

Mukut Mani Tripathi, Kamla D. Singh

**ALMOST SEMI-INVARIANT SUBMANIFOLDS
OF AN ε -FRAMED METRIC MANIFOLD**

1. Introduction

Study of CR-submanifolds, as a generalization of invariant and anti-invariant submanifolds, of a Kaehler manifold was initiated by Bejancu [5] and was followed by several geometers (see [5, 34] and references cited therein). This concept was further generalized by Chen [10] who introduced generic submanifolds. Later, several authors [1-6, 8, 12-18, 21, 25, 27, 30, 31, 34] defined and studied semi-invariant and almost semi-invariant submanifolds, analogous to these CR and or generic submanifolds, of manifolds possessing structures different from Kaehler viz. almost contact [7], framed metric [33] or almost r-contact [32], almost paracontact [23], almost r-paracontact [9], and almost product Riemannian structures [33].

Recently generic submanifolds of a Kaehler manifold were introduced by Ronsse [22] which imply the generic submanifold given by Chen. Motivated by this, in the present paper we define and study almost semi-invariant submanifolds (section 4) of a manifold with an ε -framed metric structure [28] which reduces to all aforementioned structures in special cases.

The paper is organized as follows. Section 2 is devoted to preliminaries. In section 3 some basic results are given. The definition of an almost semi-invariant submanifold of an ε -framed metric manifold along with an example is given in section 4. In section 5 we establish some necessary and sufficient conditions for a submanifold to be an almost semi-invariant submanifold. Later in this section, an interesting set of twenty two necessary and sufficient conditions for a submanifold to be semi-invariant have been obtained. Section 6 deals with parallelism of certain operators arising

AMS Classification: 53C15, 53C40, 53C42.

Key words and phrases: CR-submanifolds, almost semi-invariant submanifold, ε -framed manifold.

naturally in our study. Integrability conditions for certain natural distributions on almost semi-invariant and semi-invariant submanifolds have been discussed in section 7. In the last section it has been shown that an almost semi-invariant submanifold, with non-trivial invariant distribution of a normal framed metric manifold [33], is a CR-manifold [11].

2. Preliminaries

Let \overline{M} be an m -dimensional framed metric $(J(3,\varepsilon), g)$ manifold (for brevity ε -framed metric manifold) [28] with a framed metric $(J(3,\varepsilon), g)$ structure (for brevity ε -framed metric structure) of rank $m - r$, $r < m$; i.e., $\varepsilon^2 = 1$; $J \neq 0$, I (I is the identity operator) is a tensor field of type $(1, 1)$ with $\text{Rank}(J) = m - r$; ξ_1, \dots, ξ_r are vector fields; η^1, \dots, η^r are 1-forms and g is an associated Riemannian metric such that

$$(2.1) \quad \left\{ \begin{array}{l} \text{(i)} \ J^3 = \varepsilon J, \\ \text{(ii)} \ J^2 = \varepsilon(I - \eta^\alpha \otimes \xi_\alpha), \\ \text{(iii)} \ J(\xi_\alpha) = 0, \\ \text{(iv)} \ \eta^\alpha \circ J = 0, \\ \text{(v)} \ \eta^\alpha(\xi_\beta) = \delta_\beta^\alpha, \\ \text{(vi)} \ g(JX, JY) = g(X, Y) - \sum_{\alpha=1}^r \eta^\alpha(X) \eta^\alpha(Y), \\ \text{(vii)} \ g(X, JY) = \varepsilon g(JX, Y), \\ \text{(viii)} \ g(\xi_\alpha, X) = \eta^\alpha(X), \\ \text{(ix)} \ g((\overline{\nabla}_X J)Y, Z) = \varepsilon g(Y, (\overline{\nabla}_X J)Z), \end{array} \right.$$

for all $X, Y, Z \in T\overline{M}$, where $\alpha, \beta \in \{1, \dots, r\}$ and $\overline{\nabla}$ is the Riemannian connection on \overline{M} .

This structure (resp. manifold) is a very general structure (resp. manifold) which in special cases reduces to several known structures (resp. manifolds) given below which are widely studied in recent past.

Structure/Manifold	r	ε	Reference
framed metric		-1	[33]
almost r -contact metric		-1	[32]
almost contact metric	1	-1	[7]
almost r -paracontact metric		1	[9]
almost paracontact metric	1	1	[23]
$(J(2,\varepsilon), g)$	0		[24]
almost Hermitian	0	-1	[33]
almost product Riemannian	0	1	[33]

Let M be a submanifold of a Riemannian manifold \bar{M} with a Riemannian metric g . Then Gauss and Wiengarten formulas are given, respectively, by

$$\bar{\nabla}_X Y = \nabla_X Y + h(X, Y) \quad \text{and} \quad \bar{\nabla}_X N = -A_N X + \nabla_X^\perp N,$$

for all $X, Y \in TM$ and $N \in T^\perp M$, where $\bar{\nabla}$, ∇ and ∇^\perp are the Riemannian, induced Riemannian and induced normal connections in \bar{M} , M and the normal bundle $T^\perp M$ of M , respectively, and h is the second fundamental form related to A by $g(h(X, Y), N) = g(A_N X, Y)$. Moreover, let J be a $(1,1)$ tensor field on \bar{M} . For $X, Y \in TM$ and $N \in T^\perp M$ we put

$$(2.2) \quad JX = PX + FX, \quad PX \in TM, \quad FX \in T^\perp M,$$

$$(2.3) \quad JN = tN + fN, \quad tN \in TM, \quad fN \in T^\perp M,$$

$$(2.4) \quad \left\{ \begin{array}{l} \text{(i)} (\nabla_X F)Y = \nabla_X^\perp FY - F\nabla_X Y, \\ \text{(ii)} (\nabla_X t)N = \nabla_X tN - t\nabla_X^\perp N, \\ \text{(iii)} (\nabla_X f)N = \nabla_X^\perp fN - f\nabla_X^\perp N, \\ \text{(iv)} (\nabla_X tF)Y = \nabla_X tFY - tF\nabla_X Y, \\ \text{(v)} (\nabla_X Ff)N = \nabla_X^\perp FfN - Ff\nabla_X^\perp N, \\ \text{(vi)} (dF)(X, Y) = \nabla_X^\perp FY - \nabla_Y^\perp FX - F[X, Y]. \end{array} \right.$$

3. Some basic results

We first state the following two lemmas, whose proofs are straightforward and hence omitted.

LEMMA 3.1. *Let M be a submanifold of an ε -framed metric manifold \bar{M} such that $\xi_\alpha \in TM$, $\alpha = 1, \dots, r$. Then*

$$(3.1) \quad \left\{ \begin{array}{l} \text{(i)} P(\xi_\alpha) = 0 = F(\xi_\alpha), \\ \text{(ii)} \eta^\alpha \circ P = 0 = \eta^\alpha \circ F, \\ \text{(iii)} \varepsilon(I - \eta^\alpha \otimes \xi_\alpha) - P^2 = tF, \\ \text{(iv)} FP + fF = 0, \\ \text{(v)} tf + Pt = 0, \\ \text{(vi)} \varepsilon I - f^2 = Ft, \\ \text{(vii)} g(P^2 X, Y) = \varepsilon g(PX, PY) = g(X, P^2 Y), \\ \text{(viii)} g(tFX, Y) = \varepsilon g(FX, FY) = g(X, tFY), \\ \text{(ix)} g(FtN, V) = \varepsilon g(tN, tV) = g(N, FtV), \\ \text{(x)} g(f^2 N, V) = \varepsilon g(fN, fV) = g(N, f^2 V). \end{array} \right.$$

LEMMA 3.2. For a submanifold M of a Riemannian manifold \bar{M} with a $(1,1)$ tensor field J on \bar{M} , we have

$$(3.2) \quad \begin{cases} \text{(i)} \quad (\bar{\nabla}_X J)Y = ((\nabla_X P)Y - A_{FY}X - th(X, Y)) + \\ \quad \quad \quad + ((\nabla_X F)Y + h(X, PY) - fh(X, Y)), \\ \text{(ii)} \quad (\bar{\nabla}_X J)N = ((\nabla_X t)N - A_{fNX}X + PA_{NX}) + \\ \quad \quad \quad + ((\nabla_X f)N + h(X, tN) + FA_{NX}). \end{cases}$$

Moreover, if \bar{M} possesses an ε -framed metric structure, then

$$(3.3) \quad \begin{cases} \text{(i)} \quad g((\nabla_X P)Y, Z) = \varepsilon g(Y, (\nabla_X P)Z), \\ \text{(ii)} \quad g((\nabla_X t)N, Y) = \varepsilon g(N, (\nabla_X F)Y), \\ \text{(iii)} \quad g((\nabla_X f)N, V) = \varepsilon g(N, (\nabla_X f)V). \end{cases}$$

Now let $\xi_1, \dots, \xi_r \in TM$, and let $TM = E \oplus L$, where E denotes the distribution in M spanned by ξ_1, \dots, ξ_r and L is the complementary orthogonal distribution to E in M . Then the Lemma 3.1 leads to the following result.

PROPOSITION 3.3. If M is a submanifold of \bar{M} such that $\xi_1, \dots, \xi_r \in TM$, then

$$(3.4) \quad \begin{cases} \text{(i)} \quad \text{Ker } P = \text{Ker } P^2 = \text{Ker}(tF - \varepsilon(I - \eta^\alpha \otimes \xi_\alpha)), \\ \text{(ii)} \quad \text{Ker } F = \text{Ker } tF = \text{Ker}(P^2 - \varepsilon(I - \eta^\alpha \otimes \xi_\alpha)), \\ \text{(iii)} \quad \text{Ker } t = \text{Ker } Ft = \text{Ker}(f^2 - \varepsilon I), \\ \text{(iv)} \quad \text{Ker } f = \text{Ker } f^2 = \text{Ker}(Ft - \varepsilon I). \end{cases}$$

Consequently, on L

$$(3.5) \quad \begin{cases} \text{(i)} \quad \text{Ker } P|_L = \text{Ker } P^2|_L = \text{Ker}(tF|_L - \varepsilon I), \\ \text{(ii)} \quad \text{Ker } F|_L = \text{Ker } tF|_L = \text{Ker}(P^2|_L - \varepsilon I). \end{cases}$$

P r o o f. (3.4) follows from (3.1) (vii)–(x) and (3.1)(iii), (vi). Since $\eta^\alpha(X) = 0$ for $X \in L$, the relations (3.5) are implied by (3.4)(i), (ii).

4. Almost semi-invariant submanifolds

Let M be a submanifold of an ε -framed metric manifold \bar{M} . Then from (3.1)(vii) it follows that $(P^2)_x$ is symmetric on $T_x M$ and therefore its eigenvalues are real and it is diagonalizable. If $X_x \in T_x M$ is an eigenvector corresponding to an eigenvalue $\mu(x)$ of $(P^2)_x$, then

$$\mu(x)\|X_x\|^2 = \mu(x)g(X_x, X_x) = g(P^2X_x, X_x) = \varepsilon g(PX_x, PX_x) = \varepsilon\|PX_x\|^2$$

which implies that $\mu(x)/\varepsilon \geq 0$. Moreover from (2.1)(vi) for all $Z \in T\bar{M}$ one has $\|JZ\| \leq \|Z\|$ and therefore

$$\frac{1}{\varepsilon}\mu(x)\|JX_x\|^2 \leq \frac{1}{\varepsilon}\mu(x)\|X_x\|^2 = \|PX_x\|^2.$$

Since decomposition of JX , by (2.2), is orthogonal, $\mu(x)$ is bounded by 0 and ε .

Now let $\xi_1, \dots, \xi_r \in TM = E \oplus L$. For each $x \in M$ we may set

$$D_x^\lambda = \text{Ker}(P^2|_L - \varepsilon\lambda^2(x)I)_x,$$

where $\lambda(x) \in [0, 1]$ is such that $\varepsilon\lambda^2(x)$ is an eigenvalue of $(P^2|_L)_x$. Since $(P^2|_L)_x$ is symmetric and diagonalizable, there is some integer q such that $\varepsilon\lambda_1^2(x), \dots, \varepsilon\lambda_q^2(x)$ are distinct eigenvalues of $(P^2|_L)_x$ and L_x can be decomposed as the direct sum of the mutually orthogonal P -invariant eigenspaces, i.e., $L_x = D_x^{\lambda_1} \oplus \dots \oplus D_x^{\lambda_q}$.

If $\varepsilon = -1$ and $\lambda_i(x) > 0$, then $D_x^{\lambda_i}$ is even-dimensional. We note that

$$D_x^1 = \text{Ker}(F|_L)_x = \{X_x \in L_x : \|X_x\| = \|PX_x\|\},$$

$$D_x^0 = \text{Ker}(P|_L)_x = \{X_x \in L_x : \|X_x\| = \|FX_x\|\}.$$

Here D_x^1 is the maximal J -invariant, while D_x^0 is the maximal anti- J -invariant subspace of L_x .

Now, we introduce a notion analogous to generic and skew CR-submanifolds of an almost Hermitian manifold defined in [22].

DEFINITION 4.1. A submanifold M of an ε -framed metric manifold \bar{M} with all $\xi_1, \dots, \xi_r \in TM$ is said to be an *almost semi-invariant submanifold* of \bar{M} , if there exist k functions $\lambda_1, \dots, \lambda_k$, defined on M with values on $(0, 1)$, such that

(i) $\varepsilon\lambda_1^2(x), \dots, \varepsilon\lambda_k^2(x)$ are distinct eigenvalues of $(P^2|_L)_x$ at $x \in M$ with

$$T_x M = D_x^1 \oplus D_x^0 \oplus D_x^{\lambda_1} \oplus \dots \oplus D_x^{\lambda_k} \oplus E_x,$$

(ii) the dimensions of $D_x^1, D_x^0, D_x^{\lambda_1}, \dots, D_x^{\lambda_k}$ are independent of $x \in M$.

If in addition each λ_i is constant, then M is called an *almost semi-invariant* submanifold*. If $k = 0$, then M is called *semi-invariant submanifold*. In fact, if $k = 0$ in Definition 4.1, then (i) \rightarrow (ii) and M becomes a semi-invariant submanifold (see Proposition 5.3). If $k = 0$ and $D_x^1 = \{0\}$, (resp. $D_x^0 = \{0\}$), then M becomes an *anti-invariant* (resp. *invariant*) submanifold.

Condition (ii) in Definition 1.4 enables us to define P -invariant mutually orthogonal distributions

$$D^\lambda = \bigcup_{x \in M} D_x^\lambda, \quad \lambda \in \{0, \lambda_1, \dots, \lambda_k, 1\},$$

on M such that $TM = D^1 \oplus D^0 \oplus D^{\lambda_1} \oplus \dots \oplus D^{\lambda_k} \oplus E$. The differentiability of these distributions follows from the fact that their dimensions are constant [19].

For $X \in TM$ we may write

$$(4.1) \quad X = U^1 X + U^0 X + U^{\lambda_1} X + \dots + U^{\lambda_k} X + \eta^\alpha(X) \xi_\alpha,$$

where $U^1, U^0, U^{\lambda_1}, \dots$ and U^{λ_k} are orthogonal projection operators of TM on $D^1, D^0, D^{\lambda_1}, \dots$ and D^{λ_k} , respectively.

EXAMPLE 4.2. We consider the Euclidean space \mathbb{R}^{8+r} and denote its points by $x = (x^i)$. Let $(e_j), j = 1, \dots, 8+r$, be the natural basis defined by $e_j = \partial/\partial x^j$. We put $\varepsilon^2 = 1$ and define vector fields ξ_α by $\xi_\alpha = e_{8+\alpha}, \alpha = 1, \dots, r$; 1-forms η^α by $\eta^\alpha = \varepsilon dx^{8+\alpha}, \alpha = 1, \dots, r$; and a $(1,1)$ tensor field J by

$$\begin{aligned} Je_1 &= \varepsilon e_2, & Je_2 &= e_1, & Je_3 &= \varepsilon e_8, & Je_8 &= e_3, & Je_{8+\alpha} &= 0, \alpha = 1, \dots, r, \\ Je_4 &= \varepsilon \cos \nu(x) e_5 - \varepsilon \sin \nu(x) e_6, & Je_5 &= \cos \nu(x) e_4 + \sin \nu(x) e_7, \\ Je_6 &= -\sin \nu(x) e_4 + \cos \nu(x) e_7, & Je_7 &= \varepsilon \sin \nu(x) e_5 + \varepsilon \cos \nu(x) e_6, \end{aligned}$$

where $\nu : \mathbb{R}^{8+r} \rightarrow (-\pi/2, \pi/2)$ is some function. Then it is easy to verify that \mathbb{R}^{8+r} possesses an ε -framed metric structure $(J, \xi_\alpha, \eta^\alpha, g)$, where g is the canonical metric on \mathbb{R}^{8+r} given by $g(e_i, e_j) = \delta_{ij}$; $i, j = 1, \dots, 8+r$.

The submanifold

$$\mathbb{R}^{5+r} = \{(x^1, \dots, x^8, x^9, \dots, x^{8+r}) \in \mathbb{R}^{8+r} \mid x^6, x^7, x^8 = 0\}$$

of \mathbb{R}^{8+r} is an almost semi-invariant submanifold with

$$\begin{aligned} D^1 &= \text{Span}\{e_1, e_2\}, & D^0 &= \text{Span}\{e_3\}, \\ D^\lambda &= \text{Span}\{e_4, e_5\}, & E &= \text{Span}\{e_9, \dots, e_{8+r}\}, \end{aligned}$$

where $\lambda(x) = \cos \nu(x)$ for $x \in \mathbb{R}^{5+r}$.

From now an almost semi-invariant, almost semi-invariant* and semi-invariant will be denoted by ASI, ASI* and SI, respectively, and we denote by M a submanifold of an ε -framed metric manifold \bar{M} such that $\xi_1, \dots, \xi_r \in TM$ unless otherwise stated.

5. Some characterizations of almost semi-invariant submanifolds

Like P^2 , it can be seen that the operators tF, Ft and f^2 are symmetric and their eigenvalues are bounded by 0 and ε . Let $\varepsilon \lambda^2(x)$, $0 \leq \lambda(x) \leq 1$,

be an eigenvalue of $(f^2)_x$ at $x \in M$ and let \underline{D}_x^λ denote the corresponding eigenspace $\underline{D}_x^\lambda = \text{Ker}(f^2 - \varepsilon\lambda^2(x)I)_x$.

In particular, we note that

$$\begin{aligned}\underline{D}_x^1 &= \text{Ker } t_x = \{N_x \in T_x^\perp M : \|N_x\| = \|fN_x\|\}, \\ \underline{D}_x^0 &= \text{Ker } f_x = \{N_x \in T_x^\perp M : \|N_x\| = \|tN_x\|\}.\end{aligned}$$

For $\lambda \neq 1$ we have $FD_x^\lambda = \underline{D}_x^\lambda$ and $t\underline{D}_x^\lambda = D_x^\lambda$. Equivalently, at $x \in M$, X_x (resp. N_x) is an eigenvector of $(P^2|_L)_x$ (resp. $(f^2)_x$) corresponding to an eigenvalue $\varepsilon\lambda^2(x)$ iff FX_x (resp. tN_x) is an eigenvector of $(f^2)_x$ (resp. $(P^2|_L)_x$) corresponding to the same eigenvalue $\varepsilon\lambda^2(x)$. Consequently, $\text{Dim}(D_x^\lambda) = \text{Dim}(\underline{D}_x^\lambda)$. Thus, for a submanifold M of \bar{M} with $\xi_1, \dots, \xi_r \in TM$ the statements

- (1) $T_x M = D_x^1 \oplus D_x^0 \oplus D_x^{\lambda_1} \oplus \dots \oplus D_x^{\lambda_k} \oplus E_x$,
- (2) $T_x^\perp M = \underline{D}_x^1 \oplus \underline{D}_x^0 \oplus \underline{D}_x^{\lambda_1} \oplus \dots \oplus \underline{D}_x^{\lambda_k}$

hold equivalently.

In view of the above discussion, we immediately have the following result.

PROPOSITION 5.1. M is an ASI-submanifold of \bar{M} iff there are k functions $\lambda_1, \dots, \lambda_k$ defined on M with values in $(0, 1)$ such that

- (1) $\varepsilon\lambda_1^2(x), \dots, \varepsilon\lambda_k^2(x)$ are distinct eigenvalues of $(f^2)_x$ with $T_x^\perp M = \underline{D}_x^1 \oplus \underline{D}_x^0 \oplus \underline{D}_x^{\lambda_1} \oplus \dots \oplus \underline{D}_x^{\lambda_k}$ at $x \in M$,
- (2) the dimensions of $\underline{D}_x^1, \underline{D}_x^0, \underline{D}_x^{\lambda_1}, \dots, \underline{D}_x^{\lambda_k}$ are independent of $x \in M$.

Let $\varepsilon(1 - \lambda^2(x)), 0 \leq \lambda(x) \leq 1$, be an eigenvalue of $(tF|_L)_x$ (resp. $(Ft)_x$) and C_x^λ (resp. \underline{C}_x^λ) be denoted by

$$C_x^\lambda = \text{Ker}(tF|_L - \varepsilon(1 - \lambda^2(x))I)_x \quad (\text{resp. } \underline{C}_x^\lambda = \text{Ker}(Ft - \varepsilon(1 - \lambda^2(x))I)_x).$$

Then X_x (resp. N_x) is an eigenvector of $(P^2|_L)_x$ (resp. $(f^2)_x$) corresponding to an eigenvalue $\varepsilon\lambda^2(x)$ iff X_x (resp. N_x) is an eigenvector of $(tF|_L)_x$ (resp. $(Ft)_x$) corresponding to the eigenvalue $\varepsilon(1 - \lambda^2(x))$. Consequently, $D_x^\lambda = C_x^\lambda$ and $\underline{D}_x^\lambda = \underline{C}_x^\lambda$, and hence we have the following result.

PROPOSITION 5.2. M in an ASI-submanifold of \bar{M} iff there are k functions $\lambda_1, \dots, \lambda_k$ defined on M with values in $(0, 1)$ such that

- (1) $\varepsilon(1 - \lambda_1^2(x)), \dots, \varepsilon(1 - \lambda_k^2(x))$ are distinct eigenvalues of $(tF|_L)_x$ (resp. $(Ft)_x$) with $T_x M = C_x^1 \oplus C_x^0 \oplus C_x^{\lambda_1} \oplus \dots \oplus C_x^{\lambda_k} \oplus E_x$ (resp. $T_x^\perp M = \underline{C}_x^1 \oplus \underline{C}_x^0 \oplus \underline{C}_x^{\lambda_1} \oplus \dots \oplus \underline{C}_x^{\lambda_k}$) at $x \in M$,
- (2) the dimensions of $C_x^1, C_x^0, C_x^{\lambda_1}, \dots, C_x^{\lambda_k}$ (resp. $\underline{C}_x^1, \underline{C}_x^0, \underline{C}_x^{\lambda_1}, \dots, \underline{C}_x^{\lambda_k}$) are independent of $x \in M$.

Last two propositions give characterizations of ASI-submanifolds. Characterizations of SI-submanifolds are given as follows.

PROPOSITION 5.3. *M is an SI-submanifold of \bar{M} iff one of the following equivalent conditions holds:*

(1) $T_x M = D_x^1 \oplus D_x^0 \oplus E_x$, $x \in M$,	(2) $T_x^\perp M = \underline{D}_x^1 \oplus \underline{D}_x^0$, $x \in M$,		
(3) $FP = 0$,	(4) $fF = 0$,	(5) $tf = 0$,	(6) $Pt = 0$,
(7) $tFP = 0$,	(8) $tfF = 0$,	(9) $Ptf = 0$,	(10) $P^3 = \varepsilon P$,
(11) $f^2 F = 0$,	(12) $fFP = 0$,	(13) $FP^2 = 0$,	(14) $FtF = \varepsilon F$,
(15) $Ftf = 0$,	(16) $FPt = 0$,	(17) $fFt = 0$,	(18) $f^3 = \varepsilon f$,
(19) $P^2 t = 0$,	(20) $Ptf = 0$,	(21) $tf^2 = 0$,	(22) $tFt = \varepsilon t$.

P r o o f. The statements (1), (2) are obviously equivalent and the equivalence of the statements (3)–(22) can be easily verified. Now, we show equivalence of (1) and (3). Since $\text{Ker}(FP)_x = D_x^1 \oplus D_x^0 \oplus E_x$, then (1) \Rightarrow (3). Conversely, if (3) holds, then $J(PX_x) = P^2 X_x$ for $X_x \in T_x M$. Consequently, defining $D_x = P(T_x M)$, we get $J(D_x) \subset D_x$. Since $g(PX_x, \xi_\alpha) = 0$, D_x is orthogonal to E_x and therefore, in view of $JX_x = PX_x$ for $X_x \in D_x$, we get $\varepsilon X_x = J^2 X_x = JP(X_x)$, i.e., $D_x \subset J(D_x)$. Thus $J(D_x) = P(D_x) = D_x$, which shows that $D_x = D_x^1$. Now, let D_x^\perp denote the orthogonal complement to $D_x^1 \oplus E_x$ in $T_x M$. Then for $X_x \in D_x^\perp$ and $Y_x \in T_x M$ we have $g(JX_x, Y_x) = \varepsilon g(X_x, JY_x) = \varepsilon g(X_x, PY_x) = 0$ which yields $D_x^\perp = D_x^0$. Hence (3) implies (1). Finally, if M is SI-submanifold, then (1) obviously holds. Conversely, if (1) is true then (3) holds which is equivalent to (10), i.e., $P^3 = \varepsilon P$ and hence $\text{Dim}(D_x^1) = \text{Rank}(P_x)$ is independent of $x \in M$ [29] and so is that of D_x^0 . This completes the proof.

6. The parallelism of certain operators

The main purpose of this section is to prove Theorem 6.3 which in special case, when \bar{M} is almost Hermitian manifold, implies Propositions 2.1 and 2.2 of [20] and Theorem 4.3 of [22] as corollaries.

THEOREM 6.1. *If M is a submanifold of \bar{M} with $\xi_1, \dots, \xi_r \in TM$, then $\nabla P^2 = 0$ iff the following conditions hold:*

- (A) *M is an ASI*-submanifold,*
- (B) *each of the distributions $D^1, D^0, D^{\lambda_1}, \dots, D^{\lambda_k}$, E is parallel and, consequently, M is locally the product of leaves of these distributions.*

P r o o f. Let $\nabla P^2 = 0$. We fix $x \in M$. For any $Y_x \in D_x^\lambda$ and any vector field $X \in TM$, let Γ be the integral curve of X passing through x , and let Y be the parallel transport of Y_x along Γ . Since $\nabla P^2 = 0$, we get

$$(6.1) \quad \nabla_X (P^2 Y - \varepsilon \lambda^2(x) Y) = P^2 \nabla_X Y - \varepsilon \lambda^2(x) \nabla_X Y = 0,$$

i.e., $(P^2 Y - \varepsilon \lambda^2(x) Y)$ is parallel along Γ .

Since parallel transport along a curve is an isometry, from (6.1) we get:

- (i) since $P^2Y - \varepsilon\lambda^2(x)Y = 0$ at x , it is identically zero on Γ and hence on M ,
- (ii) eigenvalues of P^2 are constant,
- (iii) $\text{Dim}(D_x^\lambda)$ is independent of x ,

which proves (A).

Now, if $Y \in D^\lambda$, then $P^2Y = \varepsilon\lambda^2Y$ (λ is constant). Operating by ∇_X , we get $P^2\nabla_X Y = \varepsilon\lambda^2\nabla_X Y$ which shows that D^λ is parallel. Thus $D^1 \oplus D^0 \oplus D^{\lambda_1} \oplus \dots \oplus D^{\lambda_k}$ is parallel and, consequently, E is parallel which proves (B).

Conversely, if (A) and (B) hold, then for $X, Y \in TM$ we have

$$\begin{aligned}\nabla_X P^2Y &= \nabla_X P^2(U^1Y + U^0Y + U^{\lambda_1}Y + \dots + U^{\lambda_k}Y + \eta^\alpha(Y)\xi_\alpha) \\ &= \nabla_X \varepsilon U^1Y + 0 + \nabla_X \varepsilon \lambda_1^2 U^{\lambda_1}Y + \dots + \nabla_X \varepsilon \lambda_k^2 U^{\lambda_k}Y + 0 \\ &= \varepsilon \nabla_X U^1Y + \varepsilon \lambda_1^2 \nabla_X U^{\lambda_1}Y + \dots + \varepsilon \lambda_k^2 \nabla_X U^{\lambda_k}Y = P^2\nabla_X Y.\end{aligned}$$

Hence $\nabla P^2 = 0$.

THEOREM 6.2. *If M is a submanifold of \bar{M} with $\xi_1, \dots, \xi_r \in TM$, then $\nabla f^2 = 0$ iff the following conditions hold:*

- (A) M is an ASI*-submanifold,
- (B)' each of the subbundles $\underline{D}^1, \underline{D}^0, \underline{D}^{\lambda_1}, \dots, \underline{D}^{\lambda_k}$ of $T^\perp M$ is parallel with respect to ∇^\perp .

Proof. Assume $\nabla f^2 = 0$ and fix $x \in M$. For any $N_x \in \underline{D}_x^\lambda$ and any vector field $X \in TM$ let N be the parallel transport of N_x in the normal bundle $T^\perp M$ along the integral curve of X passing through $x \in M$, i.e., $\nabla_X^\perp N = 0$. Since $\nabla f^2 = 0$, we get

$$(6.2) \quad \nabla_X^\perp(f^2N - \varepsilon\lambda^2(x)N) = f^2\nabla_X^\perp N - \varepsilon\lambda^2(x)\nabla_X^\perp N = 0,$$

i.e., $f^2N - \varepsilon\lambda^2(x)N$ is parallel along the integral curve of X .

Rest of the proof is similar to that of Theorem 6.1.

THEOREM 6.3. *For a submanifold M of \bar{M} with $\xi_1, \dots, \xi_r \in TM$ we have*

$$\nabla t = 0 \quad \longrightarrow \quad \nabla tF = 0 \quad \longleftrightarrow \quad \{(A), (B)\} \quad \longleftrightarrow \quad \nabla P^2 = 0 \quad \longleftarrow \quad \nabla P = 0,$$

\uparrow

$$\nabla F = 0 \quad \longrightarrow \quad \nabla Ft = 0 \quad \longleftrightarrow \quad \{(A), (B)'\} \quad \longleftrightarrow \quad \nabla F^2 = 0 \quad \longleftarrow \quad \nabla F = 0.$$

Proof. The relation (3.3)(ii) implies equivalence of $\nabla t = 0$ and $\nabla F = 0$. The proof of equivalence of $\nabla tF = 0$ and statements (A), (B) together is similar to that of Theorem 6.1. Next, $\nabla f^2 = 0$ is equivalent to $\nabla Ft = 0$, in

view of (3.1)(vi). Lastly, taking account of Theorems 6.1 and 6.2, the proof is completed.

7. Integrability conditions

Throughout this section superscripts T and N in a term will denote its tangential and normal parts, respectively.

PROPOSITION 7.1. *For a submanifold M of \bar{M} , with $\xi_1, \dots, \xi_r \in TM$, we have*

$$(7.1) \quad P[X, Y] = \nabla_X PY - \nabla_Y PX + A_{FX}Y - A_{FY}X - ((\bar{\nabla}_X J)Y - (\bar{\nabla}_Y J)X)^T,$$

$$(7.2) \quad F[X, Y] = \nabla_X^T FY - \nabla_Y^T FX + h(X, PY) - h(PX, Y) - ((\bar{\nabla}_X J)Y - (\bar{\nabla}_Y J)X)^N,$$

$$(7.3) \quad ([J, J](X, Y))^T = [PX, PY] - P([X, PY] + [PX, Y]) + \varepsilon(U^1 + U^0 + U^{\lambda_1} + \dots + U^{\lambda_k})[X, Y], \quad X, Y \in D^1 \oplus E,$$

$$(7.4) \quad ([J, J](X, Y))^N = -F([X, PY] + [PX, Y]), \quad X, Y \in D^1 \oplus E.$$

The proof of (7.1) and (7.2) follows from (3.2)(i), (ii) and (2.4)(i), while using (2.1)(ii), (4.1) and (2.2), for $X, Y \in D^1 \oplus E$, we get (7.3) and (7.4).

THEOREM 7.2. *The distribution $D^{\lambda_i} \oplus E$ is integrable iff for $X, Y \in D^{\lambda_i} \oplus E$ the following conditions hold:*

- (1) $P[X, Y] \in D^{\lambda_i}$,
- (2) $F[X, Y] \in \underline{D}^{\lambda_i}$.

The proof follows from the equivalence of $Z \in D^{\lambda_i} \oplus E$ and $(PZ \in D^{\lambda_i}$ and $FZ \in \underline{D}^{\lambda_i})$.

THEOREM 7.3. *The distribution $D^1 \oplus D^0 \oplus E$ is integrable iff for $X, Y \in D^1 \oplus D^0 \oplus E$ one of the following conditions holds:*

- (1) $P[X, Y] \in D^1$,
- (2) $F[X, Y] \in \underline{D}^0$,
- (3) $FP[X, Y] = -fF[X, Y] = 0$.

The proof follows from equivalence of the following statements: $PZ \in D^1$, $FZ \in \underline{D}^0$, $Z \in D^1 \oplus D^0 \oplus E$ and $FPZ = -fFZ = 0$.

THEOREM 7.4. *E is integrable iff $[J, J](\xi_\alpha, \xi_\beta) = 0$.*

The proof follows from (7.3) and (7.4) in view of $P \xi_\alpha = 0$.

The ε -framed metric structure is said to be *normal* [26] if the Nijenhuis tensor $[J, J]$ of J satisfies $[J, J] = \varepsilon d\eta^\alpha \otimes \xi_\alpha$. Since normality of the structure implies $[\xi_\alpha, \xi_\beta] = 0$, from the above Theorem we have the following corollary.

COROLLARY 7.5. *If the ε -framed metric structure is normal, then E is integrable.*

THEOREM 7.6. *The distribution $D^0 \oplus E$ is integrable iff for $X, Y \in D^0 \oplus E$ one of the following conditions holds:*

- (1) $A_{FX}Y - A_{FY}X = ((\bar{\nabla}_X J)Y - (\bar{\nabla}_Y J)X)^\top$,
- (2) $[P, P](X, Y) = 0$.

Proof. Since $D^0 \oplus E = \text{Ker } P$, in view of (7.1), the condition (1) is equivalent to $D^0 \oplus E$ being integrable. Next, for $X, Y \in D^0 \oplus E$ we get $[P, P](X, Y) = P^2[X, Y]$, and hence $D^0 \oplus E$ is integrable iff (2) holds.

THEOREM 7.7. *The distribution $D^1 \oplus E$ is integrable iff for $X, Y \in D^1 \oplus E$ one of the following conditions holds:*

- (1) $([J, J](X, Y))^\top = [P, P](X, Y)$,
- (2) $h(X, PY) - h(PX, Y) = ((\bar{\nabla}_X J)Y - (\bar{\nabla}_Y J)X)^N$,
- (3) $(dF)(X, Y) = 0$.

Proof. Since $Z \in D^1 \oplus E$ iff $P^2Z = \varepsilon U^1Z$, in view of (7.3), the condition (1) is necessary and sufficient for $D^1 \oplus E$ to be integrable. Since $D^1 \oplus E = \text{Ker } F$, in view of (7.2), the condition (2) holds iff $D^1 \oplus E$ is integrable. Finally, for $X, Y \in D^1 \oplus E$ the relation (2.4)(vi) reduces to $dF(X, Y) = F[Y, X]$, and hence (3) holds iff $D^1 \oplus E$ is integrable.

As a consequence of Theorem 7.7 we have the following corollaries.

COROLLARY 7.8. *If $D^1 \oplus E$ is integrable, then for $X, Y \in D^1 \oplus E$ we have*

- (1) $([J, J](X, Y))^N = 0$,
- (2) $[P, P](X, Y) \in D^1 \oplus E$.

COROLLARY 7.9. *If the ε -framed metric structure is normal, then $D^1 \oplus E$ is integrable iff for $X, Y \in D^1 \oplus E$ we have $[J, J](X, Y) = [P, P](X, Y) = \varepsilon d\eta^\alpha(X, Y)\xi_\alpha$.*

THEOREM 7.10. *If M is an SI-submanifold of \bar{M} , then $D^1 \oplus E$ is integrable iff for $X, Y \in D^1 \oplus E$ the following conditions hold:*

- (1) $([J, J](X, Y))^N = 0$,
- (2) $U^0[P, P](X, Y) = 0$,
- (3) $U^0[\xi_\alpha, \xi_\beta] = 0$.

The proof is similar to that of Theorem 3.2 of [30].

The $(J(2, \varepsilon), g)$ structure is said to be *integrable* [24], if $[J, J] = 0$.

THEOREM 7.11. *If M is an SI-submanifold of a $(J(2, \varepsilon), g)$ manifold, then D^1 is integrable iff for $X, Y \in D^1$ one of the following conditions holds.*

- (1) $[P, P](X, Y) \in D^1$,
- (2) $U^0[P, P](X, Y) = 0$,
- (3) $F[P, P](X, Y) = 0$.

The proof is similar to that of Theorem 2.1 of [15].

8. CR-structure on almost semi-invariant submanifolds

In [8], it was proved that a CR-submanifold of an Hermitian manifold is a CR-manifold [11]. This was followed by analogous results for CR-submanifolds of a normal almost contact metric manifold [14], for almost CR-submanifolds of an almost cosymplectic f-manifold [16] and for generic submanifolds (in the sense of Chen) of an Hermitian manifold [5, 20]. Here we prove the following theorem from which the results of [5], [14], [16] and [20] mentioned above can be obtained as special cases.

THEOREM 8.1. *If M is an ASI-submanifold of a normal framed metric manifold \bar{M} , with non-trivial invariant distribution, then M is a CR-manifold.*

Proof. Let M be an ASI-submanifold of a normal framed metric manifold \bar{M} [33]. Then for $X, Y \in D^1$ we get $P^2X = -X$ and, in view of $[J, J] = -d\eta^\alpha \otimes \xi_\alpha$, (7.3) and (7.4), we get the relation

$$0 = [J, J](X, Y) + d\eta^\alpha(X, Y)\xi_\alpha = [P, P](X, Y) - F([X, PY] + [PX, Y])$$

from which it follows that $[PX, PY] - [X, Y] = P([PX, Y] + [X, PY]) \in D^1$. Hence, in view of Theorem 1.1 from [5] (pp. 128–129), (D^1, P) is a CR-structure on M .

References

- [1] C. L. Bejan, *Almost semi-invariant submanifolds of locally product Riemannian manifolds*, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 32 (80) (1988), 3–9.
- [2] A. Bejancu, *On integrability conditions on a CR-submanifold*, An. Științ. Univ. “Al. I. Cuza” Iași Sect. Ia Mat., 24 (1978), 21–24.
- [3] A. Bejancu, *On semi-invariant submanifolds of an almost contact metric manifold*, An. Științ. Univ. “Al. I. Cuza” Iași Sect. Ia Mat., Supplement to 27 (1978), 17–21.
- [4] A. Bejancu, *Semi-invariant submanifolds of locally product Riemannian manifolds*, An. Univ. Timisoara Ser. Științ. Mat., 22 (1984), 3–11.
- [5] A. Bejancu, *Geometry of CR-submanifolds*, D. Reidel Publ. Co., 1986.

- [6] A. Bejancu, N. Papaghiuc, *Almost semi-invariant submanifolds of a Sasakian manifold*, Bull. Math. Soc. Sci. Math. R.S. Roumanie, 28 (1984), 13–30.
- [7] D. E. Blair, *Contact manifolds in Riemannian geometry*, Lecture Notes in Math. 509, Springer Verlag, 1976.
- [8] D. E. Blair, B. Y. Chen, *On CR-submanifolds of Hermitian manifolds*, Israel J. Math., 34 (1979), 353–363.
- [9] A. Bucki, A. Miernowski, *Almost r-paracontact structures*, Ann. Univ. M. Curie-Sklodowska, Sect. A, 39 (1985), 13–26.
- [10] B. Y. Chen, *Differential geometry of real submanifolds in a Kaehler manifold*, Monatsh. Math., 9 (1981), 257–274.
- [11] S. J. Greenfield, *Cuichy-Riemann equations in several variables*, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 275–314.
- [12] S. Ianus, I. Mihai, *Semi-invariant submanifolds of an almost paracontact manifold*, Tensor (N.S.), 39 (1982), 195–200.
- [13] S. Ianus, I. Mihai, K. Matsumoto, *Almost semi-invariant submanifolds of some almost paracontact Riemannian manifolds*, Bull. Yamagata Univ. Natur. Sci., 11 (1985), 121–128.
- [14] M. Kobayashi, *Contact CR products of Sasakian manifolds*, Tensor (N.S.), 36 (1982), 281–288.
- [15] S. H. Kon, S. L. Tan, *CR-submanifolds of a nearly Kaehlerian manifold*, Bull. Malaysian Math. Soc., 14 (1991), 31–38.
- [16] K. Matsumoto, I. Mihai, R. Rosca, *A certain locally conformal almost cosymplectic manifold and its submanifolds*, Tensor (N.S.), 51 (1992), 91–102.
- [17] I. Mihai, *CR-submanifolds of a framed f-manifold*, Stud. Cerc. Math., 35 (1982), 127–136.
- [18] I. Mihai, K. Matsumoto, *Submanifolds of an almost r-paracontact Riemannian manifold of P-Sasakian type*, Tensor (N.S.), 48 (1989), 136–142.
- [19] K. Nomizu, *Characteristic roots and vectors of a differentiable family of symmetric matrices*, Linear and Multilinear Algebra, 1 (1973), 159–162.
- [20] B. Opozda, *Generic submanifolds in almost Hermitian manifolds*, Ann. Polonici Math., 49 (1988), 115–128.
- [21] L. Ornea, *Generic CR-submanifolds in S-manifolds*, Stud. Cerc. Mat., 36 (1984), 435–443.
- [22] G. S. Ronsse, *Generic and skew CR-submanifolds of a Kaehler manifold*, Bull. Inst. Math. Acad. Sinica, 18 (1990), 127–141.
- [23] I. Sato, *On a structure similar to almost contact structures*, Tensor (N.S.), 30 (1976), 219–224.
- [24] K. D. Singh, Y. N. Singh, *On some $f(3, \epsilon)$ -structure manifolds*, Demonstratio Math. 17 (1984), 107–118.
- [25] K. D. Singh, O. P. Srivastava, *On semi-invariant submanifolds of an almost paracontact Riemannian manifold*, Demonstratio Math., 21 (1988), 255–268.
- [26] K. D. Singh, M. M. Tripathi, *On normal (e_1, e_2, r) ac structure*, Ganita, 40 (1989), 101–112.
- [27] K. D. Singh, M. M. Tripathi, *Semi-invariant submanifolds of an almost r-paracontact Riemannian manifold*, J. Indian Math. Soc., 60 (1994), 29–40.
- [28] R. Singh, *ϵ -almost analytic vector fields in a framed $f(3, \epsilon)$ -manifold*, Ph.D. Thesis, Chap. 10, Lucknow University, 1982.
- [29] R. E. Stong, *The rank of an f-structure*, Kodai Math. Sem. Rep., 29 (1977), 207–209.

- [30] M. M. Tripathi, *Semi-invariant submanifolds of an almost r-contact metric manifold*, Math. J. Toyama Univ., 14 (1991), 95–111.
- [31] M. M. Tripathi, *A note on semi-invariant submanifolds of an almost contact metric manifold*, An. Știint. Univ. "Al.I. Cuza" Iași, 37 (1991), 461–466.
- [32] J. Vanjura, *Almost r-contact structures*, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat., 26 (1972), 97–115.
- [33] K. Yano, M. Kon, *Structures on a manifold*, World Scientific, 1984.
- [34] K. Yano, M. Kon, *CR-submanifolds of Kaehlerian and Sasakian manifolds*, Birkhäuser, Boston, 1983.

DEPARTMENT OF MATHEMATICS AND ASTRONOMY
FACULTY OF SCIENCE, LUCKNOW UNIVERSITY
LUCKNOW 226 007, INDIA

Received November 15, 1994.