

Nasr Mostafa Ali

SOME FIXED POINT THEOREMS

1. Introduction

In recent years, a number of generalizations of a well-known contraction mapping principles due to Banach have appeared in the literature (see [5]).

In our theorems we extend the results of M. R. Tasković and those of M. Ohta and G. Nikaido for multi-valued mappings (see also e.g. [7], [2] or others).

Let (X, d) be a metric space and let T be a correspondens (i.e., mapping from points to sets) from X to $CB(X)$ which is not necessarily continuous.

We shall denote by $CB(X)$ the set of all non-empty closed and bounded subsets of X , by $\delta(A, B)$ the diameter of A and B , i.e., $\delta(A, B) = \sup\{d(a, b) : a \in A, b \in B\}$, and the Hausdorff distance of $A, B \in CB(X)$ will be denote by $H(A, B) = \max\{\sup_{a \in A} \inf_{b \in B} d(a, b), \sup_{b \in B} \inf_{a \in A} d(a, b)\}$. Also, for any $x \in X$, we denote by $O(x)$ the orbit of x , i.e.,

$$O(x) = \left\{ \bigcup T^n x : n = 0, 1, 2, \dots \right\}.$$

A point $x \in X$ will be called a fixed point of T , if $x \in Tx$.

We will say that $T : X \rightarrow CB(X)$ is upper semicontinuous (u.s.c.) at $\bar{x} \in X$, if for every neighbourhood U of $T(\bar{x})$, there exists a neighbourhood V of \bar{x} such that $T(x) \subset U$ for every $x \in V$. A set valued function $T : X \rightarrow CB(X)$ is called u.s.c. on X , if it is u.s.c. at every $x \in X$.

2. Main results

THEOREM 1. *Let (X, d) be a bounded complete metric space and let T be an upper semicontinuous mapping from X into $CB(X)$ such that for any $x, y \in X$, there is*

$$(1) \quad \delta(Tx, Ty) \leq \alpha \delta(O(x) \cup O(y)), \quad \alpha \in [0, 1].$$

Then T has a unique fixed point ξ such that $\{\xi\} = T\xi$.

Proof. Let $x_0 \in X$. Define $x_i \in Tx_{i-1}$, $i = 1, 2, 3, \dots$. From (1) we have

$$(2) \quad d(x_1, x_2) \leq \delta(Tx_0, Tx_1) \leq \alpha\delta[O(x_0) \cup O(x_1)] \leq \alpha\delta[O(x_0)]$$

Now, for non-negative n , we prove that

$$(3) \quad \delta[O(T^n x_0)] \leq \alpha\delta[O(T^{n-1} x_0)] .$$

By

$$(4) \quad \delta[O(Tx_0)] = \sup_{i,j} \{\delta(T^i x_0, T^j x_0)\}, \quad i \geq 1, i < j,$$

$$(5) \quad \delta(T^i x_0, T^j x_0) = \sup\{d(x_{i+1}, x_{j+1}) : x_{i+1} \in T^i x_0, x_{j+1} \in T^j x_0\},$$

and from (1) we have,

$$\begin{aligned} d(x_{i+1}, x_{j+1}) &\leq \delta(Tx_i, Tx_j) \leq \\ &\leq \alpha\delta[O(x_i) \cup O(x_j)] \leq \alpha\delta[O(x_i)] \leq \alpha\delta[O(x_0)]. \end{aligned}$$

From (5) and (4) we have $\delta[O(Tx_0)] \leq \alpha\delta[O(x_0)]$. Similarly,

$$(6) \quad \delta[O(T^2 x_0)] = \sup_{i,j} \{\delta(T^i x_0, T^j x_0)\}, \quad i \geq 2, i < j,$$

$$(7) \quad \delta(T^i x_0, T^j x_0) = \sup\{d(x_{i+1}, x_{j+1}) : x_{i+1} \in T^i x_0, x_{j+1} \in T^j x_0\},$$

$$\begin{aligned} d(x_{i+1}, x_{j+1}) &\leq \delta(Tx_i, Tx_j) \leq \alpha\delta[O(x_i) \cup O(x_j)] \\ &\leq \alpha\delta[O(x_i)] \leq \alpha\delta[O(Tx_0)], \end{aligned}$$

because $x_i \in Tx_{i-1}$, $x_j \in Tx_{j-1} \subset O(Tx_0)$.

From (7) and (6) we have $\delta[O(T^2 x_0)] \leq \alpha\delta[O(Tx_0)]$.

By induction, we obtain for each $n = 1, 2, 3, \dots$

$$(8) \quad \delta[O(T^n x_0)] \leq \alpha\delta[O(T^{n-1} x_0)].$$

Now

$$\begin{aligned} d(x_2, x_3) &\leq \delta(Tx_1, Tx_2) \leq \alpha\delta[O(x_1) \cup O(x_2)] \\ &\leq \alpha\delta[O(x_1)] \leq \alpha\delta[O(Tx_0)] \leq \alpha^2\delta[O(x_0)]. \end{aligned}$$

So

$$(9) \quad d(x_2, x_3) \leq \alpha^2\delta[O(x_0)].$$

Repeating the above argument, we obtain for each $n = 1, 2, \dots$

$$(10) \quad d(x_{n+1}, x_n) \leq \alpha^n\delta[O(x_0)].$$

Now,

$$\begin{aligned} d(x_n, x_m) &\leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_m) \\ &\leq \alpha^n\delta[O(x_0)] + \alpha^{n+1}\delta[O(x_0)] + \dots + \alpha^{m-1}\delta[O(x_0)] + \dots \\ &\leq \alpha^n\delta[O(x_0)][1 + \alpha + \alpha^2 + \dots] \leq \frac{\alpha^n}{1 - \alpha}\delta[O(x_0)]. \end{aligned}$$

So $\{x_n\}$ is a Cauchy sequence. By the completeness of (X, d) , the sequence $\{x_n\}$ converges to some point ξ in X .

We shall now prove that ξ is a fixed point of T . As T is upper semicontinuous, $x_n \rightarrow \xi$ and $x_n \in Tx_{n-1}$ implies that $\xi \in T\xi$. Now, by (1),

$$\begin{aligned} 0 &\leq \delta(\xi, T\xi) \leq \delta(T\xi, T\xi) \leq \alpha \delta[O(\xi)] \\ &\leq \alpha \delta[O(T\xi)] \leq \alpha^2 \delta[O(\xi)] \leq \dots \leq \alpha^n \delta[O(\xi)] \end{aligned}$$

for any $n \geq 1$. So, as $0 \leq \alpha < 1$, there is $\delta(\xi, T\xi) = 0$ which means that $\{\xi\} = T\xi$.

Now, let η be a fixed point of T such that $\{\eta\} = T\eta$ and $\xi \neq \eta$. Then

$$d(\xi, \eta) \leq \delta(\xi, T\eta) \leq \delta(T\xi, T\eta) \leq \alpha \delta[O(\xi) \cup O(\eta)] \leq \alpha d(\xi, \eta)$$

because $O(\xi) = \{\xi\}$ and $O(\eta) = \{\eta\}$. Hence $d(\xi, \eta) \leq \alpha d(\xi, \eta)$, $\alpha \in [0, 1)$, which is a contradiction. Thus $\xi = \eta$, and therefore, ξ is a unique fixed point of T such that $\{\xi\} = T\xi$. The proof is complete.

We will use the following lemma.

LEMMA. *Let E be a topological space and let*

$$f : E \rightarrow [0, \infty), \quad g : E \longrightarrow [0, \infty).$$

If f is upper semicontinuous and g is lower semicontinuous, then f/g is upper semicontinuous.

THEOREM 2. *Let (X, d) be a compact metric space and assume that T is a continuous mapping from X into $(CB(X), H)$ such that for any $x, y \in X$, $x \neq y$, there is*

$$(11) \quad \delta(Tx, Ty) < \delta[O(x) \cup O(y)].$$

Then T has a unique fixed point ξ such that $\{\xi\} = T\xi$.

Proof. Let $x \in X$. Since $O(T^n x) \supset O(T^{n+1} x) \supset \dots$, by the compactness of $T^n x$ (see: proposition 2.3. [1], p. 31) and by Cantor theorem, we have $\bigcap_{n=1}^{\infty} O(T^n x) \neq \emptyset$. There exists $\xi \in X$ such that $\xi \in \bigcap_{n=1}^{\infty} O(T^n x)$. So, $O(\xi) \subset O(T^n x)$. The sequence $\{\delta[O(T^n x)]\}$ is non-negative and non-increasing, so it is convergent.

Now $0 \leq \delta[O(\xi)] \leq \delta[O(T^n x)]$. If $\delta[O(T^n x)] \rightarrow 0$, we have $\delta[O(\xi)] = 0$. And hence ξ is a fixed point of T such that $\{\xi\} = T\xi$.

Now we prove that $\delta[O(T^n x)] \rightarrow 0$. Let $\gamma = \lim_{n \rightarrow \infty} \delta[O(T^n x)] > 0$. Since (X, d) is compact and T is continuous on X , it is uniformly continuous on X , and so

$$(12) \quad \exists \varepsilon_0 > 0 \forall_{x, y \in X} d(x, y) < \varepsilon_0 : \delta(Tx, Ty) \leq \frac{\gamma}{2}.$$

Let $K = \{(x, y) \in X \times X : d(x, y) \geq \varepsilon_0\}$ and consider the following mappings $f, g, g_n : K \rightarrow R$, $n \in N$, defined by

$$\begin{aligned} f(x, y) &= \delta(Tx, Ty); & g(x, y) &= \delta[O(x) \cup O(y)]; \\ g_n(x, y) &= \delta[\{x, Tx, \dots, T^n x, y, Ty, \dots, T^n y\}]. \end{aligned}$$

Since each g_n is continuous and $g = \sup\{g_n : n \in N\}$, g is lower semi-continuous and hence f/g is upper semi-continuous by the Lemma.

Moreover, we note that $0 \leq f/g < 1$, by (11). It follows from the compactness of K that f/g attains its maximum $\beta_0 \in [0, 1)$. Hence, for each $x, y \in X$ with $d(x, y) \geq \varepsilon_0$, we have

$$(13) \quad \delta(Tx, Ty) \leq \beta_0 \delta[O(x) \cup O(y)].$$

Now let $\beta = \max\{\beta_0, \frac{1}{2}\}$. Then for each non-negative integer n, p, q , we claim that

$$(14) \quad \delta(T^{n+p+1}x, T^{n+q+1}x) \leq \beta \delta[O(T^n x)].$$

In fact, if $\delta(T^{n+p}x, T^{n+q}x) < \varepsilon_0$, it follows from (12) that

$$\delta(T^{n+p+1}x, T^{n+q+1}x) \leq \frac{\gamma}{2} \leq \frac{1}{2} \delta[O(T^n x)] \leq \beta \delta[O(T^n x)].$$

On the other hand, if $\delta(T^{n+p}x, T^{n+q}x) \geq \varepsilon_0$, we have

$$\delta(T^{n+p+1}x, T^{n+q+1}x) \leq \beta_0 \delta[O(T^n x)] \leq \beta \delta[O(T^n x)],$$

by (13), which proves (14). Therefore, we have

$$\delta[O(T^{n+1}x)] \leq \beta \delta[O(T^n x)]$$

for each non-negative integer n , and so we obtain successively

$$\delta[O(T^n x)] \leq \beta \delta[O(T^{n-1} x)] \leq \dots \leq \beta^n \delta[O(x)],$$

for each $n \in N$. Since $\beta \in [0, 1)$ it follows that

$$\gamma = \lim_{n \rightarrow \infty} \delta[O(T^n x)] = 0$$

which is a contradiction to $\gamma > 0$.

Now let η be a fixed point of T such that $\{\eta\} = T\eta$ and $\xi \neq \eta$.

Then

$$d(\xi, \eta) < \delta(\xi, T\eta) < \delta(T\xi, T\eta) < \alpha \delta[O(\xi) \cup O(\eta)] < \alpha d(\xi, \eta), \quad \alpha \in [0, 1)$$

which is a contradiction. Thus, $\xi = \eta$ and therefore ξ is the unique fixed point of T such that $\{\xi\} = T\xi$ and so the proof is complete.

References

- [1] M. Kisielewicz, *Differential Inclusions and Optimal Control*. PWN (Polish Scientific Publishers), Warsaw (1991).
- [2] I. Kubiaczyk, *Some fixed point theorems*, *Demonstratio Math.*, 9 (1976), 507–515.
- [3] M. Ohta, G. Nikaido, *Remarks on fixed point theorems in complete metric spaces*, *Math. Japonica*, 39 (1994), 287–290.
- [4] M. R. Tasković, *Some results in the fixed point theory II*, *Publ. Inst Math.*, 27 (1980), 249–258.
- [5] M. R. Tasković, *Some new principles in fixed point theory*, *Math. Japonica*, 35 (1990), 645–666.
- [6] V. M. Sehgal, *On fixed and periodic points for a class of mappings*, *J. London Math. Soc.*, 5 (1972), 571–576.
- [7] Vasile I. Istrătescu, *Fixed Point Theory*. D. Reidel Publishing Company, Holland, 1981.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
ADAM MICKIEWICZ UNIVERSITY

Matejki 48/49
60-769 POZNAŃ, POLAND

Permanent address:
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
SUEZ CANAL UNIVERSITY
ISMAILIA, EGYPT

Received November 16, 1994.

