI-posets are common generalizations 
of measures, probabilities, observables and states from classical and also 
npncompatible probability theory, as well as measures with values in par-
tially ordered spaces. Much more subtle are these facts discussed in [5], [8] 
and [9]. 

D E F I N I T I O N 1 . 1 Let X be a partially ordered set with a special element 
0 and a partially defined binary operation 0 on X . We call ( X ; < , © , 0) 
an abelian RI-poset if 6 0 a is defined iff a < b and the following conditions 
are satisfied: 
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(i) a © 0 = a for all a € X. 
(ii) a Q a = 0 for all a € X. 

(iii) If b © a is defined then b 0 (b © a) is defined. 
(iv) (a © fc) © c = (a © c) © 6, if one side of the equality is defined. 
(v) c © a = dQ a implies c = d. 

In every abelian iZJ-poset we define a partial binary operation © on X by 

(vi) a © 6 is defined and a © 6 = c iff cQb is defined and cQb = a. 

It is easy to verify that the partial operation © on X satisfies the follow-
ing conditions: 

(1) a © b = 6 © a, if one side of the equality is defined. 
(2) a © (6 © c) = (a © 6) © c, if one side of the equality is defined. 
(3) a © 0 = a for all a € X. 
(4) 0 < a for all a € X. 
(5) a < b implies a © c < b © c whenever a © c and b © c are defined. 
(6) If a < b then there exists the unique c 6 X such that a © c = b (we 

denote c = 6 © a). 
Conversely, a poset (X; <) with a special element 0 and a partial binary 

operation © which satisfies conditions (l)-(6) (we call it an abelian RI-
semigroup) can be organized into an abelian RI-poset if we define partial 
binary operation © on X by the condition (vi). 

LEMMA 1.2. Suppose that ( X ; < , 0 , O ) is an abelian Rl-poset and the 
partial binary operation © is defined by (vi). Then for elements a,b,c,d€ X 
the following conditions are satisfied: 

(i) 6 © a = 0 implies b = a. 
(ii) Ifa<b then bQ(bQa) = a and b = a © (b © a). 

(iii) a < b < c implies c © b < c © a and (c © a) © (c © b) = b © a. 
(iv) If a © b is defined then a,b < a © b and (a © b) © a = b. 
(v) a © b = a © d implies b — d. 

The reader can consult [8] for the proof. 

LEMMA 1.3 . Suppose that ( X ; < , © , 0 ) is an abelian Rl-poset and © is 
the operation in X defined by condition (vi). If for a,b £ X with defined 
a © b there exist the join a V b and the meet a A b then (a V b) © (a A b) is 
defined and (a V b) © (a A b) = a © b. 

We refer the reader to [13] for the proof. 
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LEMMA 1 . 4 . For elements of abelian Rl-poset (X-, < , 0 , 0 ) the following 
conditions are satisfied: 

(i) If u < i , v < y and x © y is defined then also u © v is defined, 
(ii) x®y < z i f f x < zQy. 

The proof is left to the reader. 
Suppose that (P; <) is a poset. Let a set E of indices be directed upwards 

(that means, for each pair a,/3 € t there exist 7 G E with 7 > a and 
7 > /?). A net (aa)aes of elements of the poset P is increasingly directed 
if aa < ap whenever a < in which case we shall write aa f . If moreover 
a = V ( a a I a € £ } , then we write aa f a. The definition of decreasingly 
directed net and of the symbol aa J. a is dual. We say that a net (aa)ae£ 
order converges to a point a £ P and we write aa a (in P) if there 
exist nets ( t i a ) a 6£, (va)a^£ of elements of P such that ua < aa < va, for 
all a € S and ua ] a, va [ a. 

If P is a complete poset (i.e. VM and AM exist for all M C P) then for 
every net ( a a ) a e £ C P it holds 

aa Q a iff f\\J aa = \J aa = a. 
P a>0 0 a>P 

A poset (X ; <) is Dedekind complete if every nonempty subset which has 
an upper bound has also the least upper bound and every subset which has 
a lower bound has also the greatest lower bound. 

PROPOSITION 1 . 5 . Assume that (X; <, 9 , 0 ) is an abelian RI-poset. Then 
for elements of X the following conditions are satisfied: 

(i) xa f x => x © xa J. 0, 
(ii) l 9 l a i l ^ I a | 0 , 

(iii) Xa I X =>• Xa © X J. 0. 

Proof , (i) Suppose xa f x. Then for all Qi < e*2 we have xai < xa2 < x 
and hence x © xa2 < x © xai. If c e X with c < x © xa for aU a then 
c < x © xa < x which implies xa = x Q (x Q xa) < x © c < x. Thus 
x < x © c < x which implies c = 0. 

(ii) If x © xa | x then xa = x © (x © xa) J. 0 by (i). 
(iii) If xa I x then for c 6 X with c < xa © x for all a we have x = 

xa © (xa 9 x) < xQ © c and hence x © c < ( i 0 © c) © c = xa. It follows 
x © c < a ; < x © c which implies c = 0. 

THEOREM 1 .6 . Assume that ( X ; < , 9 , 0 ) is a Dedekind complete abelian 
RI-poset. Then for elements of X the following conditions are satisfied: 
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(i) xa |x iff x Q xQ jO, 
(ii) x 0 xa | x iff xa J. 0 and xa < x for all a, 

(iii) xa © x | 0 i f f x a l x , 

(iv) ifxa x, ya y and (V a ; c . )©(Vfa) is defined thenxa®ya 
a a 

x © y , 
(v) if xa t X, ya i y and xa < ya for all a then yaQxa [yQx. 

P r o o f , (i) By Proposition 1.5 xa f x ^ x 0 xa J. 0. Suppose conversely 
that x © xa | 0. Then for all ax < 02 we have 0 < x © xa3 < x © xai < x 
which implies by Lemma 1.2 (iii) and (ii) that xai < xa3 < x. Hence there 
exists y 6 X with y = \/ xa < x. Moreover the inequality xa < y < x 

a 

implies x © y < x © xa which implies x © y = 0, hence x = y. We conclude 
xa ]x. 

(ii) In view of (i) if x © xa | x then xa = x © (x © xa) I 0. Conversely, 
if xa < x for all a and xa [ 0 then xa = x © (x © x a ) j. 0 which implies 
x © xa t x by (i). 

(iii) If xa | x then xa © x J. 0 by Proposition 1.5 (iii). Assume that 
«a 9 a; | 0. Then x < xa for all a which implies that there exists y = f\xa. 

a 

Moreover x < y < xa for all a which implies that xa © y < xa © x and 
(Xa © X) 0 (X a Q y) — y © x < xa Q x for all a by Lemma 1. It follows 
y © x = 0 from which y = x. We conclude xa J. x. 

(iv) Let us first suppose that xQ f x, yQ | y and x © y is defined. Then 
xa®y/3 is defined for all a and fixed /? and (xQ)yp)Q(xa ®yp) — xQxa | 0. 
The last implies that xa © yp | x © yp by part (i). Similarly x © yp | x © y. 
Moreover if xa © ya < z for all a then xa®yp < z for all a and fixed ¡5 (since 
to every a and /? there exists 7 > a,/3 which implies xa®yp < x 7 ©3/ 7 < z). 
It follows that x © yp < z for all ¡3 and hence also x © y < z. we conclude 
xa®ya 1 x ®y. 

If xa J, x, ya I y and (V x a ) © (V ya) is defined then x © y and xa © ya 
a a 

exist and x © y < xa © ya for all a. Moreover, in the same manner as before, 
(Xa © yp) © (x © yp) = xa © x I 0 for fixed /?, and so xa © yp [ x © yp. 
Similarly x © yp J. x © y. In consequence, if z < xa © ya for all a then 
z < x © yp for all ¡3 and z < x © y. 

Combining these two parts we obtain that if xa x, ya y and 

(V xa) © (V Va) is defined then xa © ya xQy. The only point remaining 
a a 

concerns the fact that if xa < ua, ya < va for all a and there exists u © v, 
where u = V x a , v — \J ya, then xa < ua A u < u, ya < va A v < v for all a. 
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(v) Assume that xa J x, ya [ y and xa < ya for all a . Suppose that ¡3 is 
fixed. Then for every a there exists 7 > a,/3 and hence xa < x1 < y1 < yp 
which implies that x < yp. Therefore ya J. y, we conclude that x < y. Now 
inequalities xa < x < y < ya imply y © x < ya © xa for all a. Suppose that 
c<yaQxa for all a . Then c © xa < ya for all a . For every a and fixed ¡3 
there exists 7 > a,/? and hence c © x a < c©x.y < < yp. We conclude that 
c©xQ < y for every a which implies that c < yQxa = (3/©x)®(x©xa) j yQx. 
The last statement follows by part (iv) since x © xa J. 0. Thus c < y © x. 
This proves that ya Q xa ]. y © x. 

Suppose that (X; < ) is a poset. We say that 0 ^ Y C X is a full sub-poset 
of X if the following two conditions are satisfied: 

(i) For every M C Y with existing VM = x in X it holds x E Y. 
(ii) For every Q CY with existing AQ = y in X it holds y dY. 

Evidently a full sub-poset of a complete poset is complete. 
If (X; < , 0 , 0 , 1 ) is a £>-poset and 0 ^ Y C X is a full sub-poset of X 

such that 1 e ^ and b 0 a G Y for all a, b £ Y with b © a existing in X , then 
we call Y a full sub-D-poset of X. 

T h e o r e m 1.7. Suppose that (X; < ,© ,0 ,1 ) is a complete lattice D-poset. 
Let 0 ^ y C X be such that for all a,b eY we have: (a) a A b € Y, (b) if 
b © a exists in X then bQ a € Y, ( c ) l e F . The following conditions are 
equivalent: 

(i) For all C Y xa x in X i f f x g Y and xa x in Y. 
(ii) For every M CY with VAf = x in X it holds x 6 Y. 

(iii) For every Q CY with A Q = y in X it holds y £Y. 
(iv) Y is a full sub-D-poset of X. 
(v) Y is a closed set in order topology 7oi on X. 

Each of these conditions implies that tq\C\Y — T02, where T02 is an order 
topology on V. 

P r o o f . ( iv )o( i i )^ ( i i i ) : It follows by de Morgan laws, i.e. for every 
PCX 

i e ( V { p | p 6 P } ) = A { l © p | p 6 P } , 
if one side of the equality is defined, and 

i © ( A { p | p e P } ) = v { i © p | p e P } , 

if one side of the equality is defined. 
(iv)=»(i): It follows from the fact that in every complete lattice xa x 

if and only if V f\ xa = /\ \J xa = x. 
0 a>0 /3 a>0 
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(i)^(v): The proof follows from the statement that a set is closed in 
order topology on a poset if and only if it contains order limits of all its 
order convergent nets. 

(i)=>(ii): Suppose that M C Y with VM = x in X. Let £ = {a C M \ a 
is a finite set} be directed by set inclusion. Let us put xa = Va for all a £ €. 
Then x = VM = V{xa | a € £}. It follows that x € Y, since xa € Y for all 
a and xa f x in X. 

Finally let us show that each of the conditions (i)-(v) implies roi fl Y = 
ro2- Suppose that F CY is a closed set in roi. Then for any net (x a) a C F 

and any x € Y with xa x in Y we have, applying (i), xa x in X. 
Thus x G F and F is a closed set in r02- Conversely, let D C Y is a closed 

set in T02 and ( y a ) a CD be such that ya y in X. In view of (i) resp. 
(v) we have y & Y and hence y 6 D. Thus D is a closed set in roi. In view 
of (v), Y is a closed set in roi. We conclude that r0i H y = 0̂2. 

2. Homomorphisms of abelian RI-posets, order continuity 

D E F I N I T I O N 2 . 1 . Suppose that ( X i ; < i , 9 i , 0 i ) , ( X 2 ; < 2 , © 2 , 0 2 ) are 
abelian RI-posets. A map h : Xi —*• X2 is called a homomorphism if for 
all a, b € X\ with defined b Qi a also h(b) 62 h(a) is defined in which case 
h(b 0i a) = h(b) Q2 h(a). 

It follows easily from the definition 2.1 that every homomorphism h : 
Xi —• X2 is an increasing map (i.e. a <1 b => h(a) <2 h(b)) and /i(0i) = O2. 
Moreover a map h : Xi Xi is a homomorphism iff 

h(a ©1 b) = h(a) ©2 h(b) 

for all a, b € Xi with defined a ©1 b (here ®i, ©2 are partial operations 
in X\ and X2, respectively, defined by condition (vi) of Definition 1.1). If 
for elements a , i € X1 there exist elements a ©1 b, a V b and a A b then 
(a ©1 b) = (a V b) ©1 (a A b) (see Lemma 1.3) and by previous statement 

h(a ©1 b) = h(a V b) ©2 h(a A b). 

The last statement implies the "orthogonal additivity" of every homomor-
phism. That means, if a, b € X\ are such that a ©1 b is defined and a A b = 0 
(we call elements a, b orthogonal) and a V b exists then 

h(a V b) = h(a) ©2 h(b). 

It is worth to note that important examples of abelian RI-posets is the set 
R+ of nonnegative real numbers and the interval (0,1) C R+ with b Q a 
replacing b — a defined for all a < b. Then homomorphism h : X1 X2 = 
(0,1) or R+ is a state or a finitely additive measure on Xi. 
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P r o p o s i t i o n 2 . 2 . Suppose that (-X"i; < i , 6 i , 0 i ) , ( X 2 ; < 2 , 6 2 , 0 2 ) are 
abelian Rl-posets. If for homomorphisms h : X j —> X 2 and g : Xi —> X2 
it holds g(x) <2 h(x) for all x £ X\, then a map k : X1 —• X 2 defined by 
k(x) = h(x) ©2 for all x £ X\ is a homomorphism. 

P r o o f . Assume that a,b £ Xi with a <1 b. Then g(a) <2 g(b) <2 h(b) 
and g(a) <2 h(a) <2 h(b). It follows by Lemma 1.2 

h(b) ©2 h(a) = [h(b) ©2 17(a)] ©2 [h(a) ©2 $(a)] 
and 

h(b) e 2 9(b) = [h{b) ©2 17(a)] ©2 [g(b) ©2 5(a)]. 

From which it follows that 
k(b ©1 a) = h(b ©1 a) ©2 g(b ©1 a) = [h(b) ©2 h(a)] ©2 [$(&) ©2 ¿(a)] = 

= {[M6) ©2 9(a) ©2 [Ma) ©2 ?(<*)]} ©2 [i7(6) ©2 9(a)] = 
= {[h(b) ©2 17(a)] ©2 [5(6) ©2 5(a)]} ©2 [/i(a) ©2 17(a)] = 
= W 6 ) ©2 <7(6)] ©2 [/i(a) ©217(a)] = k(b) ©2 k(a). 

Hence A; is a homomorphism. 

Proposition 2.2 allows us to show that the set H(Xi,X2) of all homo-
morphisms from an abelian _R/-poset X\ into an abelian RI-poset X 2 is 
again an abelian #/-poset. 

T h e o r e m 2 . 3 . Suppose that ( X i ; < 1 , ©1 , Oi), ( X 2 ; < 2 , © 2 , 0 2 ) are abelian 
Rl-posets. Let W(Xi ,X 2 ) — {h : X\ —»• X2 | h is a homomorphism }. If 
we define in 7 i ( X i , X 2 ) the partial order < and partial binary operation © 
"pointwise" (i.e. for any f,g £ H(X\,X2) f < g iff f(x) <2 g(x) for all 
x eXi in which case (g © f)(x) = g(x) ©2 f(x)) then (H(Xi,X2); < ,© ,0 ) 
is an abelian RI-poset in which 0(x) = O2 for all x £ X\. 

P r o o f . Pointwise definition of partial order < and © in the set H(X i , X 2 ) 
guarantees that the axioms (i)-(viii) from Definition 1.1 are satisfied. The 
statement now follows by Proposition 2.2. 

T h e o r e m 2 . 4 . For Dedekind complete abelian Rl-posets ( X i ; < 1 , © 1 , Oj), 
(^2! <2, ©2,02) and a homomorphism h : X\ X2 the following conditions 
are equivalent: 

(i) xa t X =» h(xa) t h(x), 

(ii) xa | x =>• h(xa) [ h(x), 

(iii) xa x => h(xa) h(x), 
(iv) * a iOi =• h(xa)i 02. 
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P r o o f . We shall use Theorem 1.6 in all parts of the proof. 
(i)=>(iv): Suppose that xa | 0i (a 6 £). Let f3 € £ be fixed and let 

£' = {7(a) e £ | a € £ and 7(a) > a,/?}. Then £' is cofinal in £ 
and hence x7(a) 1 0i. Therefore x7(a) < xp for every 7(a) € £' , appli-
cation of Proposition 1.6 (ii) gives xp © zy(a) T xp- Now using (i) we obtain 
h(xp)Q2 h(xy(a)) | h(xp). Repeated application of Proposition 1.6 (ii) gives 
h(xy(a)) i We conclude h(xQ) J. O2. 

(iv)=»(ii): If xa | x then xaQ\ x { 0i which implies h(xa 0 i x) J. O2. 
Hence h(xa) J, h(x). 

(ii)=»(i): Suppose xa | x. Then x Qi xa J. 0 and hence h(x ©1 x a ) J, 
h(0i) = O2. It follows h(x) 0 2 h(xa) J. O2, which implies h(xa) f h(x). 

(iii)^(i): This is obvious. 

(i)^(iii): If xa x then there exist nets (v a ) a of elements of 
Xi with ua <1 xa <1 va and such that ua 11 , ua | x. Since h is increasing 
we have h(ua) <2 h(xa) <2 h(va). Moreover h(ua) f h(x) and h(va) { h(x) 
by (i) and (ii). We conclude h(xa) h(x). 

A homomorphism h : X1 X2 where (Xi; <1,©1,0i), (X2; <2>©2>02) 
are abelian EI-posets is called order continuous if xa x in X\ implies 
h(xa) h(x) in X2, for all xQ ,x € Xi, a homomorphism h is called 
bounded if there exists y0 G X2 with property h(x) <2 jfo for all x € X\. If 
for a homomorphism h there exists a set 0 ^ C C X\ such that for every 
x € Xi 

K*) = \J{Kv) I y^c with y < x} 

then we say that h is C-regular. 

We shall say that a poset (X; <) is compactly generated by a set 0 ^ 
C C X if the following two conditions are satisfied: 

(i) For every x G X there exists a set M CC with VM = x. 
(ii) For every P C C with VP € X and every peC with p < VP there 

exists a finite set F C P with p < VF. 

LEMMA 2.5. Assume that a poset (.Xi;<i) is compactly generated by a 
set 0 / C C Xi with property: x,y £ C implies x V y G C. Let (X2; <2) 
be a Dedekind complete poset. Then for every increasing map f : X\ 
X2 (i.e. x <x y => f(x) <2 f(y)) the following two conditions are equi-
valent: 

(i) / is C-regular 
(ii) xa | x implies f(xa) f / (x) for all xa,x € X. 
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P r o o f . (i)=>(ii): Suppose that xa f x, xa,x £ X, a € £ and put M = 
{¡/ € C | y < xa, a € £}. Evidently x = V M — \J xa. Since X\ is 

a 
compactly generated by C, for every q G C, q < x there exists a finite set 
Q C M with q < VQ. Since £ is directed upwards and Q is finite, there 
exists ato G £ with q < VQ < xao. We obtain / ( x ) = V{/(y) | y £ C with 
V<x}< V{ / (x a ) | a € £} < f(x). Hence, f(xa) T / (x ) . 

(ii)=Ki): F o r x € Xi let Cx = {y G C \ y < x}. Let the set £ = {F C 
Cx | F is a finite set} be directed by set inclusion. For every F 6 £ we put 
xp = VF. Then xp G C and xp \ x. It follows f(xp) f f ( x ) and hence 
f ( x ) = V{f(y) \y€C with y < x). 

T h e o r e m 2.6. Let ( A " i , < i , 0 i ) , (X2 , < 2 , 0 2 ) be Dedekind complete abe-
lian Rl-poset. Suppose that X\ is compactly generated by a set 0 / C C 
with the properties: 

( i) I f x , y £ C then i V y e C. 
(ii) I f x , y € . C and x ©1 y is defined then x y £ C. 

Moreover, assume that there exist yo G X2 and a map 1/ : C —> X2 such 
that v{x) < 2 2/0 for every x G X\, v(Oi) = 0 2 and i/(x © j y) = u(x) ©2 v(y) 
for all x,y G C with defined x ©1 y. 

Then there exists a unique order-continuous homomorphism g : X\ —• 
Xi such that g(x) = v(x) for every x G C. In such case g is C-regular. 

P r o o f . Define for every Oi x G X\ g(x) = V{v(y) \ y G C with 
y < x}. Evidently xi < implies <7(21) < for every x i , i 2 G X\ and 
hence by Lemma 2.5 xa f x implies g(xa) | g(x) for every net ( x a ) a C Xi 
and every x G X\. It remains to prove that g is a homomorphism. Suppose 
that x,y £ Xi with defined x ©x y and let Ax = {z G C \ z < x}, Ay = {z G 
C | z < y}. Assume that the set T = {F C Ax U Ay | F is a finite set such 
that 0 ^ F fl Ax and 0 / F D Ay] is directed by set inclusion. For every 
F G T we put xF = V(Fn4x), yF = V(FnAy). Clearly xp,yp G C for every 
F G T and xp | x, yp f y. Thus using our assumption and the previously 
proved properties of g, we have by Theorem 1.6(iv) that xp ©1 yp f x ©j y, 
which implies 

5(xf ©1 VF) T G(X ©1 y) 

and also 
G(XF FFIL VF) = 1'(xp ©! yF) = u ( x p ) © 2 v ( y p ) = 

= g(xF) © 2 g ( j f F ) T g(x) © 2 g(y). 

We conclude that g(x ©j y) = g(x) ©2 g(y), which proves that g is a ho-
momorphism. The order continuity of g follows by Theorem 2.4 and the 
C-regularity of g is evident from the definition of g. Finally, the uniqueness 
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of g follows from the fact that every nonzero element of Xi is the supremum 
of an increasingly directed net of elements of C. 

In what follows we use the notations of Theorem 2.3 

COROLLARY 2.7. Assume that abelian Rl-posets (Xi; < I , 6 i , 0 I ) , 
(X2; <2,025 O2.) are Dedekind complete and X\ is compactly generated by a 
set 0 ^ C C Xi with the properties (i) and (ii) stated in Theorem 2.6. Then 
for every bounded homomorphism h € H(Xi, X2) there exist a unique or-
der continuous homomorphism g 6 H(X\,X2) and a unique k 6 7i(Xi,X2) 
such that h = g (B k and £ — 0 for every order continuous I € H(X\, X2) 
with I <k. 

P r o o f . Since the restriction v = h\c of any bounded homomorphism 
h 6 H(Xi,X2) to the set C satisfies assumptions of Theorem 2.6, there 
exists a unique order continuous homomorphism g € X2) such that 
g(x) — v(x) = h(x) for every x £ C. In view of Proposition 2.2 k = h Q 
g £ H ( X I , X 2 ) and k(x) = O2 for all a; £ C. On the other hand an order 
continuous homomorphism I £ ft(Xi,X2) is trivial, i.e. I = 0 iff" £(x) = O2 
for every x e C. This completes the proof, since h = g © (h Q g) = g ® k. 

3. Applications, examples and remarks 
Recall that an abelian JR/-poset (X; <, 00) (resp. an abelian RI-semi-

group (A";<,®0)) is a D-poset (resp. an effect algebra) if and only if X 
contains a greatest element denoted by 1. An effect algebra is an orthoalgebra 
if and only if i © x is defined implies x = 0, for every x £ X. An orthoalgebra 
can be organized into an orthomodular poset (with orthocomplementation 
x' = 1 Q x, x € X) if and only if x V y exists whenever x @ y is defined for 
x,y 6 X. An orthomodular poset is a Boolean algebra if and only if it is a 
distributive lattice, (for definitions and proofs of the statements see [5], [8], 
[9]). Moreover, a positive cone of a partially ordered abelian group with + 
replaced by © is an abelian i2/-semigroup. In particular a positive cone of 
a Riesz space (see [6]) or a set R+ of all nonnegative real numbers and also 
the interval (0,1) (in which case a © b = a + b for all a, b € (0,1) such that 
a + b € (0,1) (see [10]) are examples of abelian /¿/-semigroups. 

For all these examples of abelian /¿/-posets (/¿/-semigroups) and ho-
momorphisms as measures, probabilities, observables and states on these 
structures theorems of Sections 1 and 2 can be applied. Let us mention at 
least papers [1], [2], [3] and [4] which deal with existence of decompositions 
of finitely additive measures defined on orthomodular posets, orthoalgebras 
and difference posets with values in positive cones of Dedekind complete 
normed spaces or more general in Dedekind complete lattice ordered abelian 
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groups. Corollary 2.7 contains some sufficient conditions under which such 
decompositions are unique. 

A particular case of Theorem 2.6 for compactly atomistic orthomodular 
lattices and real valued measures is proved in [12]. 

The notion of observable as a morphism of quantum logics from the 
cr-algebra B(H) of Borel sets of a separable Banach space H into a given 
quantum logic L is defined and studied in [11]. 
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