

Valeria Popa, Takashi Noiri

ON UPPER AND LOWER  
ALMOST  $\alpha$ -CONTINUOUS MULTIFUNCTIONS

In this paper, the authors define a multifunction  $F : X \rightarrow Y$  to be upper (lower) almost  $\alpha$ -continuous if  $F^+(V)$  ( $F^-(V)$ ) is  $\alpha$ -open in  $X$  for every regular open set  $V$  of  $Y$ . They obtain some characterizations and several properties concerning upper (lower) almost  $\alpha$ -continuous multifunctions. The relationships between these multifunctions and  $\alpha$ -closed graphs are investigated.

### 1. Introduction

In 1965, Njåstad [11] introduced a weak form of open sets called  $\alpha$ -sets. In [18, 24] the authors investigated a class of functions called almost  $\alpha$ -continuous or almost feebly continuous. In 1986, Neubrunn [10] introduced the notion of upper (lower)  $\alpha$ -continuous multifunctions. The purpose of the present paper is to define upper (lower) almost  $\alpha$ -continuous multifunctions and to obtain some characterizations of upper (lower) almost  $\alpha$ -continuous multifunctions and several properties of such multifunctions.

### 2. Preliminaries

Let  $X$  be a topological space and  $A$  a subset of  $X$ . The closure of  $A$  and the interior of  $A$  are denoted by  $\text{Cl}(A)$  and  $\text{Int}(A)$ , respectively. A subset  $A$  is said to be  $\alpha$ -open [11] (resp. semi-open [6], preopen [9],  $\beta$ -open [1] or semi-preopen [2]) if  $A \subset \text{Int}(\text{Cl}(\text{Int}(A)))$  (resp.  $A \subset \text{Cl}(\text{Int}(A))$ ,  $A \subset \text{Int}(\text{Cl}(A))$ ,  $A \subset \text{Cl}(\text{Int}(\text{Cl}(A)))$ ). The family of all semi-open (resp.  $\alpha$ -open) sets of  $X$  containing a point  $x \in X$  is denoted by  $\text{SO}(X, x)$  (resp.  $\alpha(X, x)$ ). The family of all  $\alpha$ -open (resp. semi-open, preopen, semi-preopen) sets in  $X$  is denoted by  $\alpha(X)$  (resp.  $\text{SO}(X)$ ,  $\text{PO}(X)$ ,  $\text{SPO}(X)$ ). For these four families, it is shown in [16, Lemma 3.1] that  $\text{SO}(X) \cap \text{PO}(X) = \alpha(X)$  and it is obvious that  $\text{SO}(X) \cup \text{PO}(X) \subset \text{SPO}(X)$ . Since  $\alpha(X)$  is a topology for  $X$  [11, Proposition 2], by  $\alpha \text{Cl}(A)$  (resp.  $\alpha \text{Int}(A)$ ) we denote the closure (resp. interior) of  $A$ .

with respect to  $\alpha(X)$ . The complement of a semi-open (resp.  $\alpha$ -open) set is said to be *semi-closed* (resp.  $\alpha$ -closed). The intersection of all semi-closed sets of  $X$  containing  $A$  is called the *semi-closure* [3] of  $A$  and is denoted by  $sCl(A)$ . The union of all semi-open sets of  $X$  contained in  $A$  is called the *semi-interior* of  $A$  and is denoted by  $sInt(A)$ . A subset  $A$  is said to be *feeably open* [5] if there exists an open set  $U$  such that  $U \subset A \subset sCl(U)$ . It is shown in [16, Lemma 4.12] that the notion of feeably open sets is equivalent to that of  $\alpha$ -open sets. A subset  $A$  of a space  $X$  is said to be *regular open* (resp. *regular closed*) if  $A = Int(Cl(A))$  (resp.  $A = Cl(Int(A))$ ). The family of regular open (resp. regular closed) sets of  $X$  is denoted by  $RO(X)$  (resp.  $RC(X)$ ). Maheshwari et al. [7] defined a function to be *almost feeably continuous* if the inverse image of every regular open set is feeably open. Noiri [18] defined a function  $f : X \rightarrow Y$  to be *almost  $\alpha$ -continuous* if  $f^{-1}(V) \in \alpha(X)$  for every  $V \in RO(Y)$  and pointed out that almost feeble continuity is equivalent to almost  $\alpha$ -continuity.

Throughout this paper, spaces  $(X, \tau)$  and  $(X, \sigma)$  (or simply  $X$  and  $Y$ ) always mean topological spaces and  $F : X \rightarrow Y$  (resp.  $f : X \rightarrow Y$ ) presents a multivalued (resp. single valued) function. For a multifunction  $F : X \rightarrow Y$ , we shall denote the upper and lower inverse of a set  $G$  of  $Y$  by  $F^+(G)$  and  $F^-(G)$ , respectively, that is

$$F^+(G) = \{x \in X : F(x) \subset G\} \quad \text{and} \quad F^-(G) = \{x \in X : F(x) \cap G \neq \emptyset\}.$$

### 3. Characterizations

**DEFINITION 1.** A multifunction  $F : X \rightarrow Y$  is said to be

(a) *upper almost  $\alpha$ -continuous* (briefly *u.a. $\alpha$ .c.*) at a point  $x \in X$  if for each  $U \in SO(X, x)$  and each open set  $V$  containing  $F(x)$ , there exists a nonempty open set  $G \subset U$  such that  $F(G) \subset sCl(V)$ ;

(b) *lower almost  $\alpha$ -continuous* (briefly *l.a. $\alpha$ .c.*) at a point  $x \in X$  if for each  $U \in SO(X, x)$  and each open set  $V$  such that  $F(x) \cap V \neq \emptyset$ , there exists a nonempty open set  $G \subset U$  such that  $F(g) \cap sCl(V) \neq \emptyset$  for every  $g \in G$ ;

(c) *upper (lower) almost  $\alpha$ -continuous* if  $F$  has this property at every point of  $X$ .

**THEOREM 1.** *The following are equivalent for a multifunction  $F : X \rightarrow Y$ :*

- (1)  $F$  is *u.a. $\alpha$ .c.* at a point  $x \in X$ ;
- (2) for any open set  $V$  of  $Y$  containing  $F(x)$ , there exists  $S \in \alpha(X, x)$  such that  $F(S) \subset sCl(V)$ ;
- (3)  $x \in \alpha Int(F^+(sCl(V)))$  for every open set  $V$  containing  $F(x)$ ;
- (4)  $x \in Int(Cl(Int(F^+(sCl(V)))))$  for every open set  $V$  containing  $F(x)$ .

**Proof.** (1) $\Rightarrow$ (2): Let  $V$  be any open set of  $Y$  containing  $F(x)$ . For each  $U \in \text{SO}(X, x)$ , there exists a nonempty open set  $G_U$  such that  $G_U \subset U$  and  $F(G_U) \subset \text{sCl}(V)$ . Let  $W = \bigcup\{G_U : U \in \text{SO}(X, x)\}$ . Put  $S = W \cup \{x\}$ , then  $W$  is open in  $X$ ,  $x \in \text{sCl}(W)$  and  $F(W) \subset \text{sCl}(V)$ . Therefore, we have  $S \in \alpha(X, x)$  [26, Lemma 2.1] and  $F(S) \subset \text{sCl}(V)$ .

(2) $\Rightarrow$ (3): Let  $V$  be any open set of  $Y$  containing  $F(x)$ . Then there exists  $S \in \alpha(X, x)$  such that  $F(S) \subset \text{sCl}(V)$ . Thus we obtain  $x \in S \subset F^+(\text{sCl}(V))$  and hence  $x \in \alpha \text{Int}(F^+(\text{sCl}(V)))$ .

(3) $\Rightarrow$ (4): Let  $V$  be any open set of  $Y$  containing  $F(x)$ . Now put  $U = \alpha \text{Int}(F^+(\text{sCl}(V)))$ . Then  $U \in \alpha(X)$  and  $x \in U \subset F^+(\text{sCl}(V))$ . Thus we have  $x \in U \subset \text{Int}(\text{Cl}(\text{Int}(F^+(\text{sCl}(V)))))$ .

(4) $\Rightarrow$ (1): Let  $U \in \text{SO}(X, x)$  and  $V$  be any open set of  $Y$  containing  $F(x)$ . Then we have  $x \in \text{Int}(\text{Cl}(\text{Int}(F^+(\text{sCl}(V))))) = \text{sCl}(\text{Int}(F^+(\text{sCl}(V))))$ . It follows from [13, Lemma 3] and [12, Lemma 1] that  $\emptyset \neq U \cap \text{Int}(F^+(\text{sCl}(V))) \in \text{SO}(X)$ . Put  $G = \text{Int}(U \cap \text{Int}(F^+(\text{sCl}(V))))$ . Then  $G$  is a nonempty open set of  $Y$  [12, Lemma 4],  $G \subset U$  and  $F(G) \subset \text{sCl}(V)$ .

**THEOREM 2.** *The following are equivalent for a multifunction  $F : X \rightarrow Y$ :*

- (1)  $F$  is l.a. $\alpha$ .c. at a point  $x$  of  $X$ ;
- (2) for any open set  $V$  of  $Y$  such that  $F(x) \cap V \neq \emptyset$ , there exists  $S \in \alpha(X, x)$  such that  $F(s) \cap \text{sCl}(V) \neq \emptyset$  for every  $s \in S$ ;
- (3)  $x \in \alpha \text{Int}(F^-(\text{sCl}(V)))$  for every open set  $V$  of  $Y$  such that  $F(x) \cap V \neq \emptyset$ ;
- (4)  $x \in \text{Int}(\text{Cl}(\text{Int}(F^-(\text{sCl}(V)))))$  for every open set  $V$  of  $Y$  such that  $F(x) \cap V \neq \emptyset$ .

**Proof.** The proof is similar to that of Theorem 1.

**THEOREM 3.** *The following are equivalent for a multifunction  $F : X \rightarrow Y$ :*

- (1)  $F$  is u.a. $\alpha$ .c.;
- (2) for each  $x \in X$  and each open set  $V$  of  $Y$  containing  $F(x)$ , there exists  $U \in \alpha(X, x)$  such that  $F(U) \subset \text{sCl}(V)$ ;
- (3) for each  $x \in X$  and each  $V \in \text{RO}(Y)$  containing  $F(x)$ , there exists  $U \in \alpha(X, x)$  such that  $F(U) \subset V$ ;
- (4)  $F^+(V) \in \alpha(X)$  for every  $V \in \text{RO}(Y)$ ;
- (5)  $F^-(K)$  is  $\alpha$ -closed in  $X$  for every  $K \in \text{RC}(Y)$ ;
- (6)  $F^+(V) \subset \alpha \text{Int}(F^+(\text{sCl}(V)))$  for every open set  $V$  of  $Y$ ;
- (7)  $\alpha \text{Cl}(F^-(\text{sInt}(K))) \subset F^-(K)$  for every closed set  $K$  of  $Y$ ;
- (8)  $\alpha \text{Cl}(F^-(\text{Cl}(\text{Int}(K)))) \subset F^-(K)$  for every closed set  $K$  of  $Y$ ;
- (9)  $\alpha \text{Cl}(F^-(\text{Cl}(\text{Int}(\text{Cl}(B))))) \subset F^-(\text{Cl}(B))$  for every subset  $B$  of  $Y$ ;

- (10)  $\text{Cl}(\text{Int}(\text{Cl}(F^-(\text{Cl}(\text{Int}(K)))))) \subset F^-(K)$  for every closed set  $K$  of  $Y$ ;
- (11)  $\text{Cl}(\text{Int}(\text{Cl}(F^-(\text{sInt}(K)))))) \subset F^-(K)$  for every closed set  $K$  of  $Y$ ;
- (12)  $F^+(V) \subset \text{Int}(\text{Cl}(\text{Int}(F^+(\text{sCl}(V))))))$  for every open set  $V$  of  $Y$ .

**Proof.** (1)  $\Rightarrow$  (2): The proof follows immediately from Theorem 1.

(2)  $\Rightarrow$  (3): This is obvious.

(3)  $\Rightarrow$  (4): Let  $V \in \text{RO}(Y)$  and  $x \in F^+(V)$ . Then  $F(x) \subset V$  and there exists  $U_x \in \alpha(X, x)$  such that  $F(U_x) \subset V$ . Therefore, we have  $x \in U_x \subset F^+(V)$  and hence  $F^+(V) \in \alpha(X)$ .

(4)  $\Rightarrow$  (5): This follows from the fact that  $F^+(Y - B) = X - F^-(B)$  for every subset  $B$  of  $Y$ .

(5)  $\Rightarrow$  (6): Let  $V$  be any open set of  $Y$  and  $x \in F^+(V)$ . Then we have  $F(x) \subset V \subset \text{sCl}(V)$  and hence  $x \in F^+(\text{sCl}(V)) = X - F^-(Y - \text{sCl}(V))$ . Since  $Y - \text{sCl}(V) \in \text{RC}(Y)$ ,  $F^-(Y - \text{sCl}(V))$  is  $\alpha$ -closed in  $X$ . Therefore,  $F^+(\text{sCl}(V)) \in \alpha(X, x)$  and hence  $x \in \alpha \text{Int}(F^+(\text{sCl}(V)))$ . Consequently, we obtain  $F^+(V) \subset \alpha \text{Int}(F^+(\text{sCl}(V)))$ .

(6)  $\Rightarrow$  (7): Let  $K$  be any closed set of  $Y$ . Then, since  $Y - K$  is open, we obtain

$$\begin{aligned} X - F^-(K) &= F^+(Y - K) \subset \alpha \text{Int}(F^+(\text{sCl}(Y - K))) \\ &= \alpha \text{Int}(F^+(Y - \text{sInt}(K))) \\ &= \alpha \text{Int}(X - F^-(\text{sInt}(K))) = X - \alpha \text{Cl}(F^-(\text{sInt}(K))). \end{aligned}$$

Therefore, we obtain  $\alpha \text{Cl}(F^-(\text{sInt}(K))) \subset F^-(K)$ .

(7)  $\Rightarrow$  (8): The proof is obvious since  $\text{sInt}(K) = \text{Cl}(\text{Int}(K))$  for every closed set  $K$ .

(8)  $\Rightarrow$  (9): The proof is obvious.

(9)  $\Rightarrow$  (10): It follows from [26, Lemma 2.2] that  $\text{Cl}(\text{Int}(\text{Cl}(A))) \subset \alpha \text{Cl}(A)$  for every subset  $A$ . Thus for every closed set  $K \subset Y$ , we have

$$\begin{aligned} \text{Cl}(\text{Int}(\text{Cl}(F^-(\text{Cl}(\text{Int}(K)))))) &\subset \alpha \text{Cl}(F^-(\text{Cl}(\text{Int}(K)))) \\ &= \alpha \text{Cl}(F^-(\text{Cl}(\text{Int}(\text{Cl}(K))))) \subset F^-(\text{Cl}(K)) = F^-(K). \end{aligned}$$

(10)  $\Rightarrow$  (11): The proof is obvious since  $\text{sInt}(K) = \text{Cl}(\text{Int}(K))$  for every closed set  $K$ .

(11)  $\Rightarrow$  (12): Let  $V$  be any open set of  $Y$ . Then  $Y - V$  is closed in  $Y$  and we have

$$\text{Cl}(\text{Int}(\text{Cl}(F^-(\text{sInt}(Y - V))))) \subset F^-(Y - V) = X - F^+(V).$$

Moreover, we have

$$\begin{aligned} \text{Cl}(\text{Int}(\text{Cl}(F^-(\text{sInt}(Y - V))))) &= \text{Cl}(\text{Int}(\text{Cl}(F^-(Y - \text{sCl}(V))))) = \\ &= \text{Cl}(\text{Int}(\text{Cl}(X - F^+(\text{sCl}(V))))) = X - \text{Int}(\text{Cl}(\text{Int}(F^+(\text{sCl}(V))))) \end{aligned}$$

Therefore, we obtain  $F^+(V) \subset \text{Int}(\text{Cl}(\text{Int}(F^+(\text{sCl}(V)))))$ .

(12) $\Rightarrow$ (1): Let  $x$  be any point of  $X$  and  $V$  be any open set of  $Y$  containing  $F(x)$ . Then  $x \in F^+(V) \subset \text{Int}(\text{Cl}(\text{Int}(F^+(\text{sCl}(V)))))$  and hence  $F$  is u.a. $\alpha$ .c. at  $x$  by Theorem 1.

**THEOREM 4.** *The following are equivalent for a multifunction  $F$  :  $X \rightarrow Y$ :*

- (1)  $F$  is u.a. $\alpha$ .c.;
- (2)  $\alpha \text{Cl}(F^-(V)) \subset F^-(\text{Cl}(V))$  for every  $V \in \text{SPO}(Y)$ ;
- (3)  $\alpha \text{Cl}(F^-(V)) \subset F^-(\text{Cl}(V))$  for every  $V \in \text{SO}(Y)$ ;
- (4)  $F^+(V) \subset \alpha \text{Int}(F^+(\text{Int}(\text{Cl}(V))))$  for every  $V \in \text{PO}(Y)$ .

**P r o o f.** (1) $\Rightarrow$ (2): Let  $V$  be any semi-preopen set of  $Y$ . Since  $\text{Cl}(V) \in \text{RC}(Y)$ , by Theorem 3  $F^-(\text{Cl}(V))$  is  $\alpha$ -closed in  $X$  and  $F^-(V) \subset F^-(\text{Cl}(V))$ . Therefore, we obtain  $\alpha \text{Cl}(F^-(V)) \subset F^-(\text{Cl}(V))$ .

(2) $\Rightarrow$ (3): This is obvious since  $\text{SO}(Y) \subset \text{SPO}(Y)$ .

(3) $\Rightarrow$ (1): Let  $K \in \text{RC}(Y)$ . Then  $K \in \text{SO}(Y)$  and hence  $\alpha \text{Cl}(F^-(K)) \subset F^-(K)$ . Therefore,  $F^-(K)$  is  $\alpha$ -closed in  $X$  and hence  $F$  is u.a. $\alpha$ .c. by Theorem 3.

(1) $\Rightarrow$ (4): Let  $V$  be arbitrary preopen set of  $Y$ . Since  $\text{Int}(\text{Cl}(V)) \in \text{RO}(Y)$ , by Theorem 3 we have  $F^+(\text{Int}(\text{Cl}(V))) \in \alpha(X)$  and hence

$$F^+(V) \subset F^+(\text{Int}(\text{Cl}(V))) = \alpha \text{Int}(F^+(\text{Int}(\text{Cl}(V)))).$$

(4) $\Rightarrow$ (1): Let  $V$  be any regular open set of  $Y$ . Since  $V \in \text{PO}(Y)$ , we have

$$F^+(V) \subset \alpha \text{Int}(F^+(\text{Int}(\text{Cl}(V)))) = \alpha \text{Int}(F^+(V))$$

and hence  $F^+(V) \in \alpha(X)$ . It follows from Theorem 3 that  $F$  is u.a. $\alpha$ .c.

**THEOREM 5.** *The following are equivalent for a multifunction  $F$  :  $X \rightarrow Y$ :*

- (1)  $F$  is l.a. $\alpha$ .c.;
- (2) for each  $x \in X$  and each open set  $V$  of  $Y$  such that  $F(x) \cap V \neq \emptyset$ , there exists  $U \in \alpha(X, x)$  such that  $U \subset F^-(\text{sCl}(V))$ ;
- (3) for each  $x \in X$  and each  $V \in \text{RO}(Y)$  such that  $F(x) \cap V \neq \emptyset$ , there exists  $U \in \alpha(X, x)$  such that  $U \subset F^-(V)$ ;
- (4)  $F^-(V) \in \alpha(X)$  for every  $V \in \text{RO}(Y)$ ;
- (5)  $F^+(K)$  is  $\alpha$ -closed in  $X$  for every  $K \in \text{RC}(Y)$ ;
- (6)  $F^-(V) \subset \alpha \text{Int}(F^-(\text{sCl}(V)))$  for every open set  $V$  of  $Y$ ;
- (7)  $\alpha \text{Cl}(F^+(\text{sInt}(K))) \subset F^+(K)$  for every closed set  $K$  of  $Y$ ;
- (8)  $\alpha \text{Cl}(F^+(\text{Cl}(\text{Int}(K)))) \subset F^+(K)$  for every closed set  $K$  of  $Y$ ;
- (9)  $\alpha \text{Cl}(F^+(\text{Cl}(\text{Int}(\text{Cl}(B))))) \subset F^+(\text{Cl}(B))$  for every subset  $B$  of  $Y$ ;
- (10)  $\text{Cl}(\text{Int}(\text{Cl}(F^+(\text{Cl}(\text{Int}(K)))))) \subset F^+(K)$  for every closed set  $K$  of  $Y$ ;
- (11)  $\text{Cl}(\text{Int}(\text{Cl}(F^+(\text{sInt}(K))))) \subset F^+(K)$  for every closed set  $K$  of  $Y$ ;
- (12)  $F^-(V) \subset \text{Int}(\text{Cl}(\text{Int}(F^-(\text{sCl}(V)))))$  for every open set  $V$  of  $Y$ .

**Proof.** The proof is similar to that of Theorem 3.

**THEOREM 6.** *The following are equivalent for a multifunction  $F : X \rightarrow Y$ :*

- (1)  $F$  is l.a.α.c.;
- (2)  $\alpha \text{Cl}(F^+(V)) \subset F^+(\text{Cl}(V))$  for every  $V \in \text{SPO}(Y)$ ;
- (3)  $\alpha \text{Cl}(F^+(V)) \subset F^+(\text{Cl}(V))$  for every  $V \in \text{SO}(Y)$ ;
- (4)  $F^-(V) \subset \alpha \text{Int}(F^-(\text{Int}(\text{Cl}(V))))$  for every  $V \in \text{PO}(Y)$ .

**Proof.** The proof is similar to that of Theorem 4.

A function  $f : X \rightarrow Y$  is said to be *almost α-continuous* [18] if  $f^{-1}(V) \in \alpha(X)$  for every  $V \in \text{RO}(Y)$ .

**COROLLARY 1** (Maheshwari et al. [7], Noiri [18] and Popa [24]). *The following are equivalent for a function  $f : X \rightarrow Y$ :*

- (1)  $f$  is almost α-continuous;
- (2) for each  $x \in X$  and each open set  $V$  of  $Y$  containing  $f(x)$ , there exists  $U \in \alpha(X, x)$  such that  $f(U) \subset \text{sCl}(V)$ ;
- (3) for each  $x \in X$  and each  $V \in \text{RO}(Y)$  containing  $f(x)$ , there exists  $U \in \alpha(X, x)$  such that  $f(U) \subset V$ ;
- (4) for each  $x \in X$  and each open set  $V$  of  $Y$  containing  $f(x)$ , there exists  $U \in \alpha(X, x)$  such that  $f(U) \subset \text{Int}(\text{Cl}(V))$ ;
- (5)  $f^{-1}(K)$  is α-closed in  $X$  for every  $K \in \text{RC}(Y)$ ;
- (6)  $f^{-1}(V) \subset \alpha \text{Int}(f^{-1}(\text{sCl}(V)))$  for every open set  $V$  of  $Y$ ;
- (7)  $\alpha \text{Cl}(f^{-1}(\text{sInt}(K))) \subset f^{-1}(K)$  for every closed set  $K$  of  $Y$ ;
- (8)  $\alpha \text{Cl}(f^{-1}(\text{Cl}(\text{Int}(K)))) \subset f^{-1}(K)$  for every closed set  $K$  of  $Y$ ;
- (9)  $\alpha \text{Cl}(f^{-1}(\text{Cl}(\text{Int}(\text{Cl}(B))))) \subset f^{-1}(\text{Cl}(B))$  for every subset  $B$  of  $Y$ ;
- (10)  $\text{Cl}(\text{Int}(\text{Cl}(f^{-1}(\text{Cl}(\text{Int}(K)))))) \subset f^{-1}(K)$  for every closed set  $K$  of  $Y$ ;
- (11)  $\text{Cl}(\text{Int}(\text{Cl}(f^{-1}(\text{sInt}(K))))) \subset f^{-1}(K)$  for every closed set  $K$  of  $Y$ ;
- (12)  $f^{-1}(V) \subset \text{Int}(\text{Cl}(\text{Int}(f^{-1}(\text{sCl}(V)))))$  for every open set  $V$  of  $Y$ .

**COROLLARY 2.** *The following are equivalent for a function  $f : X \rightarrow Y$ :*

- (1)  $f$  is almost α-continuous;
- (2)  $\alpha \text{Cl}(f^{-1}(V)) \subset f^{-1}(\text{Cl}(V))$  for every  $V \in \text{SPO}(Y)$ ;
- (3)  $\alpha \text{Cl}(f^{-1}(V)) \subset f^{-1}(\text{Cl}(V))$  for every  $V \in \text{SO}(Y)$ ;
- (4)  $f^{-1}(V) \subset \alpha \text{Int}(f^{-1}(\text{Int}(\text{Cl}(V))))$  for every  $V \in \text{PO}(Y)$ .

#### 4. Almost α-continuity and α-continuity

**DEFINITION 2.** A multifunction  $F : X \rightarrow Y$  is said to be

(a) *upper α-continuous* [26] (resp. *upper weakly α-continuous* [28]) at a point  $x$  of  $X$  if for each open set  $V$  of  $Y$  containing  $F(x)$ , there exists  $U \in \alpha(X, x)$  such that  $F(U) \subset V$  (resp.  $F(U) \subset \text{Cl}(V)$ );

(b) *lower  $\alpha$ -continuous* [26] (resp. *lower weakly  $\alpha$ -continuous* [28]) at  $x \in X$  if for each open set  $V$  of  $Y$  such that  $F(x) \cap V \neq \emptyset$ , there exists  $U \in \alpha(X, x)$  such that  $F(u) \cap V \neq \emptyset$  (resp.  $F(u) \cap \text{Cl}(V) \neq \emptyset$ ) for every  $u \in U$ ;

(c) *upper (or lower)  $\alpha$ -continuous* [10] (resp. *weakly  $\alpha$ -continuous* [28]) if it is upper (or lower)  $\alpha$ -continuous (resp. weakly  $\alpha$ -continuous) at every point of  $X$ .

**DEFINITION 3.** A multifunction  $F : X \rightarrow Y$  is said to be

(a) *upper almost continuous* [22] (resp. *upper weakly continuous* [21, 32]) at  $x \in X$  if for each open set  $V$  of  $Y$  containing  $F(x)$ , there exists an open set  $U$  of  $X$  containing  $x$  such that  $F(U) \subset \text{Int}(\text{Cl}(V))$  (resp.  $F(U) \subset \text{Cl}(V)$ );

(b) *lower almost continuous* [22] (resp. *lower weakly continuous* [21, 32]) if for each open set  $V$  of  $Y$  such that  $F(x) \cap V \neq \emptyset$ , there exists an open set  $U$  of  $X$  containing  $x$  such that  $F(u) \cap \text{Int}(\text{Cl}(V)) \neq \emptyset$  (resp.  $F(u) \cap \text{Cl}(V) \neq \emptyset$ ) for every  $u \in U$ ;

(c) *upper (or lower) almost continuous* [22] (resp. *weakly continuous* [21, 32]) if it is upper (or lower) almost continuous (resp. weakly continuous) at every point of  $X$ .

**THEOREM 7.** (1) *A multifunction  $F : (X, \tau) \rightarrow (X, \sigma)$  is upper  $\alpha$ -continuous (resp. u.a. $\alpha$ .c., upper weakly  $\alpha$ -continuous) if and only if  $F : (X, \tau^\alpha) \rightarrow (Y, \sigma)$  is upper continuous (resp. upper almost continuous, upper weakly continuous).*

(2) *A multifunction  $F : (X, \tau) \rightarrow (Y, \sigma)$  is lower  $\alpha$ -continuous (resp. l.a. $\alpha$ .c., lower weakly  $\alpha$ -continuous) if and only if  $F : (X, \tau^\alpha) \rightarrow (Y, \sigma)$  is lower continuous (resp. lower almost continuous, lower weakly continuous).*

**Proof.** The proof is obvious from the definitions.

**DEFINITION 4.** A subset  $A$  of a space  $X$  is said to be

(a)  *$\alpha$ -paracompact* [35] if every cover of  $A$  by open sets of  $X$  is refined by a cover of  $A$  which consists of open sets of  $X$  and is locally finite in  $X$ ;

(b)  *$\alpha$ -regular* [5] if for each point  $x \in A$  and each open set  $U$  of  $X$  containing  $x$ , there exists an open set  $G$  of  $X$  such that  $x \in G \subset \text{Cl}(G) \subset U$ .

**THEOREM 8.** *For a multifunction  $F : (X, \tau) \rightarrow (Y, \sigma)$  such that  $F(x)$  is an  $\alpha$ -regular  $\alpha$ -paracompact set for each  $x \in X$ , the following are equivalent:*

- (1)  *$F$  is upper weakly  $\alpha$ -continuous;*
- (2)  *$F$  is u.a. $\alpha$ .c.;*
- (3)  *$F$  is upper  $\alpha$ -continuous.*

**Proof.** (1) $\Rightarrow$ (3): By Theorem 7,  $F : (X, \tau^\alpha) \rightarrow (Y, \sigma)$  is upper weakly continuous and hence upper continuous [25, Theorem 1]. Thus, it follows from Theorem 7 that  $F : (X, \tau) \rightarrow (Y, \sigma)$  is upper  $\alpha$ -continuous.

**THEOREM 9.** *For a multifunction  $F : X \rightarrow Y$  such that  $F(x)$  is an  $\alpha$ -regular set for every  $x \in X$ , the following are equivalent:*

- (1)  $F$  is lower weakly  $\alpha$ -continuous;
- (2)  $F$  is l.a. $\alpha$ .c.;
- (3)  $F$  is lower  $\alpha$ -continuous.

**Proof.** (1) $\Rightarrow$ (3): By Theorem 7,  $F : (X, \tau^\alpha) \rightarrow (Y, \sigma)$  is lower weakly continuous and hence lower continuous [25, Theorem 2]. Thus, it follows from Theorem 7 that  $F : (X, \tau) \rightarrow (Y, \sigma)$  is lower  $\alpha$ -continuous.

**DEFINITION 5.** A subset  $A$  of a space  $X$  is said to be  $\alpha$ -semi-regular [25] if for each point  $a \in A$  and each open set  $U$  containing  $a$ , there exists  $V \in \text{RO}(X)$  such that  $a \in V \subset U$ .

**THEOREM 10.** *Let  $F : (X, \tau) \rightarrow (Y, \alpha)$  be a multifunction such that  $F(x)$  is an  $\alpha$ -semi-regular set for each  $x \in X$ . Then  $F$  is l.a. $\alpha$ .c. if and only if  $F$  is lower  $\alpha$ -continuous.*

**Proof.** Suppose that  $F : (X, \tau) \rightarrow (Y, \sigma)$  is l.a. $\alpha$ .c. By Theorem 7,  $F : (X, \tau^\alpha) \rightarrow (Y, \sigma)$  is lower almost continuous. It follows from [25, Theorem 5] that  $F : (X, \tau^\alpha) \rightarrow (Y, \alpha)$  is lower continuous. Therefore, by Theorem 7  $F : (X, \tau) \rightarrow (Y, \sigma)$  is lower  $\alpha$ -continuous.

**DEFINITION 6.** A space  $X$  is said to be

- (a) *semi-regular* if for each point  $x$  of  $X$  and each open set  $U$  containing  $x$ , there exists  $V \in \text{RO}(X)$  such that  $x \in V \subset U$ .
- (b) *rim-compact* if each point of  $X$  has a base of neighbourhoods with compact frontiers.

**COROLLARY 3.** *Every l.a. $\alpha$ .c. multifunction  $F : X \rightarrow Y$  is lower  $\alpha$ -continuous if  $Y$  is semi-regular.*

**COROLLARY 4** (Maheshwari et al. [7] and Thakur and Paik [33]). *Every almost  $\alpha$ -continuous function  $f : X \rightarrow Y$  is  $\alpha$ -continuous if  $Y$  is semi-regular.*

**THEOREM 11.** *If  $Y$  is a rim-compact space and  $F : X \rightarrow Y$  is a compact valued multifunction with the closed graph, then the following are equivalent:*

- (1)  $F$  is upper weakly  $\alpha$ -continuous;
- (2)  $F$  is u.a. $\alpha$ .c.;
- (3)  $F$  is upper  $\alpha$ -continuous.

**Proof.** Suppose that  $F$  is upper weakly  $\alpha$ -continuous. Let  $x \in X$  and  $V$  be any open set of  $Y$  containing  $F(x)$ . Since  $Y$  is rim-compact, for each  $z \in F(x)$  there exists an open set  $W(z)$  such that  $z \in W(z) \subset V$  and the frontier  $\text{Fr}(W(z))$  is compact. The family  $\{W(z) : z \in F(x)\}$  is a cover of  $F(x)$  by open sets of  $Y$ . Since  $F(x)$  is compact, there exists a finite number of points, say,  $z_1, z_2, \dots, z_n$  in  $F(x)$  such that  $F(x) \subset \cup\{W(z_j) : 1 \leq j \leq n\}$ . Let  $W = \cup\{W(z_j) : 1 \leq j \leq n\}$ , then we have  $\text{Fr}(W)$  is compact,  $F(x) \subset W \subset V$ , and

$$F(x) \cap \text{Fr}(W) = F(x) \cap \text{Cl}(W) \cap \text{Cl}(Y - W) \subset F(x) \cap (Y - W) = \emptyset.$$

For each  $y \in \text{Fr}(W)$ ,  $(x, y) \in X \times Y - G(F)$ . Since  $G(F)$  is closed, there exist open sets  $U(y) \subset X$  and  $V(y) \subset Y$  containing  $x$  and  $y$ , respectively, such that  $F(U(y)) \cap V(y) = \emptyset$ . The family  $\{V(y) : y \in \text{Fr}(W)\}$  is a cover of  $\text{Fr}(W)$  by open sets of  $Y$ . Since  $\text{Fr}(W)$  is compact, there exists a finite subset  $K$  of  $\text{Fr}(W)$  such that  $\text{Fr}(W) \subset \cup\{V(y) : y \in K\}$ . Since  $F$  is upper weakly  $\alpha$ -continuous, there exists  $U_0 \in \alpha(X, x)$  such that  $F(U_0) \subset \text{Cl}(W)$ . Put  $U = U_0 \cap [\cap\{U(y) : y \in K\}]$ . Then we obtain  $U \in \alpha(X, x)$  [15, Lemma 3.3],  $F(U) \subset \text{Cl}(W)$  and  $F(U) \cap \text{Fr}(W) = \emptyset$ . Therefore, we obtain  $F(U) \subset W \subset V$ . This shows that  $F$  is upper  $\alpha$ -continuous.

**COROLLARY 5** (Popa [24]). *If  $Y$  is a rim-compact space and  $f : X \rightarrow Y$  is an almost  $\alpha$ -continuous function with the closed graph, then  $f$  is  $\alpha$ -continuous.*

**THEOREM 12.** *If  $(Y, \alpha)$  is rim-compact Hausdorff, then for a multifunction  $F : (X, \tau) \rightarrow (Y, \alpha)$  the following are equivalent:*

- (1)  $F$  is lower weakly  $\alpha$ -continuous;
- (2)  $F$  is l.a. $\alpha$ .c.;
- (3)  $F$  is lower  $\alpha$ -continuous.

**Proof.** Suppose that  $F$  is lower weakly  $\alpha$ -continuous. It follows from Theorem 7 that  $F : (X, \tau^\alpha) \rightarrow (X, \sigma)$  lower weakly continuous. Since  $(Y, \alpha)$  is rim-compact Hausdorff, it is regular [14, Theorem 4] and hence  $F : (X, \tau^\alpha) \rightarrow (Y, \sigma)$  is lower continuous [21, Theorem 2]. Therefore,  $F : (X, \tau) \rightarrow (Y, \sigma)$  is lower  $\alpha$ -continuous by Theorem 7.

**DEFINITION 7.** The *semi-frontier* [4],  $s\text{Fr}(A)$ , of a subset  $A$  of a space  $X$  is defined as follows:  $s\text{Fr}(A) = s\text{Cl}(A) \cap s\text{Cl}(X - A) = s\text{Cl}(A) - s\text{Int}(A)$ .

**DEFINITION 8.** A multifunction  $F : X \rightarrow Y$  is said to be *complementary almost quasi continuous* [27] if for each open set  $V$  of  $Y$ ,  $F^-(s\text{Fr}(V))$  is a closed set of  $X$ .

**THEOREM 13.** *If  $F : X \rightarrow Y$  is u.a. $\alpha$ .c. and complementary almost quasi continuous, then it is upper  $\alpha$ -continuous.*

**Proof.** Let  $x \in X$  and  $V$  be any open set of  $Y$  such that  $F(x) \subset V$ . By Theorem 3, there exists  $G \in \alpha(X, x)$  such that  $F(G) \subset \text{sCl}(V)$ . Now, put  $U = G \cap [X - F^-(\text{sFr}(V))]$ . Since  $F^-(\text{sFr}(V))$  is closed in  $X$ ,  $U \in \alpha(X)$  [15, Lemma 3.3]. Moreover, we have  $F(x) \cap \text{sFr}(V) = \emptyset$  and hence  $x \in X - F^-(\text{sFr}(V))$ . Therefore, we obtain  $x \in U \in \alpha(X)$  and  $F(U) \subset V$  since  $F(U) \subset F(G) \subset \text{sCl}(V)$  and  $F(U) \subset Y - \text{sFr}(V)$ . So,  $F$  is upper  $\alpha$ -continuous.

**COROLLARY 6** (Popa [24]). *If  $f : X \rightarrow Y$  is an almost  $\alpha$ -continuous function and  $f^{-1}(\text{sFr}(V))$  is closed in  $X$  for each open set  $V$  of  $Y$ , then  $f$  is  $\alpha$ -continuous.*

## 5. Properties

**DEFINITION 9.** A multifunction  $F : X \rightarrow Y$  is said to be

- (a) *upper precontinuous* [23] if  $F^+(V) \in \text{PO}(X)$  for each open set  $V$  of  $Y$ ;
- (b) *lower precontinuous* [23] if  $F^-(V) \in \text{PO}(X)$  for each open set  $V$  of  $Y$ .

**DEFINITION 10.** A multifunction  $F : X \rightarrow Y$  is said to be

- (a) *upper almost quasi continuous* [27] at a point  $x \in X$  if for each open set  $U$  containing  $x$  and each open set  $V$  containing  $F(x)$ , there exists a nonempty open set  $G$  of  $X$  such that  $G \subset U$  and  $F(G) \subset \text{sCl}(V)$ ;
- (b) *lower almost quasi continuous* [27] at a point  $x \in X$  if for each open set  $U$  containing  $x$  and each open set  $V$  such that  $F(x) \cap V \neq \emptyset$ , there exists a nonempty open set  $G$  of  $X$  such that  $G \subset U$  and  $F(g) \cap \text{sCl}(V) \neq \emptyset$  for every  $g \in G$ ;
- (c) *upper almost quasi continuous (lower almost quasi continuous)* if  $F$  has the property at every point of  $X$ .

**THEOREM 14.** *If a multifunction  $F : X \rightarrow Y$  is upper precontinuous and upper almost quasi continuous, then it is u.a. $\alpha$ .c.*

**Proof.** Let  $V$  be a regular open set of  $Y$ . Since  $F$  is upper precontinuous,  $F^+(V) \in \text{PO}(X)$ . Since  $F$  is upper almost quasi continuous,  $F^+(V) \in \text{SO}(X)$  [27, Theorem 3.3] and hence  $F^+(V) \in \alpha(X)$  [16, Lemma 3.1]. Therefore,  $F$  is u.a. $\alpha$ .c.

**THEOREM 15.** *If a multifunction is lower precontinuous and lower almost quasi continuous, then it is l.a. $\alpha$ .c.*

**Proof.** The proof is similar to that of Theorem 14.

**COROLLARY 7** (Popa [24]). *If a function  $f : X \rightarrow Y$  is almost continuous (in the sense of Husain) and almost quasi continuous [20], then  $f$  is almost  $\alpha$ -continuous.*

**DEFINITION 11.** A subset  $S$  of a space  $X$  is called an  $A$ -set [34] if  $S = U - V$ , where  $U$  is an open set and  $V \in \text{RO}(X)$ .

**LEMMA 1** (Tong [34]). *A subset of a space  $X$  is open in  $X$  if and only if it is both  $\alpha$ -open and  $A$ -set.*

**DEFINITION 12.** A multifunction  $F : X \rightarrow Y$  is said to be *upper* (resp. *lower*) *almost A-continuous* if  $F^+(V)$  (resp.  $F^-(V)$ ) is an  $A$ -set of  $X$  for each  $V \in \text{RO}(Y)$ .

It follows from [24, Remark 1] that every upper almost continuous (resp. lower almost continuous) multifunction is upper almost  $A$ -continuous (resp. lower almost  $A$ -continuous) but the converse need not be true.

**THEOREM 16.** *A multifunction  $F : X \rightarrow Y$  is upper almost continuous (resp. lower almost continuous) if and only if it is both u.a. $\alpha$ .c. (resp. l.a. $\alpha$ .c.) and upper almost  $A$ -continuous (resp. lower almost  $A$ -continuous).*

**Proof.** This follows from Lemma 1 and [22, Theorem 2.4] (resp. [22, Theorem 2.2]).

**COROLLARY 8** (Popa [24]). *A function  $f : X \rightarrow Y$  is almost continuous (in the sense of Singal [31]) if and only if it is both almost feebly continuous and almost  $A$ -continuous.*

**DEFINITION 13.** A multifunction  $F : X \rightarrow Y$  is said to be

(a) *upper  $\beta$ -continuous* [26] if for each  $x \in X$  and each open set  $V$  of  $Y$  such that  $F(x) \subset V$ , there exists a  $\beta$ -open set  $U$  containing  $x$  such that  $F(U) \subset V$ ;

(b) *lower  $\beta$ -continuous* [26] if for each  $x \in X$  and each open set  $V$  of  $Y$  such that  $F(x) \cap V \neq \emptyset$ , there exists a  $\beta$ -open set  $U$  containing  $x$  such that  $F(u) \cap V \neq \emptyset$  for every  $u \in U$ .

**LEMMA 2** (Popa and Noiri [26]). *A multifunction  $F : X \rightarrow Y$  is upper  $\beta$ -continuous (resp. lower  $\beta$ -continuous) if and only if  $\text{Int}(\text{Cl}(\text{Int}(F^-(B)))) \subset F^-(\text{Cl}(B))$  (resp.  $\text{Int}(\text{Cl}(\text{Int}(F^+(B)))) \subset F^+(\text{Cl}(B))$ ) for every subset  $B$  of  $Y$ .*

**THEOREM 17.** *If a multifunction  $F : X \rightarrow Y$  is l.a. $\alpha$ .c. and upper  $\beta$ -continuous, then it is lower weakly continuous.*

**Proof.** Let  $V$  be any open set of  $Y$  such that  $F(x) \cap V \neq \emptyset$ . Since  $F$  is l.a. $\alpha$ .c., by Theorem 2  $x \in \text{Int}(\text{Cl}(\text{Int}(F^-(s\text{Cl}(V))))$ ). Let

$$U = \text{Int}(\text{Cl}(\text{Int}(F^-(s\text{Cl}(V))))),$$

then  $U$  is an open set containing  $x$ . Since  $F$  is upper  $\beta$ -continuous, by Lemma 2 we have  $U \subset F^-(\text{Cl}(\text{sCl}(V))) \subset F^-(\text{Cl}(V))$ . This shows that  $F$  is lower weakly continuous.

**COROLLARY 9** (Popa and Noiri [26]). *If a multifunction is lower  $\alpha$ -continuous and upper  $\beta$ -continuous, then it is lower weakly continuous.*

**COROLLARY 10** (Neubrunn [10]). *If a multifunction is lower  $\alpha$ -continuous and upper quasi continuous, then it is lower weakly continuous.*

**COROLLARY 11.** *If a multifunction is l.a. $\alpha$ .c. and upper precontinuous, then it is lower weakly continuous.*

**COROLLARY 12** (Neubrunn [10]). *If a multifunction  $F : X \rightarrow Y$  is lower almost continuous and upper precontinuous and  $Y$  is regular, then  $F$  is lower continuous.*

**Proof.** This follows from Corollary 11 and [21, Theorem 2].

**THEOREM 18.** *If a multifunction is u.a. $\alpha$ .c. and lower  $\beta$ -continuous, then it is upper weakly continuous.*

**Proof.** The proof is similar to that of Theorem 17.

**COROLLARY 13** (Popa and Noiri [26]). *If a multifunction is upper  $\alpha$ -continuous and lower  $\beta$ -continuous, then it is upper weakly continuous.*

**COROLLARY 14** (Neubrunn [10]). *If a multifunction is upper  $\alpha$ -continuous and lower quasi continuous, then it is upper weakly continuous.*

**COROLLARY 15.** *If a multifunction is u.a. $\alpha$ .c. and lower precontinuous, then it is upper weakly continuous.*

**DEFINITION 14.** A subset  $A$  of a space  $X$  is said to be *quasi  $H$ -closed relative to  $X$*  [29] if for every cover  $\{V_\alpha : \alpha \in \nabla\}$  of  $A$  by open sets of  $X$ , there exists a finite subset  $\nabla_0$  of  $\nabla$  such that  $A \subset \bigcup \{\text{Cl}(V_\alpha) : \alpha \in \nabla_0\}$ . If  $X$  is quasi  $H$ -closed relative to  $X$ , then the space  $X$  is called *quasi  $H$ -closed*. A subset  $A$  is said to be *quasi  $H$ -closed* if the subspace  $A$  is quasi  $H$ -closed. A quasi  $H$ -closed Hausdorff space is called  *$H$ -closed*.

**DEFINITION 15.** A space  $X$  is said to be  *$\alpha$ -compact* [8] if every cover of  $X$  by  $\alpha$ -open sets of  $X$  has a finite subcover.

**THEOREM 19.** *Let  $F : X \rightarrow Y$  be an upper weakly  $\alpha$ -continuous surjective multifunction such that  $F(x)$  is compact for each  $x \in X$ . If  $X$  is  $\alpha$ -compact, then  $Y$  is quasi  $H$ -closed.*

**Proof.** Let  $\{V_\lambda : \lambda \in \Lambda\}$  be any open cover of  $Y$ . For each  $x \in X$ ,  $F(x)$  is compact and hence there exists a finite subset  $\Lambda(x)$  of  $\Lambda$  such that  $F(x) \subset \bigcup \{V_\lambda : \lambda \in \Lambda(x)\}$ . Since  $F$  is upper weakly  $\alpha$ -continuous, there exists

$U(x) \in \alpha(X)$  such that  $F(U(x)) \subset \bigcup\{\text{Cl}(V_\lambda) : \lambda \in \Lambda(x)\}$ . Since  $X$  is  $\alpha$ -compact, there exist a finite number of points, say,  $x_1, x_2, \dots, x_n$  in  $X$  such that  $X = \bigcup\{U(x_i) : 1 \leq i \leq n\}$ . Therefore, we obtain

$$\begin{aligned} Y &= F(X) \\ &= F\left(\bigcup\{U(x_i) : 1 \leq i \leq n\}\right) \subset \bigcup\{\text{Cl}(V_\lambda) : \lambda \in \Lambda(x_i), \quad 1 \leq i \leq n\}. \end{aligned}$$

This shows that  $Y$  is quasi  $H$ -closed.

**THEOREM 20.** *Let  $F : (X, \tau) \rightarrow (Y, \sigma)$  be a surjective connected valued multifunction. If  $F$  is upper weakly  $\alpha$ -continuous (or lower weakly  $\alpha$ -continuous) and  $(X, \tau)$  is connected, then  $(Y, \sigma)$  is connected.*

**Proof.** Since  $(X, \tau)$  is connected  $(X, \tau^\alpha)$  is connected [30, Theorem 2]. By Theorem 7,  $F : (X, \tau^\alpha) \rightarrow (Y, \sigma)$  is upper weakly continuous (or lower weakly continuous) and hence  $(Y, \sigma)$  is connected [32, Theorem 11].

**COROLLARY 16** (Noiri [17]). *If  $f : X \rightarrow Y$  is a weakly  $\alpha$ -continuous surjection and  $X$  is connected, then  $Y$  is connected.*

**DEFINITION 16.** A multifunction  $F : X \rightarrow Y$  has an  $\alpha$ -closed graph if for each  $(x, y) \in X \times Y - G(F)$ , there exist  $U \in \alpha(X, x)$  and an open set  $V$  containing  $y$  such that  $[U \times \text{Cl}(V)] \cap G(F) = \emptyset$ .

**LEMMA 3.** *A multifunction  $F : X \rightarrow Y$  has an  $\alpha$ -closed graph if and only if for each  $(x, y) \in X \times Y - G(F)$ , there exist  $U \in \alpha(X, x)$  and an open set  $V$  of  $Y$  containing  $y$  such that  $F(U) \cap \text{Cl}(V) = \emptyset$ .*

**THEOREM 21.** *If  $F : X \rightarrow Y$  is an u.a. $\alpha$ .c. compact valued multifunction and  $Y$  is Hausdorff, then  $F$  has an  $\alpha$ -closed graph.*

**Proof.** Let  $(x, y) \in X \times Y - G(F)$ , then  $y \in Y - F(x)$ . For each  $a \in F(x)$ , there exist open sets  $V(a)$  and  $W(a)$  containing  $a$  and  $y$ , respectively, such that  $V(a) \cap W(a) = \emptyset$ . The family  $\{V(a) : a \in F(x)\}$  is an open cover of  $F(x)$  and there exist a finite number of points in  $F(x)$ , say,  $a_1, a_2, \dots, a_n$  such that  $F(x) \subset \bigcup\{V(a_i) : 1 \leq i \leq n\}$ . Set  $V = \bigcup\{V(a_i) : 1 \leq i \leq n\}$  and  $W = \bigcap\{W(a_i) : 1 \leq i \leq n\}$ . Then  $F(x) \subset V, V \cap W = \emptyset$  and  $V \cap \text{Cl}(W) = \emptyset$ . Thus  $F(x) \subset Y - \text{Cl}(W)$ . Since  $W$  is open,  $\text{Cl}(W)$  is regular closed and  $Y - \text{Cl}(W) \in \text{RO}(Y)$ . Theorem 3, there exists  $U \in \alpha(X, x)$  such that  $F(U) \subset Y - \text{Cl}(W)$ , thus  $F(U) \cap \text{Cl}(W) = \emptyset$  and by Lemma 3  $F$  has an  $\alpha$ -closed graph.

**COROLLARY 17.** *If  $F : X \rightarrow Y$  is an upper  $\alpha$ -continuous multifunction into a Hausdorff space  $Y$  and  $F(x)$  is compact for each  $x \in X$ , then  $F$  has an  $\alpha$ -closed graph.*

**THEOREM 22.** *If a multifunction  $F : X \rightarrow Y$  has an  $\alpha$ -closed graph, then  $F$  has the following property:*

(P) *For each set  $K$  quasi  $H$ -closed relative to  $Y$ ,  $F^-(K)$  is an  $\alpha$ -closed set of  $X$ .*

**Proof.** Let  $G(F)$  be  $\alpha$ -closed. Suppose that there exists a set  $K$  quasi  $H$ -closed relative to  $Y$  such that  $F^-(K)$  is not  $\alpha$ -closed in  $X$ . Then there exists  $x \in \alpha \text{Cl}(F^-(K)) - F^-(K)$ . Since  $x \in X - F^-(K)$ , we have  $F(x) \cap K = \emptyset$  and hence  $(x, y) \in X \times Y - G(F)$  for each  $y \in K$ . Since  $G(F)$  is  $\alpha$ -closed, there exist  $U(y) \in \alpha(X, x)$  and an open set  $V(y)$  of  $Y$  containing  $y$  such that  $F(U(y)) \cap \text{Cl}(V(y)) = \emptyset$ . The family  $\{V(y) : y \in K\}$  is an open cover of  $K$ . Since  $K$  is quasi  $H$ -closed relative to  $Y$ , there exist a finite number of points in  $K$ , say,  $y_1, y_2, \dots, y_n$  such that  $K \subset \cup\{\text{Cl}(V(y_i)) : 1 \leq i \leq n\}$ . Let  $U = \cap\{U(y_i) : 1 \leq i \leq n\}$ . Then  $U \in \alpha(X, x)$  and  $F(U) \cap K = \emptyset$ . Therefore, we have  $U \cap F^-(K) = \emptyset$ . This contradicts the fact that  $x \in \alpha \text{Cl}(F^-(K))$ .

**COROLLARY 18.** *If a multifunction  $F : X \rightarrow Y$  has an  $\alpha$ -closed graph and  $Y$  is quasi  $H$ -closed, then  $F$  is u.a.α.c.*

**Proof.** Let  $K$  be a regular closed set of  $Y$ . Since  $Y$  is quasi  $H$ -closed,  $K$  is quasi  $H$ -closed relative to  $Y$  and by Theorem 22  $F^-(K)$  is  $\alpha$ -closed in  $X$ . Therefore,  $F$  is u.a.α.c. by Theorem 3.

**DEFINITION 17.** A Hausdorff space  $X$  is said to be *locally  $H$ -closed* [19] if every point of  $X$  has an  $H$ -closed neighborhood.

**THEOREM 23.** *Let  $Y$  be a locally  $H$ -closed space. If a multifunction  $F : X \rightarrow Y$  is compact valued and has the following property:*

(P\*) *For each quasi  $H$ -closed set of  $Y$ ,  $F^-(K)$  is  $\alpha$ -closed in  $X$ , then  $F$  has an  $\alpha$ -closed graph.*

**Proof.** Let  $Y$  be locally  $H$ -closed and  $(x, y) \in X \times Y - G(F)$ , then  $y \in Y - F(x)$ . Since  $Y$  is Hausdorff and  $F(x)$  is compact for every  $x \in X$ , as in Theorem 21 there exist open sets  $U$  and  $V$  such that  $y \in U, F(x) \subset V$  and  $U \cap V = \emptyset$ . Since  $Y$  is locally  $H$ -closed, there exists an  $H$ -closed neighborhood  $W$  of  $y$ . So there exists an open set  $W_0$  such that  $y \in W_0 \subset W$ . Let  $G = U \cap W_0$ , then  $G$  is open,  $y \in G$  and  $G \cap V = \emptyset$  which implies  $\text{Cl}(G) \cap V = \emptyset$ . Since  $Y$  is Hausdorff and  $W$  is  $H$ -closed,  $W$  is closed and hence  $\text{Cl}(G) \subset W$ . Since  $G$  is open in  $Y$ ,  $G$  is open in  $W$  and  $\text{Cl}(G)$  is regular closed in  $W$ . Since  $W$  is  $H$ -closed,  $\text{Cl}(G)$  is  $H$ -closed. Since  $F$  has the property (P\*),  $F^-(\text{Cl}(G))$  is  $\alpha$ -closed in  $X$ . Let  $H = X - F^-(\text{Cl}(G))$ . Then we obtain  $H \in \alpha(X, x)$  and  $F(H) \cap \text{Cl}(G) = \emptyset$  because  $V \cap \text{Cl}(G) = \emptyset$ . Thus  $F$  has an  $\alpha$ -closed graph.

**COROLLARY 19.** *Let  $Y$  be an  $H$ -closed space. Then for a compact valued multifunction  $F : X \rightarrow Y$ , the following are equivalent:*

- (1)  $F$  is u.a. $\alpha$ .c.;
- (2)  $F$  has an  $\alpha$ -closed graph;
- (3)  $F$  has the property (P);
- (4)  $F$  has the property  $P^*$ .

**Proof.** This is an immediate consequence of Theorems 21, 22 and 23 and Corollary 18.

### References

- [1] M. E. AbdEl-Monsef, S. N. El-Deeb and R. A. Mahmoud,  $\beta$ -open sets and  $\beta$ -continuous mappings, *Bull. Fac. Sci. Assiut Univ.*, 12 (1983), 77–90.
- [2] D. Andrijević, *Semi-preopen sets*, *Mat. Vesnik*, 38 (1986), 24–32.
- [3] S. G. Crossley, S. K. Hildebrand, *Semi-closure*, *Texas J. Sci.*, 22 (1971), 99–112.
- [4] P. Das, *Note on some applications on semi-open sets*, *Progress Math.*, 7 (1973), 33–44.
- [5] I. Kovačević, *Subsets and paracompactness*, *Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat.*, 14 (1984), 79–87.
- [6] N. Levine, *Semi-open sets and semi-continuity in topological spaces*, *Amer. Math. Monthly*, 70 (1963), 36–41.
- [7] S. N. Maheshwari, Gyu Ihn Chae and C. P. Jain, *Almost feebly continuous functions*, *Ulsan Inst. Tech. Rep.*, 13 (1982), 195–197.
- [8] S. N. Maheshwari, S. S. Thakur, *On  $\alpha$ -compact spaces*, *Bull. Inst. Math. Acad. Sinica*, 13 (1985), 341–347.
- [9] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, *On precontinuous and weak precontinuous mappings*, *Proc. Math. Phys. Soc. Egypt*, 53 (1982), 47–53.
- [10] T. Neubrunn, *Strongly quasi-continuous multivalued mappings*, *General Topology and its Relations to Modern Analysis and Algebra VI* (Prague 1986) Heldermann, Berlin, 1988, 351–359.
- [11] O. Njåstad, *On some classes of nearly open sets*, *Pacific J. Math.*, 15 (1965), 961–970.
- [12] T. Noiri, *On semi-continuous mappings*, *Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.* (8), 54 (1973), 210–214.
- [13] T. Noiri, *A note on semi-continuous mappings*, *Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.* (8), 55 (1973), 400–403.
- [14] T. Noiri, *Weak-continuity and closed graphs*, *Časopis Pěst. Mat.*, 101 (1976), 379–382.
- [15] T. Noiri, *A function which preserves connected spaces*, *Časopis Pěst. Mat.*, 107 (1982), 393–396.
- [16] T. Noiri, *On  $\alpha$ -continuous functions*, *Časopis Pěst. Mat.*, 109 (1984), 118–126.
- [17] T. Noiri, *Weakly  $\alpha$ -continuous functions*, *Internat. J. Math. Math. Sci.*, 10 (1987), 483–490.
- [18] T. Noiri, *Almost  $\alpha$ -continuous functions*, *Kyungpook Math. J.*, 28 (1988), 71–77.

- [19] F. Obreanu, *Locally absolutely closed spaces* (Romanian), Anal. Acad. R.P.R. Sect. Fiz. Mat. Chimie Ser. A, 3 (1950), 375–394.
- [20] V. Popa, *On the decompositions of the quasicontinuities in topological spaces* (Romanian), Stud. Cerc. Mat., 30 (1978), 31–35.
- [21] V. Popa, *Weakly continuous multifunctions*, Boll. Un. Mat. Ital. (5), 15-A (1978), 379–388.
- [22] V. Popa, *Almost continuous multifunctions*, Mat. Vesnik, 6(19)(34) (1982), 75–84.
- [23] V. Popa, *Some properties of  $H$ -almost continuous multifunctions*, Problemy Mat., 10 (1988), 9–26.
- [24] V. Popa, *Some properties of almost feebly continuous functions*, Demonstratio Math., 23 (1990), 985–991.
- [25] V. Popa, *A note on weakly and almost continuous multifunctions*, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 21 (1991), 31–38.
- [26] V. Popa, T. Noiri, *On upper and lower  $\alpha$ -continuous multifunctions*, Math. Slovaca, 43 (1993), 477–491.
- [27] V. Popa, T. Noiri, *On upper and lower almost quasi continuous multifunctions*, Bull. Inst. Math. Acad. Sinica, 21 (1993), 337–349.
- [28] V. Popa, T. Noiri, *On upper and lower weakly  $\alpha$ -continuous multifunctions (prepairing)*.
- [29] J. Porter, J. Thomas, *On  $H$ -closed and minimal Hausdorff spaces*, Trans. Amer. Math. Soc., 138 (1969), 159–170.
- [30] I. L. Reilly, M. K. Vamanamurthy, *Connectedness and strong semi-continuity*, Časopis Pěst. Mat., 109 (1984), 261–265.
- [31] M. K. Singal, A. R. Singal, *Almost continuous mappings*, Yokohama Math. J., 16 (1968), 63–73.
- [32] R. E. Smithson, *Almost and weak continuity for multifunctions*, Bull. Calcutta Math. Soc., 70 (1978), 383–390.
- [33] S. S. Thakur, P. Paik, *Almost  $\alpha$ -continuous mappings*, J. Sci. Res., 9(1987), 37–40.
- [34] J. C. Tong, *A decomposition of continuity*, Acta Math. Hungar., 48(1986), 11–15.
- [35] J. D. Wine, *Locally paracompact spaces*, Glasnik Mat., 10(30) (1975), 351–357.

Valeriu Popa

DEPARTMENT OF MATHEMATICS  
UNIVERSITY OF BACĂU  
5500 BACĂU, RUMANIA

Takashi Noiri

DEPARTMENT OF MATHEMATICS  
YATSUSHIRO COLLEGE OF TECHNOLOGY  
YATSUSHIRO, KUMAMOTO, 866 JAPAN

Received October 10, 1994.