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ALMOST SEMI-INVARIANT SUBMANIFOLDS
OF AN ¢-FRAMED METRIC MANIFOLD

1. Introduction

Study of CR-submanifolds, as a generalization of invariant and anti-
invariant submanifolds, of a Kaehler manifold was initiated by Bejancu
[5] and was followed by several geometers (see [5, 34] and references cited
therein). This concept was further generalized by Chen [10] who introduced
generic submanifolds. Later, several authors [1-6, 8, 12-18, 21, 25, 27, 30,
31, 34] defined and studied semi-invariant and almost semi-invariant sub-
manifolds, analogous to these CR and or generic submanifolds, of mani-
folds possessing structures different from Kaehler viz. almost contact [7],
framed metric [33] or almost r-contact [32], almost paracontact [23], almost
r-paracontact [9], and almost product Riemannian structures [33].

Recently generic submanifolds of a Kaehler manifold were introduced by
Ronsse [22] which imply the generic submanifold given by Chen. Motivated
by this, in the present paper we define and study almost semi-invariant
submanifolds (section 4) of a manifold with an ¢-framed metric structure
[28] which reduces to all aforementioned structures in special cases.

The paper is organized as follows. Section 2 is devoted to prelimin-
aries. In section 3 some basic results are given. The definition of an al-
most semi-invariant submanifold of an ¢-framed metric manifold along with
an example is given in section 4. In section 5 we establish some necessary
and sufficient conditions for a submanifold to be an almost semi-invariant
submanifold. Later in this section, an interesting set of twenty two neces-
sary and sufficient conditions for a submanifold to be semi-invariant have
been obtained. Section 6 deals with parallelism of certain operators arising
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naturally in our study. Integrability conditions for certain natural distribu-
tions on almost semi-invariant and semi-invariant submanifolds have been
discussed in section 7. In the last section it has been shown that an al-
most semi-invariant submanifold, with non-trivial invariant distribution of
a normal framed metric manifold [33], is a CR-manifold [11].

2. Preliminaries

Let M be an m-dimensional framed metric (J(3,6),9) manifold (for
brevity e-framed metric manifold) [28] with a framed metric (J(3,¢), g) struc-
ture (for brevity e-framed metric structure) of rank m — r, r < m; ie.,
€2 = 1;J #£0, I (I is the identity operator) is a tensor field of type (1,1)
with Rank(J) = m — r; &,...,§, are vector fields; n',...,n" are 1-forms
and ¢ is an associated Riemannian metric such that

(i) P =¢J,

(it) J? = (I - n* ® &),
(iii) J(éa) =0,

(iv) o J =0,

(v) n°(és) = 63,

(Vi) g(JX,JY) = g(X,Y) = Y n*(X)n*(Y),

a=1

(2.1)

(vii) 9(X,JY) = eg(JX,Y),
(viii) g(a, X) = n%(X),
\ (ix) g((vXJ)Yv Z) = Eg(Y’ (ﬁXJ)Z)a

for all X,Y,Z € TM, where a,8 € {1,...,7} and V is the Riemannian
connection on M.

This structure (resp. manifold) is a very general structure (resp. mani-
fold) which in special cases reduces to several known structures (resp. mani-
folds) given below which are widely studied in recent past.

Structure/Manifold r £ Reference
framed metric ~1 [33]
almost r-contact metric -1 [32]
almost contact metric 1 -1 (7]
almost r-paracontact metric 1 (9]
almost paracontact metric 1 1 [23]
(J(2:¢), 8) 0 [24]
almost Hermitian 0 -1 [33]
almost product Riemannian 0 1 [33]
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Let M be a submanifold of a Riemannian manifold M with a Riemannian
metric g. Then Gauss and Wiengarten formulas are given, respectively, by

VxY =VxY +h(X,Y) and VxN = -AxyX + V3N,

forall X,Y € TM and N € T+ M, where V,V and V+ are the Riemannian,
induced Riemannian and induced normal connections in M, M and the
normal bundle T+ M of M, respectively, and h is the second fundamental
form related to A by g(h(X,Y),N) = g(AnX,Y). Moreover, let J be a (1,1)
tensor field on M. For X,Y € TM and N € T+ M we put

(2.2) JX=PX+FX, PXeTM, FXe T*M,
(2.3) JN=tN+fN, tNeTM, fNeT M,

( (i) (VxF)Y = V{FY — FVyY,
(il) (Vxt)N = VxtN —tVxN,
(iii) (Vx )N = VxfN - fVxN,
(iv) (VxtF)Y = VxtFY - tFVyY,
(v) (VxFt)N = Vx FtN — FtV%N,
| (vi) (dF)(X,Y) = VxFY — V{FX - F[X,Y).

(2.4)

—

3. Some basic results
We first state the following two lemmas, whose proofs are straightforward
and hence omitted.

LEMMA 3.1. Let M be a submanifold of an ¢-framed metric manifold M
such that é, e TM,a=1,...,7r. Then
[ (i) P(§a) = 0= F(a),

(ii) n®*o P=0=17n%0F,

(iii) e(I — n* ® é4) — P* = tF,

(iv) FP+ fF =0,

(v) tf + Pt =0,

(vi) el — f* = Ft,

(vii) g(P*X,Y) = eg(PX, PY) = g(X, P’Y),
(viii) g(tFX,Y) = eg(FX,FY) = g(X,tFY),
(ix) g(FtN,V) = eg(tN,tV) = g(N, FtV),

| (%) 9(/*N,V) = eg(fN, fV) = (N, f*V).

(3.1) .
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LEMMA 3.2. For a sll_bmanifold M of a Riemannian manifold M with a
(1,1) tensor field J on M, we have

(i) (VxJ)Y = ((VxP)Y — Apy X —th(X,Y))+

+ ((VxF)Y + h(X, PY) - fh(X,Y)),
(i) (VxJ)N = (Vxt)N — AynX + PANX)+

+ ((fo)N +h(X,tN) + FANX).

(3.2)

Moreover, if M possesses an ¢-framed metric structure, then
(i) 9((Vx P)Y, Z) = eg(Y,(Vx P)Z),
(33) (“) g((VXt)Na Y) = Eg(N$(VXF)Y),
(iii) g((Vx SN, V) = eg(N,(Vx /)V).
Now let &,...,6- € TM,and let TM = E® L, where E denotes the dis-

tribution in M spanned by &;,...,£, and L is the complementary orthogonal
distribution to F in M. Then the Lemma 3.1 leads to the following result.

PRroOPOSITION 3.3. If M is a submanifold of M such that &,,...,& € TM,
then

(i) Ker P = Ker P® = Ker(tF — ¢(I — 1° ® £4)),
(ii) Ker F = KertF = Ker(P* — e(I — 1° ® £4)),
(iii) Kert = Ker Ft = Ker(f? — eI,

(iv) Ker f = Ker f? = Ker(Ft — ¢I).

(3.4)

Consequently, on L

{ (i) Ker P|p = Ker P?|; = Ker(tF|, — €I),

3.5
(3:5) (ii) Ker F|p = KertF|, = Ker(P?|, — I).

Proof. (3.4) follows from (3.1) (vii)~(x) and (3.1)(iii), (vi). Since n*(X)
= 0 for X € L, the relations (3.5) are implied by (3.4)(i), (ii).

4. Almost semi-invariant submanifolds

Let M be a submanifold of an ¢-framed metric manifold M. Then from
(3.1)(vii) it follows that (P?), is symmetric on T; M and therefore its eigen-
values are real and it is diagonalizable. If X, € T, M is an eigenvector
corresponding to an eigenvalue pu(z) of (P?),, then

.“'(:"')”Xa:“2 = u(z)g9(Xz, Xz) = 9(P2Xz,Xz) =eg(PX;,PX;) = €||PX::”2
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which implies that u(z)/e > 0. Moreover from (2.1)(vi) for all Z € TM one
has ||JZ|| < ||Z|| and therefore

1 1
“H@IXe* < —p@IIXa|l” = | PX]".

Since decomposition of JX, by (2.2), is orthogonal, u(z) is bounded by 0
and €.
Now let &,...,6& € TM = E @ L. For each z € M we may set

D) = Ker(P?| — e)d¥(2)]),,

where A(z) € [0,1] is such that £A?(z) is an eigenvalue of (P?|L).. Since
(P?|L), is symmetric and diagonalizable, there is some integer q such that
eMl(z),...,eM(z) are distinct eigenvalues of (P?|L), and L, can be decom-
posed as the direct sum of the mutually orthogonal P-invariant eigenspaces,
ie,L;=DM@&...0 D.

If ¢ = —1 and X;(z) > 0, then D)’ is even-dimensional. We note that

D2 = Ker(Fl1). = {X. € L : | Xa]| = [ PXc]l},
Dg. = Kel'(PIL)z = {X: € Lz : ”XIH = ”FXz“}'

Here D! is the maximal J-invariant, while [P is the maximal anti-J-invariant
subspace of L.

Now, we introduce a notion analogous to generic and skew CR-subma-
nifolds of an almost Hermitian manifold defined in [22].

DEFINITION 4.1. A submanifold M of an e-framed metric manifold M
with all &;,...,& € TM is said to be an almost semi-invariant submanifold
of M, if there exist k functions Ay,..., A, definded on M with values on
(0,1), such that

(i) eMd(z),...,eA%(z) are distinct eigenvalues of (P?|L), at z € M with

T.M=D.®Dl&D)®...0 D} E,,
(ii) the dimensions of D}, D2, D)1,..., D)+ are independent of z € M.

If in addition each A; is constant, then M is called an almost semi-
invariant* submanifold. If k = 0, then M is called semi-invariant submani-
fold. In fact, if ¥ = 0 in Definition 4.1, then (i)—(ii) and M becomes a semi-
invariant submanifold (see Proposition 5.3). If ¥ = 0 and D! = {0}, (resp.
D? = {0}), then M becomes an anti-invariant (resp. invariant) submanifold.

Condition (ii) in Definition 1.4 enables us to define P-invariant mutually
orthogonal distributions
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D* = U Di, /\G{O,Al,...,/\k,l},
zeEM
on M such that TM = D' @ D°@® DM @...® D* @ E. The differentia-
bility of these distributions follows from the fact that their dimensions are

constant [19].
For X € TM we may write

(4.1) X=UX4+UX+UMX+... 4 U*X + 9°(X)a,

where U1, U% U™,... and U™ are orthogonal projection operators of TM
on D!, D% D™, ... and D**, respectively.

EXAMPLE 4.2. We consider the Euclidean space $8+7 and denote its
points by z = (z*). Let (e;),j = 1,...,8+r, be the natural basis defined by
e; = 8/9z%. We put ¢ = 1 and define vector fields £, by &, = egyq,a =
1,...,r; 1-forms n* by * = edz®*+*,a = 1,...,r; and a (1,1) tensor field J
by
Jey =cep, Jep =€, Jez=ceg, Jeg=e3, Jegro=0,a=1,...,n

Jey = ccosv(z)es — esinv(z)eg, Jes = cosv(z)eq + sinv(z)er,

Jeg = —sinv(z)ey + cosv(z)er, Jer =€ sinv(z)es + € cos v(z)es,
where v : 84" — (-7 /2,7/2) is some function. Then it is easy to verify
that R3+" possesses an e-framed metric structure (J,£,,7%,¢), where g is

the canonical metric on ®8+7 given by g(e;,e;) =655 4, j=1,...,8+r.
The submanifold

R4+ = {(21,...,28,2%,...,2%%") e R8H7|28,27 28 = 0}
of 817 is an almost semi-invariant submanifold with

D! = Span{e;,e;}, D° = Span{es},
D> = Span{eq,e5}, E = Span{eq,...,es4r},

where A(z) = cosv(z) for z € R°1".

From now an almost semi-invariant, almost semi-invariant* and semi-
invariant will be denoted by ASI, ASI* and SI, respectively, and we denote
by M a submanifold of an e-framed metric manifold M such that &;,...,§, €
TM unless otherwise stated.

5. Some characterizations of almost semi-invariant

submanifolds
Like P2, it can be seen that the operators tF, Ft and f* are symmetric
and their eigenvalues are bounded by 0 and . Let A%(z), 0 < A(z) < 1,
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be an eigenvalue of (f?); at z € M and let D} denote the corresponding
eigenspace D) = Ker(f? — eA?(z)I),.
In particular, we note that

Dl =Kert, = {N; € T} M :||N|| = || f NI},
D% =Kerf, = {N, € TI M : ||N,|| = ||tN.(]}-

For A # 1 we have FD} = D) and tD} = D). Equivalently, at z € M,
X (resp. N.) is an eigenvector of (P?|L), (resp. (f?):) corresponding
to an eigenvalue £A?(z) iff FX, (resp. tN;) is an eigenvector of (f%),
(resp. (P?|.):) corresponding to the same eigenvalue ¢A?(z). Consequently,
Dim(D?) = Dim(D}). Thus, for a submanifold M of M with &j,...,&, €
TM the statements

(VT-M=D.oD’®D)o®...0 DM & E,,
(2)TiM=D.:oDi®oD)®...0 D}

hold equivalently.
In view of the above discussion, we immediately have the following result.

PROPOSITION 5.1. M is an ASI-submanifold of M iff there are k func-
tions A,..., \; defined on M with values in (0,1) such that

(1) eX¥(z),...,er%(z) are distinct eigenvalues of (f?), with TP M =
DloD'®D)@...dD) atze M,
(2) the dimensions of DL, D%, D)1,..., D)* are independent of z € M.

Let £(1 — A*(z)),0 < A(z) < 1, be an eigenvalue of (tF]|.), (resp. (Ft),)
and C) (resp. C2) be denoted by

C) = Ker(tF|p —e(1 = A (z))I); (resp. C> = Ker(Ft —e(1 - A2(2))]).).

Then X, (resp. N;) is an eigenvector of ( P?|L). (resp. (f?);) corresponding
to an eigenvalue eA*(z) iff X, (resp. N.) is an eigenvector of (tF|.). (resp.
(Ft).) corresponding to the eigenvalue (1 —A¥(z)). Consequently, D} = C}
and D) = C2, and hence we have the following result.

PROPOSITION 5.2. M in an ASI-submanifold of M iff there are k func-
tions Ay, ..., Ax defined on M with values in (0,1) such that

(1) e(1-2}(z)),-..,e(1-2%(2)) are distinct eigenvalues of (tF|L) (resp.
(Ft):) with TM =Clo CO9CHD...0 CHDE, (resp. TAM =Cl o
ClBCr®...0CH)atz e M,

(2) the dimensions of C1,C2, CM,...,CM (resp. C1,C%,C),...,CM)
are independent of z € M.

Last two propositions give characterizations of ASI-submanifolds. Chara-
caterizations of SI-submanifolds are given as follows.



420 M. M. Tripathi, K. D. Singh

PROPOSITION 5.3. M is an SI-submanifold of M iff one of the following
equuivalent conditions holds:

()T:M=DLo D°® E,, ze€ M, (2)TiM=Dl® D! z¢c M,
(3) FP =0, (4) fF=0, (5)tf =0, (6) Pt =0,
(7)tFP =0, (8) tfF =0, (9) Ptf=0, (10) PP =¢P,
(11) f2°F =0, (12) fFP=0, (13) FP*=0, (14) FtF =¢F,
(15) Ftf =0, (16) FPt =0, (17) fFt=0, (18) f3 = ¢f,
(19) Pt =0, (20) Ptf =0, (21)tf2 =0, (22)tFt=cet.

Proof. The statements (1), (2) are obviously equivalent and the equiva-
lence of the statements (3)—(22) can be easily verified. Now, we show equiva-
lence of (1) and (3). Since Ker(FP), = D} @ DS @ E,, then (1)=(3). Con-
versely, if (3) holds, then J(PX;) = P?*X, for X, € T:M. Consequently,
defining D, = P(T; M), we get J(D;) C D,. Since g(PX;,€,) = 0, D, is
orthogonal to E; and therefore, in view of JX; = PX; for X, € D, we
get eX, = J2X, = JP(X,), i.e, Dy C J(D;). Thus J(D;) = P(D,) = D,
which shows that D, = D!. Now, let DL denote the orthogonal comple-
ment to D) @ E, in T:M. Then for X, € D} and Y, € T:M we have
9(JX;,Y;) = e9(X;,JY;) = e9(Xy, PY;) = 0 which yields DY = IP.
Hence (3) implies (1). Finally, if M is SI-submanifold, then (1) obviously
holds. Conversely, if (1) is true then (3) holds which is equivalent to (10),
i.e., P? = ¢P and hence Dim(D}) = Rank(P;) is independent of z € M [29]
and so is that of D?. This completes the proof.

6. The parallelism of certain operators

The main purpose of this section is to prove Theorem 6.3 which in special
case, when M is almost Hermitian manifold, implies Propositions 2.1 and
2.2 of [20] and Theorem 4.3 of [22] as corollaries.

THEOREM 6.1. If M is a submanifold of M with &,,...,& € TM, then
V P? = 0 iff the following conditions hold:

(A) M is an AST*-submanifold,
(B) each of the distributions D', D°, D*1,..., D™ E is parallel and,
consequently, M is locally the product of leaves of these distributions.

Proof. Let VP2 = 0. We fix z € M. For any Y, € D) and any vector
field X € TM, let I" be the integral curve of X passing through z, and let
Y be the parallel transport of Y, along I'. Since VP? = 0, we get

(6.1) Vx(PYY - eXi(2)Y) = PPVxY - ed¥(z)VxY =0,
i.e., (P?Y — ¢ M¥(z)Y) is parallel along I.
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Since parallel transport along a curve is an isometry, from (6.1) we get:

(i) since P?Y — eA%(z)Y = 0 at z, it is identically zero on I and hence
on M,

(ii) eigenvalues of P? are constant,

(iii) Dim(D}) is independent of z,
which proves (A).

Now, if Y € D*, then P?Y = ¢A?Y () is constant). Operating by Vi,
we get P2V xY = ¢ AV xY which shows that D* is parallel. Thus D' D°@
DM @...@ D™ is parallel and, consequently, E is parallel which proves (B).

Conversely, if (A) and (B) hold, then for X,Y € TM we have

VxPYY = Vx PX(UY + UY 4+ UMY 4 ...+ UMY + 92(Y)Es)
= VxeU'Y + 0+ Vxe X2UNMY +...4+ Vxe MAUMY 40
=¢ VxUY + X}V UMY + ...+ eXlVx UMY = P?U4Y.

Hence VP2 = 0.

THEOREM 6.2. If M is a submanifold of M with &;...,&. € TM, then
Vf? = 0 iff the following conditions hold:

(A) M is an ASI*-submanifold,
(B)' each of the subbundles D', D°, D*1,...,D* of T*M is parallel
with respect to VL.

Proof. Assume Vf% = 0 and fix z € M. For any N, € D} and any
vector field X € TM let N be the parallel transport of N, in the normal
bundle 7+ M along the integral curve of X passing through =z € M, i.e.,
V%N = 0. Since Vf% = 0, we get
(6.2) V%(fPN —eX¥(z)N) = fPVxN — A} (z)VEN =0,

i.e., fAN —eA?(z)N is parallel along the integral curve of X.

Rest of the proof is similar to that of Theorem 6.1.

THEOREM 6.3. For a submanifold M of M with &,,...,€, € TM we have
Vi=0 — VitF=0 «— {(A),(B)} «— VP?=0 «— VP=0,
!
VF=0 — VFt=0 «— {(4),(B)} > VF!=0 «— VF=0.

Proof. The relation (3.3)(ii) implies equivalence of V¢t = 0 and VF = 0.
The proof of equivalence of VtF = 0 and statements (A), (B) together is
similar to that of Theorem 6.1. Next, V f2 = 0 is equivalent to VFt = 0, in
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view of (3.1)(vi). Lastly, taking account of Theorems 6.1 and 6.2, the proof
is completed.

7. Integrability conditions
Throughout this section superscripts T and N in a term will denote its
tangential and normal parts, respectively.

PRrorosITION 7.1. For a submanifold M of M, with &,,...,& € TM, we
have
(71) P[X,Y]=VxPY -VyPX
+ApxY — Ary X = (VxJ)Y = (Vy)X)T,
(7.2) F[X,Y]=V%FY - Vs FX+
+h(X, PY) - h(PX,Y) - (Vx))Y — (VyJ)X)N,
(7‘3) ([J’J](X’Y))T = [PX’ PY] - P([XaPY]+ [PX,Y])+
+e(U+U°+ UM +... 4 UM)X,Y], X,YeD'QE,
(74) ([,JI(X, )N = -F([X, PY] +[PX,Y]), X,Y € D!@®E).
The proof of (7.1) and (7.2) follows from (3.2)(i), (ii) and (2.4)(i), while
using (2.1)(ii), (4.1) and (2.2), for X,Y € D! @ E, we get (7.3) and ( 7.4).
THEOREM 7.2. The distrbution D @ E is integrable iff for X,Y ¢
D* @ E the following conditions hold:
(1) P[X,Y] € D%,
(2) FIX,Y] € DN.
The proof follows from the equivalence of Z € D* @ F and (PZ € D
and FZ € D%).
THEOREM 7.3. The distribution D' @ D° @ E is integrable iff for X,Y €
DY@ D° @ FE one of the following conditions holds:
(1) P[X,Y] € D1,
(2) FIX,Y] e D°,
(3) FP[X,Y] = —-fF[X,Y]=0.
The proof follows from equivalence of the following statements: PZ € D1,
FZeD’ZecD'®D°@®FE and FPZ =—-fFZ = 0.
THEOREM 7.4. E is integrable iff [J, J](£a,€p) = 0.

The proof follows from (7.3) and (7.4) in view of P §{, = 0.

The e-framed metric structure is said to be normal [26] if the Nijenhuis
tensor [J,J] of J satisfies [J, J] = edn® ® £4. Since normality of the structure
implies [£4, €] = 0, from the above Theorem we have the following corollary.
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COROLLARY 7.5. If the e-framed metric structure is normal, then E ts
integrable.

THEOREM 7.6. The distribution DY@ E is integrable iff for X,Y € D°@QF
one of the following conditions holds:

(1) ApxY — Apy X = (VxJ)Y = (Vy)X)T,

(2) [P, PI(X,Y) = 0.

Proof. Since D° @ E = Ker P , in view of (7.1), the condition (1) is
equivalent to D® @ E being integrable. Next, for X,Y € D° @ E we get
[P, P)(X,Y) = P?[X,Y], and hence D° @ E is integrable iff (2) holds.

THEOREM 7.7. The distribution DY@ E is integrable iff for X,Y € D'®FE
one of the following conditions holds:

1) ((LIXY)T =[P PIX,Y),
(2) H(X, PY) = h(PX,Y) = (VxJ)Y - (Vy )XV,
(3) (dF)(X,Y) = 0.

Proof. Since Z € D'QEiff P2Z = ¢U'Z, in view of (7.3), the condition
(1) is necessary and sufficient for D! @ E to be integrable. Since D! @ E =
Ker F, in view of (7.2), the condition (2) holds iff D! @ E is integrable.
Finally, for X,Y € D! @ E the relation (2.4)(vi) reduces to dF(X,Y) =
F[Y, X], and hence (3) holds iff D! @ E is integrable.

As a consequence of Theorem 7.7 we have the following corollaries.

COROLLARY 7.8. If D* @ E is integrable, then for X,Y € D' @ E we
have

(1) (L IUX, Y)Y = 0,

(2) [P, P}(X,Y)e D' E.

COROLLARY 7.9. If the c-framed metric structure is normal, then D'QFE
is integrable iff for XY € D! @ E we have [J,J)(X,Y) = [P, P)(X,Y) =
edn®(X,Y))a.

THEOREM 7.10. If M is an SI-submanifold of M, then D'@E is integrable
iff for X,Y € D! @ E the following conditions hold:

(1) (I, JI(X, Y)Y =0,

(2) U°[P, P)(X,Y) =0,

(3) U°€a, &s] = 0.

The proof is similar to that of Theorem 3.2 of [30].

The (J(2, €),g) structure is said to be integrable [24], if [J,J] = 0.
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THEOREM 7.11. If M is an SI-submanifold of a (J(2, €),g) manifold,
then D! is integrable iff for X,Y € D! one of the following conditions
holds.

(1) [P, P(X,Y) € D,
(2) U°[P, PI(X,Y) = 0,
(3) F(P, PY(X,Y) =0.

The proof is similar to that of Theorem 2.1 of [15].

8. CR-structure on almost semi-invariant submanifolds

In i8], it was proved that a CR-submanifold of an Hermitian mani-
fold is a CR-manifold [11]. This was followed by analogous results for CR-
submanifolds of a normal almost contact metric manifold [14], for almost
CR-submanifolds of an almost cosymplectic f-manifold [16] and for generic
submanifolds (in the sense of Chen) of an Hermitian manifold [5, 20). Here
we prove the following theorem from which the results of [5], [14], [16] and
[20] mentioned above can be obtained as special cases.

THEOREM 8.1. If M is an ASI-submanifold of a normal framed met-
ric manifold M, with non-trivial invariant distribution, then M is a CR-
manifold.

P TC oof., Let M be an ASI-submanifold of a normal framed metric mani-
fold M [33]. Then for X,Y € D! we get P2X = —X and, in view of [J,]]
= —dn® ® &a, (7.3) and (7.4), we get the relation

0= [J,J)(X,Y) +dn*(X,Y){s = [P, P)(X,Y) - F([X,PY] + [PX,Y])

from which it follows that [PX, PY]—-[X,Y] = P({[PX,Y]+[X, PY]) € D*.
Hence, in view of Theorem 1.1 from [5] (pp. 128-129), (D', P) is a CR-
structure on M.
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