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FURTHER RESULTS ON IDEALS

Among other results we prove that a x-extension of a compatible ideal
in a topological space is compatible for any infinite cardinal number . The
case K = wp is known as the generalized Banach category theorem.

1. Introduction: A short survey on compatible ideals

Ideals in topological spaces have been considered since 1930. This topic
has won its importance by the paper of Vaidyanathaswamy [V] in 1945.
A nonempty collection of subsets of X with heredity and finite additivity
conditions is called as an ideal or a dual filter on X. Namely a nonempty
family T C P(X) is called an ideal if and only if i) A € Z gives P(4) C T
and ii) A, B € T gives AUB € 1. {¢}, P(X), the family of all finite subsets,
the family of all countable subsets Z. are ideals. If we additionally have
a topology 7 defined on X, then the following ideals can also be defined
among others: The families of all nowhere dense subset Z, , all meager
subsets Z,,, all scattered subsets Z, and all closed-discrete subsets Z.4. In
this introduction we give a short and independent survey on some important
concepts and results of this topic, which will be used in this paper. cl(A)
(resp. int(A)) denotes the closure (resp. interior) of A in (X,7). k* denotes
the immediate succesesor of the infinite cardinal number «.

The local function [V] of an ideal Z with respect to 7 is defined on P(X)
as the closed set

A'(r,I)=X-U{GeT:GNAeTI} (ACX)
or equivalently

A'(nI)={z € X :YVG, € 1,,G:NAZTI}, wherer, = {Ger:z¢€G}.

AMS Classification number: 54D30.



398 N. Ergun, T. Noiri

This closed set is written simply by A*(Z) or even by A* if there is no

possibility of confusion. A* C cl(A) is evident. It is quite easy to see that"
A*(13,I3) C A*(71,77) whenever 1 C 7 and Z; C Z,. It is also not difficult

to prove that local function operator * has the following basic properties:

(AUB)*=A*UB*, I*=¢,(G-1)NnA*C ((G-T)N A)* and A** C A*

for any A, BC X, G € 7 and I € 7. Thus, as one can easily observe that

the family

™I ={ACX:An(X - A)* = ¢}

is a topology on X finer than 7. A subset A is closed in (X, 7*(Z)) if and
only if A*— A = (X — A)N A* = ¢ if and only if A* C A. Hence the closure
and the interior operators in (X, 7*(Z)) satisfy easily

7"-cl(A) = AU A* and 7*-int(4) = A — (X — A)".

Furthermore if G, € 7 and I, € 7 for each index a of an arbitrary index
set A we have U{G, — I, : a € A} € 7*(T), since

U Ga-L)n(X = |J(Ga=1a)") € |J (Ca=L)N(X = (Ga=L))") =

a€A a€A a€A
= J(Ga-L)n(X-Ga)") = ¢.
acA

Conversely, for any A € 7*(Z) and for each z € A there exists G, € T, such
that I, =G, - A=G,N(X - A)eZ and thus A=U{ANG;:z € A} =
U{G; I, : z € A}. Therefore, the topology 7*(Z) is nothing but the unique
topology generated by base family (1,7} = {G—-1:G € 7,I € T}. It is now
easy to observe that A*(7,Z) = A*(7*(Z),T). Furthermore 7*(Z;) C 7*(Z3)
holds if 7; C Z,. An ideal 7 is called compatible with T or compatible in
(X,7) and T ~ 7 is written [N] if the condition AN A*(Z) = ¢ gives A € T;
that means if there exists a G, € 7, for each z € A such that G, NA €T
then A € T necesssarily holds. Notice that if G N A € 7 for each member
G of an open family G and 7 ~ 7 then U{GN A : G € G} € Z. The family
B(7,T) is in fact closed under the arbitrary unions and thus 7*(Z) = 8(r,7)
ifZ~t1.For,if Go€Tand I, €T (a€ A)andZ ~ 7 then U{Gy — I4:
a € A} = Gy — Iy, where Gy = U{G,:a € A} and Iy = Go —U{Gy — I, :
a € A} € I.In fact for each z € Iy we have an a, € A such that z € G, and
t€Ga, NIy =Go, —U{Go—In:a €A} C Go, —(Go, - I,,)C I, €1.
Since

A-A*"=An(X-A")=U{ANG:Ger,ANG eI}

always holds, one can easily derive that A— A* € Z forany AC X ifZT ~ 7.
Conversely if A — A* € 7 then the condition A N A* € T evidently yields
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A=(A-A*)U(AN A*) € . Thus we get the important equivalency
I~rtifandonlyif VAC X,A-A"€1T.

It is not dificult to prove that A*({¢}) = cl(A), A*(P(X)) = ¢and A*(Z,) =
cl(int(cl(A))). We have already observed that A* = A*(Z) is closed in (X, 7)
for any ideal Z and subset A C X. If Z, C 7 holds particularly , then a
subset A satisfying A = A* is actually regularly closed since cl(int(cl(A4))) C
c(A) = A = A*(T) C A*(Z,) = cl(int(cl(A))). One additionally observes
that if Z ~ 7 then A* = A™** holds for each A C X, since A* — A** C
(A_A-u)t - (A_(A-_(At_Au-)))* - (A_At)tu(An(A-__A-t))- - ¢
by the compatibility of Z. Therefore if Z, C 7 and 7 ~ 7 then A*(Z) is a
regularly closed subset for each A C X. The most typical compatible ideals
in (X, ) are {¢} and Z,. The compatibility of Z,, derives the well known
equality

d(int(cl(U{AN G : G € G}))) = l(U{int(c1(ANG)): G € G})

which holds for any A C X and any open family G in (X, 7). The family of
all meager sets Z,, is also compatible and this interesting fact is known as
Banach Category Theorem.

If int(I) = ¢ for each I € 7 or equivalently 7 NZ = {¢} then as one can
easily observe that 7*-cl(U) = cl(U) holds for each U € 7*(Z) and hence
7*-int(K') = int(K) for each closed K in (X, 7*(Z)). Thus r*-int(r*-cl(A4)) =
int(7*-cl(A)) C int(cl(A)) and Z,, C Z,(7*(Z)) are obtained whenever rNZ =
{#}. But in general as one can easily see we have the interesting inclusion

TUZ,(*(T)UZ, C{AC X :int(4*(T)) = ¢} = 1.

Since int(A U B)*(Z) = int(A*(Z) U int(B*(Z))), one easily observes that
Z is an ideal. Furthermore int(A*(Z)) = int(4*(Z)) holds for each A C X.
T C 7 gives int(A*(T)) C int(A*(Z)); if z € int(A*(T)) there exists W, € 7,
with W, C A*(Z) and thus G, NW, C int(G, N A*(T)) C int(G, N A)*(T)
holds for each G, € 7, proving G, NA ¢ I ie. z € A‘(f). Furthermore
7 is compatible with 7 since AN A"(f) = ¢ gives A € T by int(A*(Z)) =
int(A*(T)) N A*(T) C (int(A*(T)) N A)*(T) C ¢" = ¢. We additionally have
A%(T) = d(int(A*(T))) = cl(int(A*(Z))) since Z, C Z and T ~ 7. Therefore,
each ideal Z defined on (X, ) is contained in a compatible ideal 7. The ideal
7 is called as compatible etension of T [JH]. We close this section with two
simple but interesting equivalencies. It is easy to see first Z ~ 7 if and only
ifZ ~7*Z). NowifZ =7 then I, C T and T ~ 7 are evident. If conversely
I, CI, I ~7and A €7 then A*(Z,) € I, C I, A— A*(Z) € T and
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consequently A € Z. Thus
T =7ifand onlyifZ,CZTand I~ .

Therefore Z,, = fn and I,, = fm are obtained. The results of this introduc-
tion will be used in the sequel without explicit mentioning.

2. Results on compatible ideals
The following result improves slightly Corollary 3.6 of [JH].

PRrOPOSITION 1. Z = Z,,(7*(Z)) if and only if i)T ~ 7, i) TNT = {¢}
and i) I, C 1.

Proof. The first and third conditions give easily Z,(r*(Z)) € T = T.
Now let A € T = Z. Then by the second condition we first have int(A4) =
and thus 7*-int(7*-cl(A4)) = int(r*-cl(4)) = int(int(A) U A*(Z)) = ¢ and
so T C I,(t*(T)). Conversely let T = Z,(7*(Z)) ~ 7*(Z) and thus T ~ 7.
Furthermore Z N7 C Z,(7*(Z)) N 7*(Z) = {#} and by the last result we
finally have Z,, C Z,(t*(Z)) =T

CoRroLLARY 1 [JH]. Z = Z,(r*(Z)) if and only if TN T = {¢}. In par-
ticularly T, = I,,(7*(Z,,)). Furthermore in Baire spaces I,, = I,(7*(Z)).

DEFrINITION 1 [JH]. The Z-open sets is the family
{AC X :ACint(A*(Z))} = {4 C X : A Cint(4*(D))).
The union of the all Z-open sets contained in A is written by Z-int(A).
PROPOSITION 2. For any A C X, we have int(A*(Z)) = int(A*(Z)),
— int(A*(Z)) € T and Z-int(Z-int(A)) = Z-int(4) = A Nint(A*(7)).
Proof. The first equality has already been proved in introduction. Note
that A — int(AX(T)) = A - mt(A"(I)) (A - A"'(I)) (An A*T)] -
int(4*(Z))) € 7 since T ~ 7 and A*(Z) — int(4*(Z)) = dl(int(A*(T))) —
int(A*(Z)) € I, C Z. Thus int(A4 — int(A*(Z))*(Z) = ¢. The equality 7 —
int(A) = ANint(A*(T)) was proved in [JH]. Now since A = (AN (int(A*))U
(A —int(A*)) we finally have
int(A*) = int((4A Nint(A4A*))* Uint(A4 — int(A*))*) = int(A nint(A*))",
Z-int(Z-int(A)) = ANint(A Nint(A*))* = ANint(A*) = Z-int(A4).
COROLLARY 2. Z-int(A) is an I-open set for any A C X.

Proof. It is easy to observe that F is an Z-open set if and only if
E = TI-int(E).
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CoROLLARY 3. The following are always equivalent:

i)Aed,

ii) Z-int(A) € Z,

iii) Z-int(4) = .

Proof. i)=>ii) is obvious; ii)=iii) is straightforward by int(Z-int(A))* =
int(A*) D Z-int(A) and iii) = i) is known in [JH].

ProrosITION 3. If U € 7*(Z) and A is an I-open set, then UN A is an
Z-open set.

Proof. Let U = U{Gy — Io : @ € A} € 7*(Z). Then

UNACU{((Ga-I)Nint(A*)):a € A} C
CUHint(GoNA) :ae A} Cint(U{({(Ga —Ix)NA)* :a € A}) C
Cint(U{(Go — In)NA:a € A})* =int(U N A)*.

CoROLLARY 4. If NI = {¢}, then each U € 7*(Z) is an T-open set.
Proof. If 7 NZ = {¢} then we evidently have
X*=X-U{Ger:G=GnXeI}=X

and thus X = X Nint(X*) = Z-int(X) is obtained. Then the above propo-
sition is used.

Remark 1. Despite of the fact that the family of all Z-open sets is
being closed under the arbitrary unions [JH], this family is not necessarily
a topology on X. For instance the family of Z,-open sets is nothing but
{A € X : A Cint(cl(A))} which is not necessarily closed under the finite
intersections.

The family of all countable subsets of A is written by [4]$“e or by [A]<“1.
An ideal is called o-ideal if UA € 7 whenever A € [Z]$%. T,, I,, and P(X)
are typical o-ideals. The o-ideal generated by the ideal Z, i.e. the minimal
o-ideal containing Z is Z, = {UA : A € [Z]S%}.

DEFINITION 2. Let & be an infinite cardinal number. Then
[A]S* ={BC A:cardB <k} = {BC A:cardB < «*}.
An ideal T is called k-ideal or k-dual filterif T = {UA : A € [I]$*}.

Remark 2. As one can easily observe that the minimal k-ideal contain-
ing T is T, = {UA : A € [Z]$*}. Thus T is a s-ideal (resp. o-ideal) if and
only if Z = I (resp. T = I,,).
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PROPOSITION 4. Let T be any compatible ideal in (X, 7) and let k be any
infinite cardinal number. Then

U(r*(Z)NZ,) € I.

Proof. By the well known Zorn Lemma, there exists a maximal cellular
refinement U of the open family 7*(Z) N I, in the spar2 (X, 7*(Z)). Then
U C U(r*(Z)nZ,) C c(Ul),
AU(THT)NI,)) - WU = 7*-(UU) — WU € T(r*(I) CI =1 C I..

It is easy to observe that each U € U belongs to Z and thus U = U{I,(U):
a < &k, I,(U) € I}. Now let us define

I, =U{I(U):UeU}, a<kt.

Then for each a < k* and U € U we have Z-int(I,) N U = Z-int(I,) N U N
I,(U) € I,(U) since UN I,(U*) C UNU* = ¢ wheaever U and U* are
different members of Y. Since Z-int(I,) N U is an Z-open set by Corollary
2 and Proposition 3 and I(U) € T = I, we have Z-int(I,) N U C I-
int(1(U)) C int(I,{U))* = ¢. Thus I, € T = T is obtained by Corollary 3

since
Z-int{l,) = V{Z-int(I,)NU : U e U} = ¢.
Therefore
I=UU =U{I,(U):Uel,a< vt} =G{ly:ax<xt} e,
U (T)NZe) C (WU (T)NZ))-uvU)U I € I,.
COROLLARY 5. For any compatible ideal I of (X, 1) and infinite cardinal
number £, we have U(T NZ,) € Z,.

COROLLARY 6. For any ideal T and infinite cardianal numoer k, we have
u(rn(@)s) CUE*@) 0 (T)s) € (D).

COROLLARY 7 (Jankovi¢ and Hamlett [JH)). For any ideal T we have
U(tN(2)s) € (T)o-

Remark 3. Let Z be any ideal and A C X. Then {I € T: I C A} =
{INA: I €T} is evidently an ideal on A. This restricted ideal is written by
T/A. Observing I,/A = (Z/A) is straightforward. It is also easy to see that
I/A ~ 7/A holds whenever T ~ 7. In fact if there exists W, € 1 satisfying
W.NA¢€TI/Aforeach z € BC A then W, N B € T evidently holds.
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PROPOSITION 5. Let T be any compatible ideal in (X, T) and let  be any
infinite cardinal number. Then I, is compatible.

Proof. Let AN A*(Z:) = ¢. Then for each z € A there exists G; € 7,
such that ANG,; € Z,. Thus ANG, € T/ANZI/A=T1/AN(T/A). and
A=U{ANG;:z € A} =U(t/AN(Z/A):) € (Z/A)x C I, by Corollary 5.

CoROLLARY 8. (), is compatible.

COROLLARY 9 (Generalized Banach Category Theorem; [JH]). (Z), is
compatible.

3. Results on paracompactness modulo an ideal

In the last section we obtain some further results on paracompactness
modulo an ideal which is recently studied in [HRJ] and [EN]. Let (X, 7) be
given. If every open covering of X has a locally finite open refinement i
satisfying X = Cl(UY) then X is called as almost paracompact [SA]. Tt is
quite easy to observe that X is almost paracompact if and only if every open
covering has a locally finite open refinement & such that X —ui/ € 7,,. X
is called paracompact modulo an ideal I or briefly X is paracompact (mod
7 ) if every open covering has a locally finite open refinement i such that
X —UU € T [Z). An ideal T is called 7-locally finite [HRJ] or locally finite
additive in (X, 7) [EN] if the subfamily Zp C 7 is locally finite in (X, 7) then
UZy € I. It is well known that 7, is locally finite additive. It is proved in
[EN] that Z,, is also locally finite additive in (X, 7). The ideal 7 is called as
weakly compatible ideal in (X,7) if A*(Z) = ¢ if and only if A € 7.

ProposITION 6 (Hamlett, Rose and Jankovié¢ [HRJ]).

i) Every compatible ideal is weakly compatible and every weakly compat-
tble ideal is locally finite additive.

ii) Let X be paracompact (mod I). Then I is locally finite additive in
(X,7) if and only if T is weakly compatible in (X, ).

PROPOSITION 7. Let (X, 7) be having a o-locally finite base and T be a
o-ideal. Then the following are equivalent in (X, T):

i) T is compatible;

it) T is weakly compatible;

iii) T is locally finite additive.

Proof. Let T be a locally finite additive ideal and B = U{B, : n € N}
be the o-locally finite base in (X, 7). Let AN A*(Z) = ¢. Then A € T and
thus 7 is compatible, since U{ANB : B € B},} € T whereas B}, = {B € B, :
AN B € I} for each n € N. And thus

ACU{ANB:BeB,,ne N} el
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PRroPOSITION 8. Let I, C T and I be a locally finite additive in (X, 7).
Then X is paracompact (mod I) if and only if every open covering has
a locally finite refinement (which is not necessarily open) A such that
X-UA€T.

Proof. Necessity is obvious. Now let G be any open covering of X, sat-
isfying the sufficiency condition. Then there exists a locally finite refinement
A with X —UA € Z. Thus for each A € A there exists a uniquely determined
G4 € Gsuch that A C G4. W = {int(cl(A))NG4 : A € A} is evidently open
and locally finite refinement of G. Then int(cl(A)) C G4U(int(cl(GA4))-G 4)
holds for each A € A and we have N4 = int(cl(A))N(int(cl(G4))-G4) € T,.
Thus

In=U{Nsnd(cl(A)): A€ AJU(X —cd(VA)) e T

since the family {N4 N d(cl(A)) : A € A} is locally finite in (X,7) and
X - cd(UA) € X —UA € Z. In here 0 denotes the boundary operator.
Consequently X — UW € 7 is obtained by

X = cd(UA) U (X - cl(VA))
= U{int(cl(A)): A € A} U {9(cl(A)): A€ A} U (X — cl(UA))
= U{int(cl(A))NG4. : A€ A} U I,.

ProrosiTION 9 (Hamlett, Rose and Jankovi¢ [HRJ]). Let T, C T and
TNZI = {#}. Then X is paracompact (mod I) if and only if every open
covering has a o-locally finite open refinementV = U{V,, : n € N} such that
X = u{int(cl(UV,)) : n € N}.

PRroPOSITION 10. Let T be a compatible o-additive ideal in (X, 7). Then
X is paracompact (mod 1) if and only if every open covering has a o-locally
finite refinement (which is not necessarily open) A = U{A, : n € N} such
that X = U{int(cl(UA,)):n € N}.

Proof. Since 7NZ = {¢}, the proof of the necessity is obvious. Now let
us prove the sufficiency. Let G be an open covering of X. Let also G4 € G
be defined for each A € A just as in the above proof. Then

W = {int(cl(A)) N Ga — | J d(UAL): A € An,n € N}
k<n

is open and locally finite refinement of G since X is the union of open sets
int(cl(UA,)). Our claim is to prove that X — UW € 7. Now let us define

Wo =¢, W,_1 =U{int(c(UA;)):k <n} (né€N).
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One should notice in here that
A(Wa_y) = U{cl(UAL) : k < n} — U{cl(UAL) — l(Wp_1) : k < n},
U{cl(UAL) — cl(Wyr—1) : k < n} C U{cl(UA,) — cl(int(cl(UAk))) : k£ < n}
€l,Cc1

since as is well known cl{ E)—cl(int(cl( F'))) is nowhere dense for each E C X.
Now let z € X be given. Then there exists a uniquely determined positive
integer n(z) such that

z € int(cl(UA(z))) — U{int(cl(UA,)) : n < n(z)}.

Since the family A, is locally finite then there necessarily exists an A €
An(z) such that z € cl(int(cl(A))) and consequently we have

z € cl(int(cl(A))) N (G 4) = Wy(z)-1
= [(int(cl(4)) N Ga) U N3)] = (Ad(Wr(z)-1) = d(Wr(z)-1))
= ((int(cl(A)) N G4) — A Wi(z)-1)) U N2
= ((int(cl(A)) N G4) — U{cl(UA}) : k < n(z)})U N3.

In above all the numbered N4 sets are nowhere dense and contained in
cl(A). Thus by defining

Ih=U{Nj:A€A,,neN}eI
we have X = UW U I which is nothing but the required result.

CoROLLARY 10. Let X be a Baire space. Then X is paracompact (mod
I,,) if and only if every open covering has a o-locally finite refinement (which
is not necessarily open) A = U{A, : n € N} such that X = U{int(cl(UA,)) :
n€ N}.

Proof. As is well known a topological space (X, 7) is called as a Baire
space if Z,, N7 = {¢} or equivalently the o-ideal Z,, is compatible.
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