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ON UPPER AND LOWER 
ALMOST a-CONTINUOUS MULTIFUNCTIONS 

In this paper, the authors define a multifunction F : X —* Y to be 
upper (lower) almost a-continuous if F+(V) (F~(V)) is a-open in X for 
every regular open set V of Y. They obtain some characterizations and 
several properties concerning upper (lower) almost a-continuous multifunc-
tions. The relationships between these multifunctions and a-closed graphs 
are investigated. 

1. Introduction 
In 1965, Njastad [11] introduced a weak form of open sets called a-sets. 

In [18, 24] the authors investigated a class of functions called almost a-
continuous or almost feebly continuous. In 1986, Neubrunn [10] introduced 
the notion of upper (lower) a-continuous multifunctions. The purpose of the 
present paper is to define upper (lower) almost a-continuous multifunctions 
and to obtain some characterizations of upper (lower) almost a-continuous 
multifunctions and several properties of such multifunctions. 

2. Preliminaries 
Let X be a topological space and A a subset of X. The closure of A and 

the interior of A are denoted by C1(A) and Int(i4), respectively. A subset A 
is said to be a-open [11] (resp. semi-open [6], preopen [9], f3-open [1] or semi-
preopen [2]) if A C Int(Cl(Int(A))) (resp. A C Cl(Int(A)), A C Int(Cl(A)), 
A C Cl(Int(Cl(A)))). The family of all semi-open (resp. a-open) sets of X 
containing a point x G X is denoted by SO(X, x) (resp. a(X, x)). The family 
of all a-open (resp. semi-open, preopen, semi-preopen) sets in X is denoted 
by a ( X ) (resp. SO(X), PO(X), SPO(X)). For these four families, it is shown 
in [16, Lemma 3.1] that SO(X) D PO(X) = a ( X ) and it is obvious that 
S 0 ( X ) U P 0 ( X ) C SPO(X). Since a ( X ) is a topology for X [11, Proposition 
2], by aCl(yl) (resp. a ln t (A)) we denote the closure (resp. interior) of A 
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with respect to oi(X). The complement of a semi-open (resp. a-open) set is 
said to be semi-closed (resp. a-closed). The intersection of all semi-closed 
sets of X containing A is called the semi-closure [3] of A and is denoted by 
sCl(A). The union of all semi-open sets of X contained in A is called the 
semi-interior of A and is denoted by slnt(A). A subset A is said to be feebly 
open [5] if there exists an open set U such that U C A C sCl(J7). It is shown 
in [16, Lemma 4.12] that the notion of feebly open sets is equivalent to that 
of a-open sets. A subset A of a space X is said to regular open (resp. regular 
closed) if A = Int(Cl(A)) (resp. A = Cl(Int(A))). The family of regular 
open (resp. regular closed) sets of X is denoted by RO(X) (resp. RC(X)). 
Maheshwari et al. [7] defined a function to be almost feebly continuous if the 
inverse image of every regular open set is feebly open. Noiri [18] defined a 
function / : X —• Y to be almost a-continuous if /~ 1 (V) G oi(X) for every 
V € RO(Y) and pointed out that almost feeble continuity is equivalent to 
almost a-continuity. 

Throughout this paper, spaces (X, r ) and (X, tr) (or simply X and Y) 
always mean topological spaces and F : X —> Y (resp. f : X —> Y) presents 
a multivalued (resp. single valued) function. For a multifunction F : X —• Y, 
we shall denote the upper and lower inverse of a set G of Y by F+(G) and 
F~(G), respectively, that is 

F+(G) = {x G X : F(x) C G) and F~(G) = {x 6 X : F(x) n G £ 0}. 

3. Characterizations 

D E F I N I T I O N 1. A multifunction F : X -»• Y is said to be 
(a) upper almost a-continuous (briefly u.a.a.c.) at a point x £ X if for 

each U € SO(X, x) and each open set V containing F(x), there exists a 
nonempty open set G C U such that F(G) C sCl(F); 

(b) lower almost a-continuous (briefly l.a.a.c.) at a point x 6 X if for 
each U € SO(X,x) and each open set V such that F (x )nV ^ 0, there exists 
a nonempty open set G C U such that F(g) D sCl(V) ^ 0 for every g G G] 

(c) upper (lower) almost a-continuous if F has this property at every 
point of X . 

T H E O R E M 1. The following are equivalent for a multifunction F : 
X ^ Y: 

(1) F is u.a.a.c. at a point x € X; 
(2) for any open set V of Y containing F(x), there exists S € a(X, x) 

such that F(S) C sCl(V); 
(3) x e aInt(F+(sCl(V r))) for every open set V containing F(x)-, 
(4) x € Int(Cl(Int(F+(sCl(V))))) for every open set V containing F(x). 
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P r o o f . (1)=^(2): Let V be any open set of Y containing F(x). For each 
U G SO(X, x), there exists a nonempty open set G\j such that Gu C U 
and F{Gu) C sCl(F). Let W = ( J i ^ i ; : U G SO(X,x)} . Put 5 = 
then W is open in X,x G sCl(W) and F(W) C sCl(V). Therefore, we have 
S G a(X,x) [26, Lemma 2.1] and F(S) C sCl(F). 

(2)=»(3): Let V be any open set of Y containing F(x). Then there exists 
S G a(X, x) such that F ( 5 ) C sCl(V). Thus we obtain x G S C F+(sCl(F)) 
and hence x € aInt(F+(sCl(V))). 

(3)=>(4): Let V be any open set of Y containing F(x). Now put U = 
a Int(F +(sCl(F))) . Then U € a(X) and x G U C F+(sCl(F)). Thus we 
have xeU C IntiClilntiF+isCKV))))). 

(4)=>-(l): Let U G SO(X, x) and V be any open set of Y containing F(x). 
Then we have x G Int(Cl(Int(F+(sCl(F))))) = sCl(Int(F+(sCl(V)))). It fol-
lows from [13, Lemma 3] and [12, Lemma 1] that 0 ^ J7nInt(.F+(sCl(y))) G 
SO(X). Put G = Int(j7nInt(F+(sCl(F)))). Then G is a nonempty open set 
of Y [12, Lemma 4], G C U and F(G) C sCl(F). 

T H E O R E M 2 . The following are equivalent for a multifunction F : 
X Y: 

(1) F is l.a.a.c. at a point x of X; 
(2) for any open set V of Y such that F(x) f lK / 0, there exists S G 

a(X,x) such that F(s) D sCl(F) ^ 0 for every s G 5; 
(3) x G ct Int(F -(sCl(V))) for every open set V of Y such that F(x) n 

(4) x G Int(Cl(Int(ir'~ (sCl(F))))) for every open set V of Y such that 
F(x) DV ji 0. 

P r o o f . The proof is similar to that of Theorem 1. 

T H E O R E M 3 . The following are equivalent for a multifunction F : 
X -»• Y: 

(1) F is u.a.a.c.; 
(2) for each x G X and each open set V of Y containing F(x), there 

exists U G a(X,x) such that F(U) C sCl(F); 
(3) for each x £ l and each V G RO(y) containing F(x), there exists 

U G a(X,x) such that F(U) C V; 
(4) F+(V) G a(X) for every V G RO(F); 
(5) F~(K) is a-closed in X for every K G RC(F); 
(6) F+(V) C alntif+CsCKV))) for every open set V ofY; 
(7) oCliF-isIntiA"))) C F~(K) for every closed set K ofY\ 
(8) aCl(F-(Cl(Int(JSr)))) C F~{K) for every closed set K ofY; 
(9) a Cl(F~ (Cl(Int(Cl(5))))) C F"(C1(5)) for every subset B ofY; 
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(10) Cl(Int(Cl(F-(Cl(Int(ii')))))) C F~(K) for every closed set K ofY; 
(11) Cl(Int(Cl(F"(sInt(A'))))) C F~(K) for every closed set K ofY; 
(12) F+(V) C IntiCKlntiF+isCliF))))) for every open set V ofY. 
Proof . (l)=>-(2): The proof follows immediately from Theorem 1. 
(2)=K3): This is obvious. 
(3)=>(4): Let V 6 RO(F) and a; e F+(V). Then F(x) C V and there 

exists Ux € o{ T ,x) such that F(UX) C V. Therefore, we have x € Ux C 
F+(V) and hence F+(V) € a(X). 

(4)=^(5): This follows from the fact that F+(Y - B) = X - F~{B) for 
nhset B of Y. 

(5)=>(6): Let V be any open set of Y and x e F+(V). Then we have 
F(x) C V C sCl(F) and hence x 6 F+(sCl(V)) = X - F"(Y - sCl(F)). 
Since Y - sCl(F) € RC(Y),F"(Y - sCl(F)) is a-closed in X. Therefore, 
F+(sCl(F)) € a(X,x) and hence x € aInt(F+(sCl(F))). Consequently, we 
obtain F+(V) C aInt(F+(sCl(F))). 

(6)=>(7): Let K be any closed set of Y. Then, since Y — K is open, we 
obtain 

X - F~(K) = F+(F - K) C aInt(F+(sCl(Y - K))) 
= aInt (F + (Y — slnt(A'))) 
= a Int(X - F~(sInt(A))) = X - a Cl(F_(sInt(/if)))-

Therefore, we obtain a Cl(F~(sInt(A'))) C F~(K). 
(7)=»(8): The proof is obvious since slnt(A') = Cl(Jnt(A')) for every 

closed set K. 
(8) =>-(9): The proof is obvious. 
(9)=>(10): It follows from [26, Lemma 2.2] that Cl(Int(Cl(A))) C a C1(A) 

for every subset A. Thus for every closed set K C Y, we have 
Cl(Int(Cl(F-(Cl(Int(/0))))) C a Cl(F-(Cl(Int(A"))» 
= aCl(F-(Cl(Int(Cl(A'))))) C F"(C1(A')) = F~(K). 

(10)=>-(11): The proof is obvious since slnt(A') = Cl(Int(A')) for every 
closed set K. 

(11)=>-(12): Let V be any open set of Y. Then Y - V is closed in Y and 
we have 

Cl(Int(Cl(F"(sInt(Y - V))))) C F~(Y - V) = X - F+(V). 
Moreover, we have 

Cl(Int(Cl(F-(sInt(F - V)))))) = Cl(Int(Cl(F-(F - sCl(V))))) = 
Cl(Int(Cl(X - F + ( sCl(V))))) = X- Int(Cl(Int(F+(sCl(V)))). 

Therefore, we obtain F+(V) C Int(Cl(Int(F+(sCl(F))))). 
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(12)=^(1): Let x be any point of X and V be any open set of Y containing 
F(x). Then x G F+(V) C Int(Cl(Int(F+(sCl(F))))) and hence F is u.a.a.c. 
at x by Theorem 1. 

T H E O R E M 4 . The following are equivalent for a multifunction F : 
X -+Y: 

(1) F is u.a.a.c.; 
(2) a C l ( F " ( 7 ) ) C F~(Cl(V)) for every V G SPO(Y); 
(3) a C1(F - (V)) C F"(C1(V)) for every V G SO(y); 
(4) F+(V) C alnt(F+(lnt(C\{V)))) for every V G P O ( y ) . 

P r o o f . (1)=»(2): Let V be any semi-preopen set of Y. Since C1(F) G 
RC(F), by Theorem 3 F"(C1(F)) is a-closed in X and F~(V) C F~(C1(V)). 
Therefore, we obtain a C1(F"(V)) C F~(Cl(V)). 

(2)=>(3): This is obvious since SO(F) C SPO(y) . 
(3)=»(1): Let K € RC(F). Then K € SO(Y) and hence aCl (F" (A ' ) ) C 

F~(K). Therefore, F~(K) is a-closed in X and hence F is u.a.a.c. by 
Theorem 3. 

(1)=»(4): Let V be arbitrary preopen set of Y. Since Int(Cl(V)) G RO(Y), 
by Theorem 3 we have F+(Int(Cl(V))) G a ( X ) and hence 

F+(V) C F + ( In t (Cl (F) ) ) = a In t (F + ( In t (Cl (F) ) ) ) . 

(4)=>(1): Let V be any regular open set of Y. Since V G PO(Y), we have 

-F+(V) C a In t (F + ( In t (Cl (F) ) ) ) = aIn t (F + (V r ) ) 

and hence F+(V) G ct(X). It follows from Theorem 3 that F is u.a.a.c. 

T H E O R E M 5 . The following are equivalent for a multifunction F : 
X Y: 

(1) F is l.a.a.c.; 
(2) for each x G X and each open set V of Y such that F(x) 0 V ^ 0, 

there exists U G a(X,x) such that U C F~(sCl(V)); 
(3) for each x G X and each V G RO(y) such that F(x) D V 0, there 

exists U G a ( X , x ) such that U C F~(V); 
(4) F~(V) G a(X) for every V G RO(y); 
(5) F+(K) is a-closed in X for every K G RC(Y); 
(6) F~(V) C aInt(F~(sCl(V))) for every open set V ofY; 
(7) aCl(F+(sInt( / i ' ) )) C F+(K) for every closed set K ofY; 
(8) aCl(F+(Cl(Int(A')))) C F+(K) for every closed set K ofY; 
(9) aCl(F+(Cl(Int(Cl(f l))))) C F+(C1(B)) for every subset B ofY; 
(10) Cl(Int(Cl(F+(Cl(Int(ir)))))) C F+{K) for every closed set K ofY; 
(11) Cl(Int(Cl(F+(sInt(A'))))) C F+{K) for every closed set K ofY; 
(12) F~(V) C Int(Cl(Int(F-(sCl(V))))) for every open set V ofY. 
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Proof. The proof is similar to that of Theorem 3. 
THEOREM 6 . The following are equivalent for a multifunction F : 

X-+Y: 
(1) F is l.a.a.c.; 
(2) ad(F+(V)) C F+(C1(V)) for every V G SPO(F); 
(3) aCl(F+(F)) C F+(C1(F)) for every V G SO(y); 
(4) F-(V) C aInt(F-(Int(Cl(F)))) for every V G PO(Y). 
Proof. The proof is similar to that of Theorem 4. 
A function / : X -* Y is said to be almost a-continuous [18] if f~l(V) € 

a(X) for every V G RO(Y). 
COROLLARY 1 (Maheshwari et al. [7], Noiri [18] and Popa [24]). The 

following are equivalent for a function f : X —> Y: 
(1) / is almost a-continuous; 
(2) for each x G X and each open set V of Y containing f(x), there 

exists U G a(X,x) such that f(U) C sCl(V); 
(3) for each x € X and each V € RO(y) containing f(x), there exists 

U e a(X,x) such that f(U) C V; 
(4) for each x € X and each open set V of Y containing /(x), there 

exists U G a(X,x) such that f(U) C Int(Cl(F)); 
(5) w a-closed in X for every K G RC(Y); 
(6) f-\V) C alntCZ-^isCliV))) for every open set V ofY\ 
(7) aCl(/-1(slnt(ii'))) C f~x{K) for every closed set K ofY; 
(8) aCllf-^ClilntiK)))) C f'HK) for every closed set K ofY; 
(9) aC\(f-l(Cl(Int(C\(B))))) C /-X(C1(5)) for every subset B ofY; 
(10) Cl(Int(a(/-1(Cl(Int(«')))))) C f~\K)for every closed set K ofY; 
(11) ClilntiCKZ-̂ isIntiii:))))) C f'HK) for every closed set K ofY-
(12) f~l{V) C Int(Cl(Iht(/-1(sCl(V))))) for every open set V ofY. 
COROLLARY 2 . The following are equivalent for a function f : X -+Y: 
(1) / is almost a-continuous; 
(2) a CI(f-^V)) C /"HC1(V)) for every V G SPO(Y); 
(3) aClif-HV)) C /-1(C1(V)) for every V G SO(Y); 
(4) C aInt(/-1(Int(a(V)))) for every V G PO(Y). 

4. Almost a-continuity and a-continuity 
DEFINITION 2 . A multifunction F : X Y is said to be 
(a) upper a-continuous [26] (resp. upper weakly a-continuous [28]) at 

a point x of X if for each open set V of Y containing F(x), there exists 
U G a(X,x) such that F(U) C V (resp. F(U) C C1(V)); 
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(b) lower a-continuous [26] (resp. lower weakly a-continuous [28]) at 
x € X if for each open set V of Y such that F(x) f~l V 0, there exists 
U e a(X,x) such that F(u) n V ± 0 (resp. F(u) n C1(V) ^ 0) for every 
ueU; 

(c) upper (or lower) a-continuous [10] (resp. weakly a-continuous [28]) 
if it is upper (or lower) a-continuous (resp. weakly a-continuous) at every 
point o f X . 

DEFINITION 3 . A multifunction F : X -»• Y is said to be 

(a) upper almost continuous [22] (resp. upper weakly continuous [21, 32]) 
at x G X if for each open set V of Y containing F(x), there exists an open 
set U of X containing x such that F(U) C Int(Cl(F)) (resp. F(U) C C 1 ( V ) ) ; 

(b) lower almost continuous [22] (resp./oiwer weakly continuous [21, 32]) 
if for each open set V of Y such that F(i)(~lV ^ 0, there exists an open set U 
of A" containing x such that F(u)D Int(Cl(V)) ¿ 0 (resp. F ( u ) n C l ( F ) / 0) 
for every u e U; 

(c) upper (or lower) almost continuous [22] (resp. weakly continuous [21, 
32]) if it is upper (or lower) almost continuous (resp. weakly continuous) at 
every point of X . 

T H E O R E M 7. ( 1 ) A multifunction F : (X,r) -+ (X,cr) is upper a-
continuous (resp. u.a.a.c., upper weakly a-continuous) if and only if F : 
( X , ra) (Y,o) is upper continuous (resp. upper almost continuous, upper 
weakly continuous). 

(2) A multifunction F : (X,r) —> (Y, a) is lower a-continuous (resp. 
l.a.a.c., lower weakly a-continuous) if and only if F : (X,ra) -*• (Y, a) is 
lower continuous (resp. lower almost continuous, lower weakly continuous). 

P r o o f . The proof is obvious from the definitions. 

DEFINITION 4 . A subset A of a space X is said to be 

(a) a-paracompact [35] if every cover of A by open sets of X is refined 
by a cover of A which consists of open sets of X and is locally finite in X; 

(b) a-regular [5] if for each point x € A and each open set U of X 
containing x, there exists an open set G of X such that x £ G C C1(<J) C U. 

T H E O R E M 8 . For a multifunction F : ( X , T ) (Y,CR) such that F(x) is 
an a-regular a-paracompact set for each x € X, the following are equivalent: 

(1) F is upper weakly a-continuous; 
(2) F is u.a.a.c.; 
(3) F is upper a-continuous. 
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P r o o f . (1)=K3): By Theorem 7, F : ( X , T " ) (Y, a) is upper weakly 
continuous and hence upper continuous [25, Theorem 1]. Thus, it follows 
from Theorem 7 that F : (X, r ) —• (Y, a) is upper a-continuous. 

THEOREM 9. For a multifunction F : X —• Y such that F(x) is an 
a-regular set for every x £ X, the following are equivalent: 

(1) F is lower weakly a-continuous; 
(2) F is l.a.a.c.; 
(3) F is lower a-continuous. 

P r o o f . (1)=K3): By Theorem 7, F : ( X , r a ) (Y,tr) is lower weakly 
continuous and hence lower continuous [25, Theorem 2]. Thus, it follows 
from Theorem 7 that F : (X, r ) —• (Y, cr) is lower a-continuous. 

DEFINITION 5 . A subset A of a space X is said to be a-semi-regular 
[25] if for each point a € A and each open set U containing a, there exists 
V € RO(X) such that a € V C U. 

T H E O R E M 10 . Let F : (X,r) (Y, a) be a multifunction such that F(x) 
is an a-semi-regular set for each x G X. Then F is l.a.a.c. if and only if F 
is lower a-continuous. 

P r o o f . Suppose that F : (X,R) —* (Y,cr) is l.a.a.c. By Theorem 7, 
F : (X, TA) —> (Y, <J) is lower almost continuous. It follows from [25, Theorem 
5] that F : ( X , T a ) —> (Y, a) is lower continuous. Therefore, by Theorem 7 
F : (X,T) —• (Y, <T) is lower a-continuous. 

DEFINITION 6. A space X is said to be 

(a) semi-regular if for each point x of X and each open set U containing 
x, there exists V 6 RO(X) such that x £ V C U. 

(b) rim-compact if each point of X has a base of neighbourhoods with 
compact frontiers. 

COROLLARY 3 . Every l.a.a.c. multifunction F : X —• Y is lower a-
continuous if Y is semi-regular. 

COROLLARY 4 (Maheshwari et al. [7] and Thakur and Paik [33] ) . Every 
almost a-continuous function f : X —• Y is a-continuous if Y is semi-
regular. 

T H E O R E M 11 . If Y is a rim-compact space and F : X —» Y is a compact 
valued multifunction with the closed graph, then the following are equivalent: 

(1) F is upper weakly a-continuous; 
(2) F is u.a.a.c.; 
(3) F is upper a-continuous. 
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P r o o f . Suppose that F is upper weakly a-continuous. Let x € X and 
V be any open set of Y containing F(x). Since Y is rim-compact, for each 
z € F(x) there exists an open set W(z) such that z 6 W(z) C V and the 
frontier Fr(VF(z)) is compact. The family {W(z) : z € is a cover of 
F(x) by open sets of Y. Since F(x) is compact, there exists a finite number 
of points, say, zi, Z 2 , . . . , z n in F(x) such that F(x) C U{W(zj) : 1 < j < n}. 
Let W = U { W ( z j ) ; 1 < j < n}, then we have Fr(W) is compact, F(x) C 
W C V, and 

F(x) n Fr(W) = F(x) n C1(W) n C1(F - W ) C F(x) n (Y - W) = 0. 
For each y e PV(W), (x,y) G X x Y - G(F). Since G(F) is closed, there 
exist open sets U(y) C X and V(y) C Y containing x and y, respectively, 
such that F(U(y)) n V(y) = 0. The family (V(y) : y e Fr(W)} is a cover 
of Fr(W^) by open sets of V. Since Fr(W^) is compact, there exists a finite 
subset K of Fr(W) such that Fr(W) C U{V(y) : y € K). Since F is upper 
weakly a-continuous, there exists UQ € A(X,x) such that F(Uo) C Cl(VF). 
Put U = U0(~\ [D{i7(2/) : y G A'}]. Then we obtain U € a ( X , x ) [15, Lemma 
3.3], F(U) C C1(W) and F(U) n Fr(VF) = 0. Therefore, we obtain F(U) C 
W C V. This shows that F is upper a-continuous. 

COROLLARY 5 (Popa [24]) . I f Y is a rim-compact space and f : X 
Y is an almost a-continuous function with the closed graph, then f is a-
continuous. 

T H E O R E M 12 . If (Y,a) is rim-compact Hausdorff, then for a multifunc-
tion F : ( X , r ) —v (Y, a ) the following are equivalent: 

(1) F is lower weakly a-continuous; 
(2) F is l.a.a.c.; 
(3) F is lower a-continuous. 

P r o o f . Suppose that F is lower weakly a-continuous. It follows from 
Theorem 7 that F : (X,RA) —> (X,A) lower weakly continuous. Since 
(y, a ) is rim-compact Hausdorff, it is regular [14, Theorem 4] and hence 
F : ( X , T A ) —• (Y,<T) is lower continuous [21, Theorem 2]. Therefore, F : 
( X , T) —• (y, <r) is lower a-continuous by Theorem 7. 

DEFINITION 7. The semi-frontier [4], sFr(A), of a subset A of a space X 
is defined as follows: sFr(A) = SC1(J4) L~L sCl(X - A) = sCl(A) - slnt(A). 

DEFINITION 8. A multifunction F : X —• Y is said to be complementary 
almost quasi continuous [27] if for each open set V of Y, F~(sFr(V)) is a 
closed set of X . 

T H E O R E M 13 . If F : X —*Y is u.a.a.c. and complementary almost quasi 
continuous, then it is upper a-continuous. 
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P r o o f . Let i G l and V be any open set of Y such that F(X) C V. 
By Theorem 3, there exists G € a ( J f ,x ) such that F(G) C sCl(Y). Now, 
put U = G n [X - F"(sFr(Y))]. Since F~{sFr(Y)) is closed in e 
a (X) [15, Lemma 3.3]. Moreover, we have F(a;) fl sFr(V) = 0 and hence 
x € X - F-(sFr(Y)) . Therefore, we obtain x 6 U G a ( X ) and F(U) C V 
since F(U) C F(G) C sCl(Y) and F(U) C Y - S¥T{V). SO, F is upper 
a-continuous. 

COROLLARY 6 (Popa [24 ] ) . If f : X —> Y i s an almost a-continuous 
function and / - 1 ( s F r ( F ) ) is closed in X for each open set V of Y, then f 
is a-continuous. 

5. Properties 

DEFINITION 9. A multifunction F : X -»• Y is said to be 
(a) upper precontinuous [23] if F+(V) £ PO(X) for each open set V 

of Y; 
(b) /ower precontinuous [23] if F~(V) 6 PO(X) for each open set V 

of Y. 

DEFINITION 10. A multifunction F : X Y is said to be 
(a) upper almost quasi continuous [27] at a point x 6 X if for each open 

set U containing x and each open set V containing F(x), there exists a 
nonempty open set G of X such that G C U and F(G) C sCl(F); 

(b) lower almost quasi continuous [27] at a point x G X if for each open 
set U containing x and each open set V such that F(x) fl V ^ 0, there exists 
a nonempty open set G of X such that G C U and F(g) D sC^Y) / 0 for 
every g € G; 

(c) upper almost quasi continuous (lower almost quasi continuous) if F 
has the property at every point of X. 

THEOREM 1 4 . If a multifunction F : X —yY is upper precontinuous and 
upper almost quasi continuous, then it is u.a.a.c. 

P r o o f . Let V be a regular open set of Y. Since F is upper precontinu-
ous, F+(V) (E PO(X). Since F is upper almost quasi continuous, F+(V) € 
SO(X) [27, Theorem 3.3] and hence F+(V) € a (X) [16, Lemma 3.1]. There-
fore, F is u.a.a.c. 

THEOREM 1 5 . If a multifunction is lower precontinuous and lower almost 
quasi continuous, then it is l.a.a.c. 

P r o o f . The proof is similar to that of Theorem 14. 
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C O R O L L A R Y 7 (Popa [24] ) . If a function f : X Y is almost continuous 
(in the sense of Husain) and almost quasi continuous [20], then f is almost 
a-continuous. 

D E F I N I T I O N 1 1 . A subset 5 of a space X is called an A-set [34] if S = 
U — V, where U is an open set and V € RO(X) . 

L E M M A 1 (Tong [34]). A subset of a space X is open in X if and only if 
it is both a-open and A-set. 

D E F I N I T I O N 1 2 . A multifunction F : X —> Y is said to be upper (resp. 
lower) almost A-continuous if F + ( F ) (resp. F~(V)) is an A-set of X for 
each V € RO(F) . 

It follows from [24, Remark 1] that every upper almost continuous (resp. 
lower almost continuous) multifunction is upper almost A-continuous (resp. 
lower almost A-continuous) but the converse need not be true. 

T H E O R E M 1 6 . A multifunction F : X —• Y is upper almost continu-
ous (resp. lower almost continuous) if and only if it is both u.a.a.c. (resp. 
l.a.a.c.) and upper almost A-continuous (resp. lower almost A-continuous). 

P r o o f . This follows from Lemma 1 and [22, Theorem 2,4] (resp. [22, 
Theorem 2.2]). 

C O R O L L A R Y 8 (Popa [24] ) . A function f : X —> Y is almost continuous 
(in the sense of Singal [31]) if and only if it is both almost feebly continuous 
and almost A-continuous. 

D E F I N I T I O N 1 3 . A multifunction F : X Y is said to be 
(a) upper /3-continuous [26] if for each x € X and each open set V of 

Y such that F(x) C V, there exists a /3-open set U containing x such that 
F(U) C V; 

(b) lower 0-continuous [26] if for each x £ X and each open set V of Y 
such that F(x) n F / 0 , there exists a /J-open set U containing x such that 
F(u) n V ^ 0 for every « 6 U. 

L E M M A 2 (Popa and Noiri [26] . A multifunction F : X —• Y is upper f}<-
continuous (resp. lower ¡3-continuous) if and only i / In t (C l ( In t (F~(5) ) ) ) C 
F~(Cl(B)) (resp. I n t (C l ( In t (F+(B) ) ) ) C F+(C1(B))) for every subset B of 
Y. 

T H E O R E M 1 7 . If a multifunction F : X —> Y is l.a.a.c. and upper /?-
continuous, then it is lower weakly continuous. 

P r o o f . Let V be any open set of Y such that F(x) n V ^ 0. Since F is 
l.a.a.c., by Theorem 2x£ Int(Cl(Int(F"(sCl(F))))). Let 

U = Int(Cl(Int(F~(sCl(V r))))), 
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then U is an open set containing x. Since F is upper j3-continuous, by Lemma 
2 we have U C F"(Cl(sCl(y))) C F~(Cl(V)). This shows that F is lower 
weakly continuous. 

COROLLARY 9 (Popa and Noiri [26]). If a multifunction is lower a-
continuous and upper ¡3-continuous, then it is lower weakly continuous. 

COROLLARY 10 (Neubrunn [10] ) . If a multifunction is lower a-continuous 
and upper quam continuous, then it is lower weakly continuous. 

COROLLARY 1 1 . If a multifunction is l.a.a.c. and upper precontinuous, 
then it is lower weakly continuous. 

COROLLARY 12 (Neubrunn [10]) . If a multifunction F : X -+Y is lower 
almost continuous and upper precontinuous andY is regular, then F is lower 
continuous. 

P r o o f . This follows from Corollary 11 and [21, Theorem 2]. 

THEOREM 18 . If a multifunction is u.a.a.c. and lower ¡3-continuous, then 
it is upper weakly continuous. 

P r o o f . The proof is similar to that of Theorem 17. 

COROLLARY 13 (Popa and Noiri [26] ) . If a multifunction is upper a-
continuous and lower (3-continuous, then it is upper weakly continuous. 

COROLLARY 14 (Neubrunn [10]). If a multifunction is upper a-conti-
nuous and lower quasi continuous, then it is upper weakly continuous. 

COROLLARY 15 . If a multifunction is u.a.a.c. and lower precontinuous, 
then it is upper weakly continuous. 

DEFINITION 14. A subset A of a space X is said to be quasi H-closed 
relative to X [29] if for every cover {Va : a € V} of A by open sets of X , 
there exists a finite subset Vo of V such that A C U{Cl(Va) : « 6 Vq}. If X 
is quasi //-closed relative to X, then the space X is called quasi H-closed. 
A subset A is said to be quasi H-closed if the subspace A is quasi //-closed. 
A quasi H-closed Hausdorff space is called H-closed. 

DEFINITION 15. A space X is said to be a-compact [8] if every cover of 
X by a-open sets of X has a finite subcover. 

THEOREM 19 . Let F : X -+Y be an upper weakly a-continuous surjective 
multifunction such that F(x) is compact for each x £ X. If X is a-compact, 
then Y is quasi H-closed. 

P r o o f . Let : A G .4} be any open cover of Y. For each x e X, F(x) 
is compact and hence there exists a finite subset ^l(x) of A such that F(x) C 
|J{Va : A 6 ^l(x)}- Since F is upper weakly a-continuous, there exists 
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U(x) £ a(X) such that F(U(x)) C U{C1(VA) : A € A(x)}. Since X is 
a-compact, there exist a finite number of points, say, xi,x2,...,xn in X 
such that X = UI^C1«) : 1 ^ * ^ n } - Therefore, we obtain 

Y = F(X) 

= F( ¡J{U(xi) : 1 < i < » } ) C (J{C1(V>) : A € A(Xi), 1 <i< n}. 

This shows that Y is quasi H-closed. 

T H E O R E M 2 0 . Let F : ( X , T ) —• (Y,V) 6E a surjective connected val-
ued multifunction. If F is upper weakly a-continuous (or lower weakly a-
continuous) and (X , r ) is connected, then (F, a) is connected. 

P r o o f . Since ( X , r ) is connected (X,Ta) is connected [30, Theorem 2]. 
By Theorem 7, F : (X , r a ) —> (Y,<r) is upper weakly continuous (or lower 
weakly continuous) and hence (Y,<r) is connected [32, Theorem 11]. 

C O R O L L A R Y 16 (Noiri [17]). If f : X Y is a weakly a-continuous 
surjection and X is connected, then Y is connected. 

DEFINITION 1 6 . A multifunction F : X —> Y has an a-closed graph if 
for each (x,y) £ X xY - G(F), there exist U € a(X, x) and an open set V 
containing y such that [U x C 1 ( F ) ] n G(F) = 0 . 

LEMMA 3 . A multifunction F : X —• Y has an a-closed graph if and only 
if for each (x,y) £ X x Y — G(F), there exist U € a(X,x) and an open set 
V of Y containing y such that F(U) H C1(F) = 0. 

T H E O R E M 2 1 . If F : X —> F is an u.a.a.c. compact valued multifunction 
and Y is Hausdorff, then F has an a-closed graph. 

P r o o f . Let (x,y) € XxY-G(F), then y 6 Y-F(x). For each a € F(x), 
there exist open sets V(a) and W(a) containing a and y, respectively, such 
that V(a) n W(a) = 0. The family (V^a) : a £ F(x)} is an open cover of 
F(x) and there exist a finite number of points in F(x), say, a i , 0 2 , . . . , a n 

such that F(x) C l^V^Oj) : 1 < i < n}. Set V = U{V(a;) : 1 < i < 
n} and W = D{W(at-) : 1 < i < n}. Then F(x) C V,V n W = 0 and 
FnCl(W0 = 0. Thus F(x) C Y- C1(W). Since W is open, C1(W) is regular 
closed and Y - C1(W) G RO(F). Theorem 3, there exists U € a(X,x) such 
that F(U) C Y - C 1 ( W ) , thus F(U) n C 1 ( W ) = 0 and by Lemma 3 F has 
an a-closed graph. 

C O R O L L A R Y 1 7 . If F : X —• Y is an upper a-continuous multifunction 
into a Hausdorff space Y and F(x) is compact for each x € X, then F has 
an a-closed graph. 



394 V. Popa, T. Noiri 

T H E O R E M 2 2 . If a multifunction F : X —• Y has an a-closed graph, then 
F has the following property: 

(P) For each set K quasi H-closed relative to Y, F~(K) is an a-closed 
set of X. 

P r o o f . Let G(F) be a-closed. Suppose that there exists a set K quasi H-
closed relative to Y such that F~(K) is not a-closed in X . Then there exists 
x G a C I ( F ~ ( K ) ) - F~(K). Since x € X - F~(K), we have F(x) D K = 0 
and hence (x,y) G X x Y - G(F) for each y G K. Since G(F) is a-closed, 
there exist U(y) G a ( X , x) and an open set V(y) of Y containing y such 
that F(U(y)) l~l Cl(F(j/)) = 0. The family {V(y) : y <E K) is an open cover 
of K. Since K is quasi H-closed relative to Y, there exist a finite number of 
points in K, say, yi, y2,..., yn such that K C U{Cl(F(j/,)) : 1 < i < n}. Let 
U = n { t % . ) : 1 < i < »}. Then U G a(X, x) and F{U) n K = 0. Therefore, 
we have U n F~(K) = 0. This contradicts the fact that x e a C I ( F ~ ( K ) ) . 

C O R O L L A R Y 1 8 . If a multifunction F : X —»• Y has an a-closed graph 
and Y is quasi H-closed, then F is u.a.a.c. 

P r o o f . Let K be a regular closed set of Y. Since Y is quasi H-closed, 
K is quasi H-closed relative to Y and by Theorem 22 F~(K) is a-closed in 
X. Therefore, F is u.a.a.c. by Theorem 3. 

D E F I N I T I O N 17. A Hausdorff space X is said to be locally H-closed [19] 
if every point of X has an Zf-closed neighborhood. 

T H E O R E M 2 3 . Let Y be a locally H-closed space. If a multifunction F : 
X Y is compact valued and has the following property: 

(P*) For each quasi H-closed set ofY, F~(K) is a-closed in X , 

then F has an a-closed graph. 

P r o o f . Let Y be locally H-closed and (x,y) e X x Y - G(F), then 
y € Y — F(x). Since Y is Hausdorff and F(x) is compact for every x 6 X , 
as in Theorem 21 there exist open sets U and V such that y G U, F(x) C 
V and U 0 V = 0. Since Y is locally ff-closed, there exists an Ji-closed 
neighborhood W of y. So there exists an open set Wo such that y € Wo C W. 
Let G = U H Wo, then G is open, y G G and G n V = 0 which implies 
C1(G) fl V = 0. Since Y is Hausdorff and W is H-closed, W is closed and 
hence C1(<j) C W. Since G is open in Y,G is open in W and C1(<j) is 
regular closed in W. Since W is ZT-closed, C1(G) is //-closed. Since F has 
the property (P*), F~(Cl(G)) is a-closed in X . Let H = X - F~(Cl(G)). 
Then we obtain H G a ( X , x ) and F ( # ) n C l ( G ) = 0 because Ff~lCl(G) = 0. 
Thus F has an a-closed graph. 
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COROLLARY 19. Let Y be an H-closed space. Then for a compact valued 
multifunction F : X Y, the following are equivalent: 

(1) F is u.a.a.c.; 
(2) F has an a-closed graph; 
(3) F has the property (P); 
(4) F has the property P*). 

P r o o f . This is an immediate consequence of Theorems 21, 22 and 23 
and Corollary 18. 
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