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ALMOST SEMI-INVARIANT SUBMANIFOLDS 
OF AN ¿-FRAMED METRIC MANIFOLD 

1. Introduction 
Study of CR-submanifolds, as a generalization of invariant and anti-

invariant submanifolds, of a Kaehler manifold was initiated by Bejancu 
[5] and was followed by several geometers (see [5, 34] and references cited 
therein). This concept was further generalized by Chen [10] who introduced 
generic submanifolds. Later, several authors [1-6, 8, 12-18, 21, 25, 27, 30, 
31, 34] defined and studied semi-invariant and almost semi-invariant sub-
manifolds, analogous to these CR and or generic submanifolds, of mani-
folds possessing structures different from Kaehler viz. almost contact [7], 
framed metric [33] or almost r-contact [32], almost paracontact [23], almost 
r-paracontact [9], and almost product Riemannian structures [33]. 

Recently generic submanifolds of a Kaehler manifold were introduced by 
Ronsse [22] which imply the generic submanifold given by Chen. Motivated 
by this, in the present paper we define and study almost semi-invariant 
submanifolds (section 4) of a manifold with an ¿-framed metric structure 
[28] which reduces to all aforementioned structures in special cases. 

The paper is organized as follows. Section 2 is devoted to prelimin-
aries. In section 3 some basic results are given. The definition of an al-
most semi-invariant submanifold of an ¿-framed metric manifold along with 
an example is given in section 4. In section 5 we establish some necessary 
and sufficient conditions for a submanifold to be an almost semi-invariant 
submanifold. Later in this section, an interesting set of twenty two neces-
sary and sufficient conditions for a submanifold to be semi-invariant have 
been obtained. Section 6 deals with parallelism of certain operators arising 
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naturally in our study. Integrability conditions for certain natural distribu-
tions on almost semi-invariant and semi-invariant submanifolds have been 
discussed in section 7. In the last section it has been shown that an al-
most semi-invariant submanifold, with non-trivial invariant distribution of 
a normal framed metric manifold [33], is a CR-manifold [11]. 

2. Preliminaries 
Let M be an m-dimensional framed metric (J(3,£), <7) manifold (for 

brevity ¿-framed metric manifold) [28] with a framed metric (J(3,£), <7) struc-
ture (for brevity e-framed metric structure) of rank m - r, r < m; i.e., 
£2 = 1; J / 0, / (J is the identity operator) is a tensor field of type (1,1) 
with Rank(J) = m — r; are vector fields; 7/1,...,7/r are 1-forms 
and g is an associated Riemannian metric such that 

for all X,Y, Z G TM, where a, ¡3 G { l , . . . , r } and V is the Riemannian 

This structure (resp. manifold) is a very general structure (resp. mani-
fold) which in special cases reduces to several known structures (resp. mani-
folds) given below which are widely studied in recent past. 

(i) J 3 = sJ, 
(ii) J2 = e(I -Tja ® f a ) , 

(2.1) 

(iii) J(ta) = 0, 

(iv) T)° O J = 0, 

(V) = 

(vii) g(X,JY) = eg(JX,Y), 

(Vm)g(Ç«1X) = rta(X), 

. ( ix) g((yxJ)Y, Z) = sg(Y, ( V X J ) Z ) , 

connection on M. 
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Let M be a submanifold of a Riemannian manifold M with a Riemannian 
metric g. Then Gauss and Wiengarten formulas are given, respectively, by 

VXY = VXY + h(X, Y) and VXN =-ANX + V ^ JV, 

for all X,Y e TM and N € TLM, where V, V and V 1 are the Riemannian, 
induced Riemannian and induced normal connections in M, M and the 
normal bundle TLM of M, respectively, and h is the second fundamental 
form related to A by g(h(X,Y),N) = g(Afi/X,Y). Moreover, let J be a (1,1) 
tensor field on M. For X,Y e TM and N e T±M we put 

( 2 . 2 ) JX = PX + FX, PX e TM, FX E T*-M, 
( 2 . 3 ) JN = tN + f N , tN e TM, fN € TLM, 

• (i){VXF)Y = V^FY -FVXY, 

(ii) (Vx*)iV = VxtN - WjtN, 

(2 4~) (iii) ( V x / ) N = V * f N ~ fV*N> ( ' ' (iv) (VxtF)Y = VxtFY - tFVxY, 

(v) (VA :Ft)N = VxFtN - FtVj(N, 
. (vi) ( d F ) ( X , Y ) = VXFY — V$FX - F[X,Y]. 

3. Some basic results 
We first state the following two lemmas, whose proofs are straightforward 

and hence omitted. 

LEMMA 3 . 1 . Let M be a submanifold of an e-framed metric manifold M 
such that e TM, a = 1,..., r. Then 

• (i) P(ta) = 0 = F(£a), 
(ii) T}a 0 p = 0 = T]a 0 F, 

(iii) e{I -T)"® ta) -P2 = tF, 
(iv) FP + fF = 0, 
(v) tf + Pt = 0, 

( 3 J ) (vi) e I - f 2 = Ft, 
(vii) g(P2X,Y) = eg{PX,PY) = g{X,P2Y), 

(viii) g(tFX,Y) = eg(FX, FY) = g{X,tFY), 
(ix) g(FtN, V) = eg(tN, tV) = g{N, FtV), 

. (x) g(f2N,V) = eg(fN,fV) = g(N,f2V). 
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LEMMA 3 .2 . For a submanifold M of a Riemannian manifold M with a 
(1,1) tensor field J on M, we have 

(3 .2 ) 

f (i) (VXJ)Y = «VxP)Y - AFyX - th(X,Y))+ 
+ ( ( V X F ) y + h(X, PY) - f h ( X , Y ) ) , 

(ii) (VXJ)N = ((Vxt)N - A F N X + PANX)+ 

+ ((Vxf)N + h(X,tN) + F A N X ) . 

Moreover, if M possesses an e-framed metric structure, then 

(i) g((VxP)Y,Z) = eg(Y,(VxP)Z), 
(3.3) (ii) g((Vxt)N, Y) = eg(N, (VXF)Y), 

(iii) ff((Vxm,V) = eg(N,(yxf)V). 

Now let f i , . . . , f r € TM, and let TM = £?©£, where E denotes the dis-
tribution in M spanned by ft,..., £r and L is the complementary orthogonal 
distribution to E in M. Then the Lemma 3.1 leads to the following result. 

PROPOSITION 3 .3 . 7 /M is a submanifold of M such that ft,... e TM, 
then 

(i) Ker P = Ker P2 = Ker(tF - e(I -77° ® £«)), 
. (ii) Ker F = Ker tF = Ker(P2 - e(I - rja ® £,)) , 

' (iii) Ker t = Ker Ft = Ker(/2 - el), 
(iv) K e r / = K e r / 2 = Ker(Ff - el). 

Consequently, on L 

f (i) Ker P\L = Ker P2\L = Ker(iF|L - el), 
{ ' ' \ (ii) Ker F\L = KeriF|z, = K e ^ P 2 ^ - el). 

P r o o f . (3.4)follows from (3.1) (vii)-(x) and (3.1)(iii), (vi). Since R)A(X) 
= 0 for X Ç L, the relations (3.5) are implied by (3.4)(i), (ii). 

4. Almost semi-invariant submanifolds 
Let M be a submanifold of an £-framed metric manifold M. Then from 

(3.1)(vii) it follows that (P2)x is symmetric on TXM and therefore its eigen-
values are real and it is diagonalizable. If Xx G TXM is an eigenvector 
corresponding to an eigenvalue /i(x) of (P2)x, then 

/x(z)||Xx||2 = n{x)g(Xx,Xx) = g(P2Xx,Xx) = eg{PXx,PXx) = e\\PXx\\2 
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which implies that n(x)/s > 0. Moreover from (2.1)(vi) for all Z € TM one 
has \\JZ\\ < \\Z\\ and therefore 

\n{x)\\JXxtf < j / i (*) | |X x | | 2 = | |PX x | | 2 . 

Since decomposition of J X , by (2.2), is orthogonal, n(x) is bounded by 0 
and e. 

Now let ft,..., £r € TM = E® L. For each x £ M we may set 

D$ = Ker(P*\L-e\2(x)I)x, 

where A(a;) Ç [ 0 , 1 ] is such that £A2(x) is an eigenvalue of ( P 2 | L ) X - Since 
(P2 | l )X is symmetric and diagonalizable, there is some integer q such that 
£Aj(a;), . . . , e\q(x) are distinct eigenvalues of ( P 2 \ l ) x and Lx can be decom-
posed as the direct sum of the mutually orthogonal P-invariant eigenspaces, 
i , e . , Lx = D^®...®DX\ 

If e = — 1 and Aj(i) > 0, then D^ is even-dimensional. We note that 

Dl = Ker (F | L ) x = {Xx e Lx : \\XS\\ = | |PX, | |} , 

D°x = Ker (P | L ) x = {Xx G Lx : \\Xx\\ = | |FXx | |} . 

Here D\. is the maximal J-invariant, while LPX is the maximal anti-J-invariant 
subspace of Lx. 

Now, we introduce a notion analogous to generic and skew CR-subma-
nifolds of an almost Hermitian manifold defined in [22]. 

DEFINITION 4 . 1 . A submanifold M of an ¿-framed metric manifold M 
with all f j , . . . , f r € TM is said to be an almost semi-invariant submanifold 
of M, if there exist k functions Ai, . . . ,Ajt , definded on M with values on 
(0,1), such that 

(i) fA 2 (x ) , . . . , fA£(A;) are distinct eigenvalues of ( P 2 | L ) X at x € M with 

TXM = Dl © D°x © D^ © . . . © Dlk © Ex, 

(ii) the dimensions of DX,DX, D*1,..., Dx
k are independent of x £ M. 

If in addition each A,- is constant, then M is called an almost semi-
invariant* submanifold. If k = 0, then M is called semi-invariant submani-
fold. In fact, if k = 0 in Definition 4.1, then (i)—>(ii) and M becomes a semi-
invariant submanifold (see Proposition 5.3). If k = 0 and Dx = {0}, (resp. 
Dx = {0}), then M becomes an anti-invariant (resp. invariant) submanifold. 

Condition (ii) in Definition 1.4 enables us to define P-invariant mutually 
orthogonal distributions 
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A€{0 ,A 1 , . . . ,A f c , l> , 
xeM 

on M such that TM = Dl © D° © D*1 © ... © DXk 0 E. The differentia-
bility of these distributions follows from the fact that their dimensions are 
constant [19]. 

For X € TM we may write 

(4.1) X = UlX + U°X + Ux'X + ... + UXkX + va(X)ta, 

where U1, U°, Z7Al,... and UXk are orthogonal projection operators of TM 
on D1, D°, DXl,... and DXk, respectively. 

E X A M P L E 4.2. We consider the Euclidean space Si8+r and denote its 
points by x = (x*). Let (ej),j = 1 , . . . , 8 + r, be the natural basis defined by 
ej = d/dxK We put e2 = 1 and define vector fields by = eg+ a , a = 
1 , . . . , r; 1-forms rja by r]a = edxs+a, a = 1 , . . . , r; and a (1,1) tensor field J 
by 

Je\—ee 2, Je 2 = ei, Je3=ee8, «/eg = e 3, Je%+a = 0, a = 1 , . . . , r , 
J e 4 = £cosf(x)es — £sinf(x)e6, Je$ = cosi/(x)e4 + sini/(x)e7, 

Je6 = — sin f(x)e4 + cos v(x)er, Je7 = £ sin u(x)es + e cos u(x)ee, 

where v : ft8+r —• (—X/2,TT/2) is some function. Then it is easy to verify 
that »®+r possesses an ¿-framed metric structure (J,£cf>Va,g), where g is 
the canonical metric on 9f8 + r given by g(ei,ej) = 6{j; i, j = 1 , . . . , 8 + r. 

The submanifold 

8 5 + r = { ( x \ . . . , x8 , x 9 , . . . , x 8 + r ) € U8+r\x6, x7, x8 = 0} 

of §?8+r is an almost semi-invariant submanifold with 

D1 = Span{ei,e2}, D° = Span {«3}, 
Dx = Span{e4, e5}, E = Span{e 9 , . . . , eg+r}, 

where A(x) = cosi/(x) for x 6 3R5+r. 
From now an almost semi-invariant, almost semi-invariant* and semi-

invariant will be denoted by ASI, ASI* and SI, respectively, and we denote 
by M a submanifold of an ¿-framed metric manifold M such that f 1 , . . . , f r € 
TM unless otherwise stated. 

5. Some characterizations of almost semi-invariant 
submanifolds 

Like P2, it can be seen that the operators tF,Ft and f2 are symmetric 
and their eigenvalues are bounded by 0 and e. Let ¿A2(x), 0 < A(x) < 1, 
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be an eigenvalue of ( f 2 ) x at x £ M and let Dx denote the corresponding 
eigenspace D* = Ker(/ 2 - eX2(x)I)x. 

In particular, we note that 

Dl = Ker t x = {Nx € TXXM : \\NX\\ = ||/iVx||}, 

D°x = Ker fx = {Nx € TXXM : ||JVX|| = \\tNx\\}. 

For A / 1 we have FDX = D* and = D*. Equivalently, at x G M, 
XX (resp. NX) is an eigenvector of (P2\L)X (resp. (F 2 ) X ) corresponding 
to an eigenvalue £A2(x) iff FXX (resp. tNx) is an eigenvector of (f2)x 

(resp. (P 2 |L)X) corresponding to the same eigenvalue e\2(x). Consequently, 
Dim(Dx) = Dim(D$). Thus, for a submanifold M of M with . . . € 
TM the statements 

(1) TXM = Dl® Dx® Dx 1 © ... © Dxk © Ex, 
( 2 ) T^M = D\ © D°x © D^ © ... © 

hold equivalently. 
In view of the above discussion, we immediately have the following result. 

PROPOSITION 5 . 1 . M is an ASI-submanifold of M iff there are k func-
tions A , . . . , A* defined on M with values in ( 0 , 1 ) such that 

(1) cA 2 (x) , . . . ,eX2k(x) are distinct eigenvalues of (f2)x with TXM = 
J2i © Dl © D^ © . . . © 22*» atx G M, 

(2) the dimensions of D\, D°x, are independent of x G M. 

Let e(l - A2(x)),0 < A(x) < 1, be an eigenvalue of (tF\L)x (resp. (Ft)x) 
and Cx (resp. Cx) be denoted by 

CXA = Ker(iF|L - e(l - A 2(x))/) x (resp. £ * = Ker(Fi - e(\ - A2(x))/)X). 

Then Xx (resp. NX) is an eigenvector of (P2\L)X (resp. (f2)x) corresponding 
to an eigenvalue fA2(x) iff Xx (resp. Nx) is an eigenvector of (tF\i)x (resp. 
(Ft)x) corresponding to the eigenvalue e(l — A2(x)). Consequently, Dx = Cx 

and D x = and hence we have the following result. 

PROPOSITION 5 . 2 . M in an ASI-submanifold of M iff there are k func-
tions A i , . . . , A* defined on M with values in (0,1) such that 

(1) f ( l—Aj(x) ) , . . . ,£(1—X2k(x)) are distinct eigenvalues of(tF\L)x (resp. 
(Ft)x) with TXM = Cl © © CxAl © . . . © CXA* © Ex (resp. T^M = C}x © 
£2© © ...©£>) at x Ç. M, 

(2) the dimensions of Cj, Cj, CXA\ ..., (resp. Clx,C°,C$\ 
are independent of x £ M. 

Last two propositions give characterizations of ASI-submanifolds. Chara-
caterizations of SI-submanifolds are given as follows. 
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PROPOSITION 5.3. M is an Sl-submanifold of M iff one of the following 
equuivalent conditions holds: 

(I) TXM = Dl@ EPX® EX, X£M, (2) T / M = D\ © D°x, x £ M, 
(3) FP = 0, (4) fF = 0 , (5) tf = 0, (6) Pt = 0, 
(7) tFP = 0, (8) tfF = 0, (9) Ptf = 0, (10) P 3 = eP, 
( I I ) f2F = 0, (12) fFP = 0, (13) FP2 = 0, (14) FtF = eF, 
(15) Ftf = 0, (16) FPt = 0, (17) fFt = 0, (18) f3 = e f , 
(19) P2* = 0, (20) Ptf = 0, (21) t f = 0, (22) tFt = et. 

P r o o f . The statements (1), (2) are obviously equivalent and the equiva-
lence of the statements (3)-(22) can be easily verified. Now, we show equiva-
lence of (1) and (3). Since Ker(FP) , = Dl

x © D° © Ex, then (1)=>(3). Con-
versely, if (3) holds, then J{PXx) = P2Xx for Xx € TXM. Consequently, 
defining Dx = P(TXM), we get J ( D x ) C Dx. Since g(PXx,£a) = 0, Dx is 
orthogonal to Ex and therefore, in view of JXx = PXx for Xx € Dx, we 
get eXx = J2Xx = JP(Xx), i.e., Dx C J(DX). Thus J(DX) = P(DX) = Dx, 
which shows that Dx = D].. Now, let Dx denote the orthogonal comple-
ment to D\ © Ex in TXM. Then for Xx € D^ and Yx 6 TXM we have 
g(JXx,Yx) = eg(Xx,JYx) = sg(Xx,PYx) = 0 which yields = EPX. 
Hence (3) implies (1). Finally, if M is Sl-submanifold, then (1) obviously 
holds. Conversely, if (1) is true then (3) holds which is equivalent to (10), 
i.e., P 3 = eP and hence Dim(.D*) = Rank(P;r) is independent of x 6 M [29] 
and so is that of LPX. This completes the proof. 

6. The parallelism of certain operators 
The main purpose of this section is to prove Theorem 6.3 which in special 

case, when M is almost Hermitian manifold, implies Propositions 2.1 and 
2.2 of [20] and Theorem 4.3 of [22] as corollaries. 

THEOREM 6.1. J ^ M is a submanifold of M with € TM, then 
V P 2 = 0 iff the following conditions hold: 

(A) M is an ASI*-submanifold, 
(B) each of the distributions D1, LP, D A l , . . . , E is parallel and, 

consequently, M is locally the product of leaves of these distributions. 

P r o o f . Let V P 2 = 0. We fix x € M. For any Yx G Dx and any vector 
field X € TM, let P be the integral curve of X passing through x, and let 
Y be the parallel transport of Yx along P. Since V P 2 = 0, we get 

(6.1) V x ( P 2 y - e\2{x)Y) = P2VXY - e\2{x)VxY = 0, 

i.e., ( P 2 Y - e A2(X)Y) is parallel along P. 
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Since parallel transport along a curve is an isometry, from (6.1) we get: 

(i) since P2Y — e\2(x)Y = 0 at x, it is identically zero on F and hence 
on M, 

(ii) eigenvalues of P 2 are constant, 
(iii) Dim(D^) is independent of x, 

which proves (A). 
Now, if Y e Dx, then P2Y = e\2Y (A is constant). Operating by V x , 

we get P2 V X Y = £ A 2 V X Y which shows that Dx is parallel. Thus D1® 
DXl ©... © DXk is parallel and, consequently, Fis parallel which proves (B). 

Conversely, if (A) and (B) hold, then for X, Y G TM we have 

VxP2Y = VXP2(U1Y + U°Y + UXlY + . . . + UXkY + 7/a(r)ia) 

= VxeUxY + 0 + A \ U X ' Y + . . . + V ^ A \ U X k Y + 0 

= £ VXUXY + e\2VxUXiY + . . . + e\2
kVxUXkY = P2V XY. 

Hence VP 2 = 0. 

THEOREM 6.2 . If M is a submanifold of M with G TM, then 
V / 2 = 0 i f f the following conditions hold: 

( A ) M is an ASF-submanifold, 
( B ) ' each of the subbundles D1 ,D°,DX\ . . . ,DX" of TLM is parallel 

with respect to V 1 . 

P r o o f . Assume V / 2 = 0 and fix x € M. For any Nx e Dx and any 
vector field X G TM let N be the parallel transport of Nx in the normal 
bundle T±M along the integral curve of X passing through x € M, i.e., 

TV = 0. Since V / 2 = 0, we get 

(6.2) V£(/ 2 iV - e\2(x)N) = f V j ^ N - e\2(x)WxN = 0, 

i.e., f2N — e\2(x)N is parallel along the integral curve of X . 
Rest of the proof is similar to that of Theorem 6.1. 

THEOREM 6.3 . For a submanifold M of M with . . . ,FR € TM we have 

Vt = 0 —» VtF = 0 • {(A),(fl)} <—• VP2 = 0 V P = 0, 

I 

V F = 0 —• VFi = 0 <—• {(i4),(fi)'} • VF2 = 0 <— V F = 0. 

P r o o f . The relation (3.3)(ii) implies equivalence of Vf = 0 and V F = 0. 
The proof of equivalence of VtF = 0 and statements (A), (B) together is 
similar to that of Theorem 6.1. Next, V / 2 = 0 is equivalent to VFi = 0, in 
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view of (3.1)(vi). Lastly, taking account of Theorems 6.1 and 6.2, the proof 
is completed. 

7. Integrability conditions 
Throughout this section superscripts T and N in a term will denote its 

tangential and normal parts, respectively. 

PROPOSITION 7.1. For a submanifoldM ofM, with TM, we 
have 

(7.1) P[X,Y] = V X P Y - VYPX 
+AfxY - AfyX - ( (V* J)Y - (VyJ)X)T, 

(7.2) F[X, Y] = VjiFY -
+h(X, PY) - h(PX,Y) - ((VXJ)Y - (VyJ)X)N, 

(7.3) ([J, J](X, y ) ) T = [PX, PY] - P([X, PY] + [PX, Y])+ 
+ e(Ul + V° + UXl + ...+ Í/A*)[X,Y], X,Y G D1 © E, 

(7.4) ([J, J)(X,Y))n = -F([X, PY] + [PX, Y]), X,Y € D1 © E). 

The proof of (7.1) and (7.2) follows from (3.2)(i), (ii) and (2.4)(i), while 
using (2.1)(ii), (4.1) and (2.2), for X,Y e D1 © we get (7.3) and ( 7.4). 

THEOREM 7.2. The distrbution DXi © E is integrable i f f for X,Y G 
DXi © E the following conditions hold: 

( i ) P [ x , y ] 6 i ) \ 
(2) 
The proof follows from the equivalence of Z G DXi © E and (PZ G DXi 

and FZ G DXi). 
THEOREM 7.3. The distribution D1 ©D° ®E is integrable i f f for X,Y G 

one of the following conditions holds: 

(1) P[X,Y] G D1 , 
(2) F[X,Y] G D°, 
(3) FP[X,Y] = —fF[X,Y] = 0. 

The proof follows from equivalence of the following statements: PZ G D1, 
FZ G D°, Z G D1 © D° © E and FPZ = - f F Z = 0. 

THEOREM 7.4. E is integrable i f f [J, «/](&*, £/?) = 0. 

The proof follows from (7.3) and (7.4) in view of P = 0. 
The £-framed metric structure is said to be normal [26] if the Nijenhuis 

tensor [J,J] of J satisfies [J, J] = edr)a (8 Since normality of the structure 
implies [£a, = 0, from the above Theorem we have the following corollary. 
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COROLLARY 7.5 . If the e-framed metric structure is normal, then E is 
integrable. 

THEOREM 7 .6 . The distribution D°®E is integrable i f f for X,Y £ D°@E 
one of the following conditions holds: 

(1) AFXY - AfyX = ((VjrJ)y - (VyJ)X)T, 
( 2 ) [ P , P ] ( X , Y ) = 0 . 

P r o o f . Since D° © E = KerP , in view of (7.1), the condition (1) is 
equivalent to D° © E being integrable. Next, for X,Y G D° FFI E we get 
[P, P ] ( X , Y ) = P2[X,Y], and hence D° © E is integrable iff (2) holds. 

THEOREM 7.7 . The distribution D^QE is integrable iff for X,Y G Dl@E 
one of the following conditions holds: 

( 1 ) ( [ j , j ] ( x , r ) ) T = [ p , p ] ( x , y ) , 
( 2 ) h ( X , P Y ) - h ( P X , Y ) = ((VXJ)Y - ( V Y J ) X ) N , 

(3) (dF)(X,Y) = 0. 

P r o o f . Since Z € Dl®E\ffP2Z = eVlZ,\n view of (7.3), the condition 
(1) is necessary and sufficient for D1 © E to be integrable. Since D1 © E = 
KerP, in view of (7.2), the condition (2) holds iff D1 © E is integrable. 
Finally, for X,Y G D1 © E the relation (2.4)(vi) reduces to dF(X,Y) = 
F[y, X], and hence (3) holds iff Dl © E is integrable. 

As a consequence of Theorem 7.7 we have the following corollaries. 

COROLLARY 7.8 . If D1 © E is integrable, then for X,Y G D1 © E we 
have 

(1)([j,j](x,Y)r=o, 
(2 ) [P,P](X,Y)E DL ©£. 

COROLLARY 7.9 . If the e-framed metric structure is normal, then D1 © E 
is integrable iff for X,Y G D1 © E we have [J,J](X,Y) = [P,P](X,Y) = 
£dr,°(X,Y))Za. 

THEOREM 7.10 . If M is an Sl-submanifold ofM, then Dl@E is integrable 
iff for X,Y G D1 © E the following conditions hold: 

(1)([J,J)(X,Y))" = 0, 
(2) U°[P,P](X,Y) = 0, 
(3) U°[ta,tP} = 0. 

The proof is similar to that of Theorem 3.2 of [30]. 
The (J(2, e),g) structure is said to be integrable [24], if [J, J] = 0. 
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THEOREM 7.11. If M is an Sl-submanifold of a («/(2, e),g) manifold, 
then D1 is integrable iff for X, Y £ D1 one of the following conditions 
holds. 

(1 )[P,P](X,Y)eD\ 
(2) U°[P,P](X,Y) = 0, 
(3) F[P,P](X,Y) = 0. 

The proof is similar to that of Theorem 2.1 of [15]. 

8. CR-structure on almost semi-invariant submanifolds 
In [8], it was proved that a CR-submanifold of an Hermitian mani-

fold is a CR-manifold [11]. This was followed by analogous results for CR-
submanifolds of a normal almost contact metric manifold [14], for almost 
CR-submanifolds of an almost cosymplectic f-manifold [16] and for generic 
submanifolds (in the sense of Chen) of an Hermitian manifold [5, 20]. Here 
we prove the following theorem from which the results of [5], [14], [16] and 
[20] mentioned above can be obtained as special cases. 

THEOREM 8.1. If M is an ASI-submanifold of a normal framed met-
ric manifold M, with non-trivial invariant distribution, then M is a CR-
manifold. 

P r o o f . Let M be an ASI-submanifold of a normal framed metric mani-
fold M [33]. Then for X,Y G D1 we get P2X = -X and, in view of [J,J] 
= — DR/0 ® (7.3) and (7.4), we get the relation 

0 = [J,J](X,Y) + dV
a(X,Y)£„ = [P,P](X,Y) - F([X,PY) + [PX,Y]) 

from which it follows that [PX, PY] - [X, Y] = P([PX, Y] + [X, PF]) € D1. 
Hence, in view of Theorem 1.1 from [5] (pp. 128-129), ( D 1 , P ) is a CR-
structure on M. 
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