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ON ORDER CONTINUITY OF QUANTUM STRUCTURES
AND THEIR HOMOMORPHISMS

Introduction

Properties of order convergence for partially defined difference and sum
in abelian relative inverse posets, as a common generalization of quantum
structures and positive cones of partially ordered abelian groups are shown.
Conditions for order continuity of homomorphisms and some sufficient con-
ditions for the uniqueness of decompositions of homomorphisms are given. It
is also shown that the set of all homomorphisms from an abelian RI—poset
into an abelian RI-poset forms the abelian RI-poset with pointwise defined
partial order and difference.

1. Order convergence in abelian RI-posets

Abelian RI-posets (introduced in [8]) provide a common axiomatic base
for positive cones of partially ordered abelian groups and quantum structures
(e.g. orthomodular posets, orthoalgebras, effect algebras and D-posets).
Moreover homomorphisms of abelian RI-posets are common generalizations
of measures, probabilities, observables and states from classical and also
noncompatible probability theory, as well as measures with values in par-
tially ordered spaces. Much more subtle are these facts discussed in [5], [8]
and [9].

DEeFINITION 1.1 Let X be a partially ordered set with a special element
0 and a partially defined binary operation & on X. We call (X ; <, 6, 0)
an abelian RI-poset if O a is defined iff a < b and the following conditions
are satisfied:

A.M.S. Subject Classification (1991): Primary 28B505, Secondary 03G12, 81P16.

Key words and phrases: abelian RI-poset and semigroup, homomorphism, order con-
vergence, order topology, order continuity, orthomodular poset, orthoalgebra, effect alge-
bra, D-poset, compactly generated.



434 Z. Rie¢anovi

(i)ae0=aforallacX.
(i) aca=0foralla e X.
(iii) If b © a is defined then b O (b6 a) is defined.
(iv) (a©b)© c=(a®c)O b, if one side of the equality is defined.
(v) c©a=dOSaimplies c = d.

In every abelian RI-poset we define a partial binary operation @ on X by
(vi) a@ b is defined and a @ b = c iff c© b is defined and c© b = a.

It is easy to verify that the partial operation @ on X satisfies the follow-
ing conditions:

(1) a® b= b a, if one side of the equality is defined.

2)ad(d®c)=(a®b)® c, if one side of the equality is defined.

(3)a®0=aforalacX.

(4)0<Laforallae X.

(5) a < b implies a @ ¢ < b@ ¢ whenever a @ ¢ and b @ c are defined.

(6) If @ < b then there exists the unique ¢ € X such that a ® ¢ = b (we
denote ¢ = b 6 a).

Conversely, a poset (X; <) with a special element 0 and a partial binary
operation @ which satisfies conditions (1)—(6) (we call it an abelian RI-
semigroup) can be organized into an abelian RI-poset if we define partial
binary operation 6 on X by the condition (vi).

LEMMA 1.2. Suppose that (X;<,0,0) is an abelian RI-poset and the
partial binary operation @ is defined by (vi). Then for elementsa,b,c,d € X
the following conditions are satisfied:

(i) b6 a = 0 implies b = a.

(ii) Ifa< b thenbo (boa)=aandb=a® (bO a).

(iii) a < b < c impliescOb<cOaand (cOa)5(cOb)=bSa.

(iv) Ifa® b is defined then a,b < a® b and (a ®b)O a =b.

(v)aob=a6d impliesb =d.

The reader can consult [8] for the proof.

LEMMA 1.3. Suppose that (X;<,6,0) is an abelian RI-poset and @ is
the operation in X defined by condition (vi). If for a,b € X with defined
a ® b there ezist the join a V b and the meet a A b then (aV b) ® (a A b) is
defined and (aVb)® (aAb)=adb.

We refer the reader to [13] for the proof.
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LEMMA 1.4. For elements of abelian RI-poset (X;<,6,0) the following
conditions are satisfied:

(i) Ifu<z,v<yandz®y is defined then also u ® v is defined,
(ii)zoy<zifft<z6y.

The proof is left to the reader.

Suppose that (P; <) is a poset. Let a set £ of indices be directed upwards
(that means, for each pair a,8 € £ there exist y € £ with v > a and
¥y28).A net (aa)aee of elements of the poset P is increasingly directed
if a5 < ag whenever a < 3, in which case we shall write a, 1. If moreover
a = V{a, | @ € £}, then we write a, T a. The definition of decreasingly
directed net and of the symbol a, | a is dual. We say that a net (a4 )aece

order converges to a point a € P and we write a4 L), 4 (in P) if there
exist nets (uq)ace, (Va)aee Of elements of P such that u, < ay < v,, for
all a € £ and u, 1 @, v4 | a.

If P is a complete poset (i.e. VM and AM exist for all M C P) then for
every net (a4 )ace C P it holds

aaﬂ»a iff /\Vaaz\//\aa=a.

B azp B a2p

A poset (X; <) is Dedekind complete if every nonempty subset which has
an upper bound has also the least upper bound and every subset which has
a lower bound has also the greatest lower bound.

PROPOSITION 1.5. Assume that (X; <,6,0) is an abelian RI-poset. Then
for elements of X the following conditions are satisfied:

(i)zaTz=>262,10,
(i) z0z, T2 =22, 10,
(i) zq J 22> 2462 ] 0.

Proof. (i) Suppose z, T z. Then for all &y < a2 wehavez,, < z,, <z
and hence 6 z,, < 268 z4,. If ¢ € X with ¢ < £ &z, for all a then
¢ <26z, < z which implies z, = 26 (26 z,) < 26 ¢ < z. Thus
z <z 6 ¢ < z which implies ¢ = 0.

(i) IfzOz, 1z thenzy =26 (26 2z,) | 0 by (i).

(iii) If z4 | z then for ¢ € X with ¢ < z, © z for all a we have z =
2a O (2aO©z) <za6cand hence 2P c < (24 O¢) B ¢ = z4. It follows
z®c<z<zPc which implies ¢ = 0.

THEOREM 1.6. Assume that (X;<,6,0) is a Dedekind complete abelian
RI-poset. Then for elements of X the following conditions are satisfied:
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) zalziffz02,10,
(i) 20z, 12z iff 24 ] 0 and 2, < z for all o,
(iii) 2z, 06z ] 0 iff 24 | 2,
(iv) ifzo L), Z, Yo L), y and (V a:a)GB(\/ ya) is defined then z, Dy, Lo,
ze y’ o [ 4
(V)ifzal2,ya |l yand x4 < yo for all a then y, Oz, | yO .

Proof. (i) By Proposition 1.5 z4 1 z = 2 © z, | 0. Suppose conversely
that 6 2, | 0. Then for all a; < a; wehave 0 < 2024, <20 %o, <z
which implies by Lemma 1.2 (iii) and (ii) that z,, < z,, < 2. Hence there

exists y € X with y = \/z, < z. Moreover the inequality z, < y < z

implies 26y <z 6z, wﬁich implies £ © y = 0, hence z = y. We conclude
z4 T 2.

(ii) In view of (i) if 2 © 24 1 = then 24, = 2 © (2 © z4) | 0. Conversely,
if z, < z for all @ and z, | 0 then z, = 2 © (2 © z,) | 0 which implies
O zq 1z by (i).

(iii) If zo | = then z, © = | 0 by Proposition 1.5 (iii). Assume that
zoa6z | 0. Then z < z, for all @ which implies that there exists y = A z,.

Moreover z < y < z, for all & which implies that z, 6y < 2, 6 a:aa.nd
(za©2)0 (20 0Y) = yO z < 24 Oz for all a by Lemma 1. It follows
y 6 ¢ = 0 from which y = z. We conclude z, | z.

(iv) Let us first suppose that z, T z, yo T ¥ and z @ y is defined. Then
Zo @ Yyp is defined for all a and fixed # and (2B yp)O(za®ys) =602z, | 0.
The last implies that z, ® ys T = @ ys by part (i). Similarly 2@ ys Tz D v.
Moreover if 2, ®yo < z for all a then z,Pyg < 2 for all a and fixed S (since
to every a and [ there exists ¥ > a, 3 which implies z, ®yp < z, Dy, < 2).
It follows that z @ yg < 2z for all 3 and hence also z @ y < z. we conclude
TaDYa T2Dy.

Ifz,lz,ys | y and (V a:a) @ (V ya) is defined then z @ y and z, @ Yo

[21 o

exist and 2@y < z, D Y, for all a. Moreover, in the same manner as before,
(2o @ ys) O (zDys) = 24O | 0 for fixed 8, and so 2, D ys | = D ys.
Similarly 2 ® yg | = ® y. In consequence, if z < z, @ y, for all a then
z<z®ygforallfand 2<zPy.

Combining these two parts we obtain that if z, L), Z, Ya L), y and
(Vza)®(V ya) is defined then z,Hya L), z@y. The only point remaining

[+ 4 (>4
concerns the fact that if z, < uq4, yo < vo for all @ and there exists u @ v,
where u = \/ 24, v = \ Yo, then 24 < g Au < u, Yo < ¥4 Av L v forall a.
[ [
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(v) Assume that z4 T z, yo | ¥y and z4 < y, for all a. Suppose that 3 is
fixed. Then for every a there exists ¥ > a,3 and hence z, <z, <y, L Yp
which implies that z < yg. Therefore y, | y, we conclude that z < y. Now
inequalities z, < z < y < y, imply y O z < Yo O 2,4 for all a. Suppose that
¢ < Yo O 24 for all @. Then ¢ z, < y, for all a. For every a and fixed
there exists ¥ > a, # and hence c®z4 < Bz, < yy < yg. We conclude that
c®z, < y for every o which implies that ¢ < yOz, = (y92)(z6z4) | yOz.
The last statement follows by part (iv) since 26z, | 0. Thus c < y O 2.
This proves that y, 6z, | ¥y O z.

Suppose that (X; <) is a poset. Wesay that § # Y C X is a full sub-poset
of X if the following two conditions are satisfied:

(i) For every M C Y with existing VM =z in X it holds z € Y.
(ii) For every @ C Y with existing AQ = yin X it holds y € Y.
Evidently a full sub-poset of a complete poset is complete.
If (X;<,6,0,1)is a D-poset and @ # ¥ C X is a full sub-poset of X
such that 1 € Y and b6a € Y for all a,b € Y with b6 a existing in X, then
we call Y a full sub-D-poset of X.

THEOREM 1.7. Suppose that (X;<,6,0,1) is a complete lattice D-poset.
Let D #Y C X be such that for all a,b € Y we have: (a) aAbe Y, (b) if
bOa ezists in X thenbS a €Y, (c) 1 € Y. The following conditions are
equivalent:

1) Forall(:ca)agYa:aﬁ»a: nX iffzeY andzaﬂ»zinY.

(ii) For every M CY with VM =z in X it holdsz €Y.

(iii) Forevery Q CY with AQ =y in X it holdsy €Y.

(iv) Y is a full sub-D-poset of X.

(v) Y is a closed set in order topology 19 on X.

Each of these conditions implies that 1o; Y = 793, where 192 ts an order
topology on Y.

Proof. (iv)e(ii)e(iii): It follows by de Morgan laws, i.e. for every
PCX

16(v{plpe P})=n{16p|p€ P},

if one side of the equality is defined, and

16(Mplpe P})=Vv{lop|pe P},

if one side of the equality is defined.
(iv)=(i): It follows from the fact that in every complete lattice z, ), ,
ifandonlyif V A za=A V 2o =1z.
B a2p B a2p
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(i)&(v): The proof follows from the statement that a set is closed in
order topology on a poset if and only if it contains order limits of all its
order convergent nets.

(i)=(ii): Suppose that M CY with VM =zin X.Let E ={aC M | a
is a finite set} be directed by set inclusion. Let us put 2z, = Va forall a € £.
Then z = VM = V{z, | a € £}. It follows that z € Y, since z, € Y for all
aand z, Tz in X.

Finally let us show that each of the conditions (i)—(v) implies 7o; NY =
To2. Suppose that FF CY is a closed set in 791. Then for any net (z4)q C F

and any z € Y with z, L) iny we have, applying (i), 2 ©), 2 in X.

Thus z € F and F is a closed set in 7p;. Conversely, let D C Y is a closed
set in 7oz and (Ya)o C D be such that y, ), y in X. In view of (i) resp.
(v) we have y € Y and hence y € D. Thus D is a closed set in 7p1. In view
of (v),Y is a closed set in 75;. We conclude that 791 N Y = 7p2.

2. Homomorphisms of abelian RI-posets, order continuity

DEFINITION 2.1. Suppose that (X;;<1,61,01), (X2;<2,62,02) are
abelian RI-posets. A map h : X; — X, is called a homomorphism if for
all a,b € Xy with defined b ©; a also h(b) ©2 h(a) is defined in which case
h(b©1 a) = h(b) 62 h(a).

It follows easily from the definition 2.1 that every homomorphism h :
X; — X, is an increasing map (i.e. ¢ <1 b = h(a) <3 (b)) and h(01) = 0,.
Moreover a map h : X1 — X, is a homomorphism iff

h(a @, b) = h(a) @2 h(d)

for all a,b € X, with defined a ®; b (here @y, @, are partial operations
in X7 and X3, respectively, defined by condition (vi) of Definition 1.1). If
for elements a,b € X; there exist elements a ®, b, a V b and a A b then
(a®156)=(aVb)®: (aAb) (see Lemma 1.3) and by previous statement

h(a @1 b) = h(a V b) ®2 h(a A D).

The last statement implies the “orthogonal additivity” of every homomor-
phism. That means, if a,b € X are such that a @, b is defined and aAb =0
(we call elements a, b orthogonal) and a V b exists then

h(aV b) = h(a) B2 h(b).

It is worth to note that important examples of abelian RI-posets is the set
Rt of nonnegative real numbers and the interval (0,1) C Rt with b© a
replacing b — a defined for all a < b. Then homomorphism A : X; —» X3 =
(0,1) or R* is a state or a finitely additive measure on X;.
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PROPOSITION 2.2. Suppose that (X1;<1,61,01), (X2;<2,62,02) are
abelian RI-posets. If for homomorphisms h : X; — X3 and g : X1 — X,
it holds g(z) <3 h(z) for all z € X;, then a map k : X; — X, defined by
k(z) = h(z) ©2 g(z) for all z € X, is a homomorphism.

Proof. Assume that a,b € X; with a <; b. Then g(a) <2 g(b) <2 h(b)
and g(a) <2 h(a) <2 h(b). It follows by Lemma 1.2

h(b) ©2 h(a) = [h(b) ©2 g(a)] 2 [h(a) O2 9(a)]
and

h(b) ©2 g(b) = [h(b) ©2 9(a)] Oz [¢(b) Oz g(a)].
From which it follows that

k(b ©1a) = h(b©1a) B2 9(b 61 a) = [h(b) O2 h(a)] ©2 [9(b) ©2 d(a)] =
= {[h(b) ©2 9(a) &2 [h(a) ©2 9(a)]} ©2 [9(b) ©2 9(a)] =
= {[h(b) ©2 9(a)] 62 [9(b) ©2 g(a)]} ©2 [h(a) ©2 g(a)) =
= [~(b) ©2 g(b)] ©2 [h(a) 2 9(a)] = k(b) O2 k(a).

Hence k is a homomorphism.

Proposition 2.2 allows us to show that the set H(X;,X3;) of all homo-
morphisms from an abelian RI-poset X; into an abelian RI-poset X is
again an abelian RI-poset.

THEOREM 2.3. Suppose that (X1;<1,61,01), (X2; <2,632,02) are abelian
RI-posets. Let H(X1,X2) = {h : X3 = X2 | h is a homomorphism }. If
we define in H(X,, X3) the partial order < and partial binary operation ©
“pointwise” (i.e. for any f,g € H(X1,X3) f < g iff f(z) <, g(z) for all
z € Xy in which case (g © f)(z) = g(z) O2 f(z)) then (H(X1, X>); <,6,0)
is an abelian RI-poset in which 0(z) = 0y for all z € X;.

P roof. Pointwise definition of partial order < and & in the set H(X;, X2)
‘guarantees that the axioms (i)-(viii) from Definition 1.1 are satisfied. The
statement now follows by Proposition 2.2.

THEOREM 2.4. For Dedekind complete abelian RI-posets (X1;<1,61,0;),
(X2; <2,632,02) and a homomorphism h : X; — X, the following conditions
are equivalent:

(i) za T2z = h(za) T h(z),
(i) za | 2 = h(z4) | h(z),

(iii) 24 <2 z = h(za) < h(z),

(IV) Ty l 0, = h(za) l 02.
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Proof. We shall use Theorem 1.6 in all parts of the proof.

(i)=(iv): Suppose that z, | 0, (a € £). Let § € £ be fixed and let
& = {y(a) € £ | a € € and v(a) > a,B}. Then &' is cofinal in £
and hence z.(,) | 0,. Therefore z.,(,) < z for every y(a) € £, appli-
cation of Proposition 1.6 (ii) gives 3 © Z.(q) T z5. Now using (i) we obtain
h(z) ©2 h(2.y(a)) T k(). Repeated application of Proposition 1.6 (ii) gives
h(z.(a)) | 02. We conclude h(z,) | 0.

(iv)=(ii): If zo | = then z4 ©1 = | 0, which implies h(z, 61 z) | 0,.
Hence h(z4) | h(z).

(ii)=>(i): Suppose z, T z. Then z ©; z, | 0 and hence h(z ©; z4) |
h(0y) = 0. It follows h(z) ©; h(z4) | 02, which implies h(z4) T h(z).

(iii)=(i): This is obvious.

(1)=>(ii): If z4 £, % then there exist nets (%a)as (va)a of elements of
X; with u, <3 24 <1 v4 and such that u, 1 z, v, | z. Since A is increasing
we have h(uq) <2 h(z4) <2 h(vy). Moreover h(u,) T h(z) and h(vy) | h(z)

by (i) and (ii). We conclude h(z,) L), h(z).
A homomorphism % : X; — X; where (X;;<3,61,01), (X2;<2,602,0,)
are abelian RI-posets is called order continuous if z, Lo—)> z in X; implies

h(zq) L), h(z) in X,, for all z,,2 € X;, a homomorphism h is called
bounded if there exists yo € X, with property h(z) <3 yo for all z € X;. If
for a homomorphism h there exists a set @ # C C X, such that for every
z€X,

h(z) = \/{h(y) | y € C with y <z}
then we say that h is C-regular.

We shall say that a poset (X;<) is compactly generated by a set § #
C C X if the following two conditions are satisfied:

(i) For every z € X there exists a set M C C with VM = z.
(ii) For every P C C with VP € X and every p € C with p < VP there
exists a finite set FF C P with p < VF.

LEMMA 2.5. Assume that a poset (X;;<;) is compactly generated by a
set § # C C X, with property: z,y € C implies xVy € C. Let (Xp;<2)
be a Dedekind complete poset. Then for every increasing map f : X3 —
X; (ie. z <1 y = f(z) <2 f(y)) the following two conditions are equi-
valent:

(i) f is C-regular
(if) zo 1 z implies f(zo) T f(x) for all 2o,z € X.
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Proof. (i)=>(ii): Suppose that z, T z, 24,2 € X, @ € £ and put M =
{ye C|y < z4, a € E}. Evidently 2 = VM = \/ z,. Since X, is

compactly generated by C, for every g € C,q < z thereaexists a finite set
Q@ C M with ¢ < v@. Since £ is directed upwards and @ is finite, there
exists ap € £ with ¢ < VQ < z,,. We obtain f(z) = V{f(y) | y € C with
y<z}<V{f(za)| @ € £} < f(z). Hence, f(zq) 1 f(z).

(ii)=(): Forz € X, let C, = {y € C | y < z}. Let the set £ = {F C
C. | F is a finite set} be directed by set inclusion. For every F € £ we put
zr = VF. Then zr € C and zp 1 2. It follows f(zp) T f(z) and hence
f(g) =Vv{f(y) |y € C with y < z}.

THEOREM 2.6. Let (X1,<1,01), (X2,<2,0;) be Dedekind complete abe-
lian RI-poset. Suppose that X, is compactly generated by a set § # C C X,
with the properties:

(i) Ifz,ye C thenzVvyeC.
(ii) If z,y € C and = @, y is defined thenz @, y € C.

Moreover, assume that there ezist yo € X, and a map v : C — X, such
that v(z) <2 yo for every z € X1, v(0;) = 0; and v(z &, y) = v(z) D2 v(y)
for all z,y € C with defined z @, y.

Then there ezists a unique order-continuous homomorphism g : X, —
X, such that g(z) = v(z) for every z € C. In such case g is C-regular.

Proof. Define for every 0; # z € X; g¢(z) = V{v(y) | y € C with
y < z}. Evidently z; < z; implies g(z;) < g(z3) for every z,,z; € X; and
hence by Lemma 2.5 z, T z implies g(z,) T g(z) for every net (z4)a C X3
and every z € X;. It remains to prove that g is a homomorphism. Suppose
that z,y € X; with defined z®;yandlet A, ={z€C|2<z},A,={z¢€
C | z < y}. Assume that the set F = {F C Az U Ay | F is a finite set such
that @ # FN A; and § # F N A,} is directed by set inclusion. For every
Fe Fweputzp = V(FNA;), yr = V(FNA,). Clearly zr, yr € C for every
F e Fand zr Tz, yr 1 y. Thus using our assumption and the previously
proved properties of g, we have by Theorem 1.6(iv) that 2 ®; yr 1 2 ©1 ¥,
which implies

9(zr &1 yr) T 9(z D1 y)
and also
9(zF ®1yr) = v(zF @1 yr) = v(zF) ®2 v(YF) =
= g(zr) 2 9(yr) T 9(z) 2 9(y).

We conclude that g(z ®; y) = g(z) ®2 g(y), which proves that g is a ho-
momorphism. The order continuity of g follows by Theorem 2.4 and the
C-regularity of g is evident from the definition of g. Finally, the uniqueness



442 Z. Riec¢anova

of g follows from the fact that every nonzero element of X, is the supremum
of an increasingly directed net of elements of C.

In what follows we use the notations of Theorem 2.3

CoRroLLARY 2.7. Assume that abelian RI-posets (X1;<1,61,01),
(X2; <2,02,02) are Dedekind complete and X, is compactly generated by a
set ) # C C X, with the properties (i) and (ii) stated in Theorem 2.6. Then
for every bounded homomorphism h € H(X,,X2) there ezist a unique or-
der continuous homomorphism g € H(X,, X2) and a unique k € H(X1, X3)
such that h = g ® k and £ = 0 for every order continuous £ € H(X,, X2)
with £ < k.

Proof. Since the restriction v = h|c of any bounded homomorphism
h € H(X;,X;) to the set C satisfies assumptions of Theorem 2.6, there
exists a unique order continuous homomorphism g € H(X;, X;) such that
g(z) = v(z) = h(z) for every z € C. In view of Proposition 2.2 k = h O
g € H(X1,X32) and k(z) = 0 for all z € C. On the other hand an order
continuous homomorphism £ € H(X;, X,) is trivial, i.e. £ = 0 iff £(z) = 0,
for every z € C. This completes the proof, sinceh=g®(hSg)=g & k.

3. Applications, examples and remarks

Recall that an abelian RI-poset (X;<,060) (resp. an abelian RI-semi-
group (X;<,90)) is a D-poset (resp. an effect algebra) if and onmly if X
contains a greatest element denoted by 1. An effect algebra is an orthoalgebra
if and only if 2@z is defined implies z = 0, for every ¢ € X. An orthoalgebra
can be organized into an orthomodular poset (with orthocomplementation
z' =16 z,z € X) if and only if z V y exists whenever z @ y is defined for
z,y € X. An orthomodular poset is a Boolean algebra if and only if it is a
distributive lattice. (for definitions and proofs of the statements see [5], [8],
[9]). Moreover, a positive cone of a partially ordered abelian group with +
replaced by @ is an abelian RI-semigroup. In particular a positive cone of
a Riesz space (see [6]) or a set R of all nonnegative real numbers and also
the interval (0,1) (in which case a ® b = a + b for all a,b € (0,1) such that
a+ b€ (0,1) (see [10]) are examples of abelian RI-semigroups.

For all these examples of abelian RI-posets (RI-semigroups) and ho-
momorphisms as measures, probabilities, observables and states on these
structures theorems of Sections 1 and 2 can be applied. Let us mention at
least papers [1], [2], [3] and [4] which deal with existence of decompositions
of finitely additive measures defined on orthomodular posets, orthoalgebras
and difference posets with values in positive cones of Dedekind complete
normed spaces or more general in Dedekind complete lattice ordered abelian
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groups. Corollary 2.7 contains some sufficient conditions under which such
decompositions are unique.

A particular case of Theorem 2.6 for compactly atomistic orthomodular
lattices and real valued measures is proved in [12].

The notion of observable as a morphism of quantum logics from the
o-algebra B(H) of Borel sets of a separable Banach space H into a given
quantum logic L is defined and studied in [11].
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(2]
(3]
4]
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10]
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