DEMONSTRATIO MATHEMATICA
Vol. XXIX No 2 1996

Nasr Mostafa Ali

SOME FIXED POINT THEOREMS

1. Introduction

In recent years, a number of generalizations of a well-known contraction
mapping principles due to Banach have appeared in the literature (see [5]).

In our theorems we extend the results of M. R. Taskovi¢ and those of
M. Ohta and G. Nikaido for multi-valued mappings (see also e.g. [7], [2] or
others).

Let (X, d) be a metric space and let T be a correspondens (i.e., mapping
from points to sets) from X to C B(X) which is not necessarily continuous.

We shall denote by CB(X) the set of all non-empty closed and boun-
ded subsets of X, by 6(A, B) the diameter of A and B, i.e., §(4,B) =
sup{d(a,b) : a € A, b € B}, and the Hausdorff distance of A, B € CB(X)
will be denote by H(A, B) = max{sup inf d(a,b),sup inf d(a,b)}. Also, for
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any z € X, we denote by O(z) the orbit of z, i.e.,

O(z) = {UT": in= 0,1,2,...}.
A point z € X will be called a fixed point of T, if z € T'z.

We will say that T : X — CB(X) is upper semicontinuous (u.s.c) at
Z € X, if for every neighbourhood U of T(Z), there exists a neighbourhood
V of Z such that T(z) C U for every z € V. A set valued function T : X —
CB(X) is called u.s.c. on X, if it is u.s.c. at every z € X.

2. Main results

THEOREM 1. Let (X,d) be a bounded complete metric space and let T
be an upper semicontinuous mapping from X into C B(X) such that for any
z,y € X, there is

(1) §(Tz,Ty) < ab[O(z) U O(y)], o €[0,1).
Then T has a unique fized point € such that {£} = T€.
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Proof. Let 29 € X. Define z; € Tz;-1,i=1,2,3,... From (1) we have
(2) d(l‘],zz) _<_ 6(T$0,T$1) _<_ 06[0(20) U 0(1'1)] S (16[0(1‘0)]

Now, for non-negative n, we prove that

(3) §[0(T™z0)] < @b[O(T™ 12yp)] .
By
(4) 6[0(Tzo)1=s;x}>{6(T"zo,szo)}, i>1,i<j,

(5) 8(T'z9,T?zo) = sup{d(zi+1,Zj+1) : Tis1 € T'Zo, 2541 € TV 20},
and from (1) we have,
d(zit1,2j41) < 6(Tzi,Tz;) <
< ab[O(zi) U O(z;)] £ ab[O(z;)] < ab[0(zo))-
From (5) and (4) we have §[O(Tz¢)] < ab[O(zp)]. Similarly,
(6) 8[0(T?xo)] = sup{6(T*z0, 7o)}, 22, i< 3,

17]
(7) 6(T‘zo,sz:0) = sup{d(a:;+1,zj+1) T4 € Ti20,£j+1 c Tj:co},
d(zi+1,:cj+1) < 45(T2:,',sz) < a6[0(z,~) U 0(1‘_,)]
< ad[0(z;)] < ab[O(Tzo)),
because z; € Tzi_y, zj € Tzj—1 C O(Txo).
From (7) and (6) we have 6§[O(T?z0)] < a6[O(T=y)).
By induction, we obtain for each n = 1,2,3,...
(8) §[0(T™x0)] < ad[O(T™ o))
Now
d(z2,23) < §(Tz1,Tz3) < ab[O(z1) U O(x2)]
< aé[0(z1)] € ab[0(T'zo)] < @®6[0(zy)).

So

9) d(z2,23) < a®6[0(z0)).

Repeating the above argument, we obtain for each n = 1,2,...
(10) d(Tn41,25) < a™8[0(z0)].

Now,

d(xn, xm) S d(zna zn+1) + d(zn+1y :Cn+2) +...+ d(zm—-hzm)
< a™6[0(z0)] + a™t16[0(z0)] + ... + ™ 16[0(z0)] + - . -

< a™[0@o)[l+a+at+..]< 1—"_-"36[0(%)].



Some fized point theorems 429

So {z»} is a Cauchy sequence. By the completeness of (X, d), the sequence
{zn} converges to some point § in X.

We shall now prove that £ is a fixed point of 7. As T is upper semicon-
tinuous, z, — £ and z, € Tz, implies that £ € T¢. Now, by (1),

0 < 8(¢,T€) < 6(T¢,TE) < ab[O(£)]
< ad[O(TE)] < a®8[0()] < ... < a™8[0(8)]

for any n > 1. So, as 0 < a < 1, there is §(¢,T€) = 0 which means that
{§} = T¢.

Now, let 7 be a fixed point of T such that {9} = T'p and £ # 7. Then

d(¢,m) < 8(&,Tn) < 6(T¢, Tn) < b[0(§) U O(n)] < ad(£,n)

because O(£) = {¢} and O(n) = {n}. Hence d(¢,7n) < ad(£,7), a € [0,1),

which is a contradiction. Thus £ = 7, and therefore, £ is a unique fixed point
of T such that {{} = T¢. The proof is complete.
We will use the following lemma.

LEMMA. Let E be a topological space and let
f:E—[0,00), g: E— [0,00).
If f is upper semicontinuous and g is lower semicontinuous, then f/q is
upper semicontinuous.

THEOREM 2. Let (X, d) be a compact metric space and assume that T is
a continuous mapping from X into (CB(X), H) such that for any z,y € X,
z # y, there is
(11) §(Tz,Ty) < §[0(z) U O(y)).
Then T has a unique fized point £ such that {£} = TE.

Proof. Let z € X. Since O(T"z) > O(T"*'z) O ..., by the com-
pactness of T™z (see: proposition 2.3. (1], p. 31) and by Cantor theorem,

we have n O(T"z) # 0. There exists £ € X such that £ € ﬂ O(T™z).

So, O(¢) C O(T":z:) The sequence {§[O(T"z)]} is non- negatlve and non-
increasing, so it is convergent.

Now 0 < §[0(8)] < 6[0(T™z)]. If 8[O(T"z)] — 0, we have 6[0(£)] = 0.
And hence ¢ is a fixed point of T such that {£} = T¢.

Now we prove that §[O(T™z)] — 0. Let v = Jim 6[0(T"z)] > 0. Since
(X,d) is compact and 7 is continuous on X, it is uniformly continuous on
X, and so

(12) Jeo>0Vzyexd(z,y) < g9 : 6(Tz,Ty) <

N2
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Let K = {(z,y) € X x X : d(z,y) > €0} and consider the following
mappings f,g,9. : K — R, n € N, defined by

f(z,y) = 6(T=,Ty); g(z,y) = §[0(z) U O(y)};
gn(z’ y) = 6[{z’Tz, M ] Tnz’ y, Ty’ R ] Tny}]'

Since each g, is continuous and ¢ = sup{g, : n € N}, g is lower semi-
continuous and hence f/g is upper semi-continuous by the Lemma.

Moreover, we note that 0 < f/g < 1, by (11). It follows from the com-
pactness of K that f/g attains its maximum Sy € [0,1). Hence, for each
z,y € X with d(z,y) > €9, we have

(13) §(Tz,Ty) < Bob[O(z) U O(y))-

Now let 8 = max{0y, %} Then for each non-negtive integer n, p, g, we claim
that

(14) §(T™HPHlg T™HItlg) < B6[O(T"z)).

In fact, if §(T"Pz, T"t92) < ¢, it follows from (12) that
B(rmis, gy < T %5[0(1%)] < BO[O(T"z)].

On the other hand, if §(T"*Pz, T"*9z) > ¢4, we have
§(T™+PH1g, T z) < Bob[O(T™z)) < BS[O(T™z)),
by (13), which proves (14). Therefore, we have
S[O(T™+2)] < BS[O(T™z)]
for each non-negative integer n, and so we obtain successively
SlO(T™2)] < BSO(T"2)] < ... < B™6[O(2)],
for each n € N. Since 8 € [0,1) it follows that
¥y = nler;o 5[0(T"z)] =0
which is a contradiction to v > 0.

Now let 77 be a fixed point of T such that {n} = Ty and £ # 7.
Then

d(&,m) < 8(§,Tn) < §(T¢,Tn) < ab[0() UO(n)] < ad(§,n), a€[0,1)

which is a contradiction. Thus, £ = 5 and therefore ¢ is the unique fixed
point of T such that {£} = T¢ and so the proof is complete.
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