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ON UPPER AND LOWER
ALMOST o-CONTINUOUS MULTIFUNCTIONS

In this paper, the authors define a multifunction ¥ : X — Y to be
upper (lower) almost o-continuous if F*(V) (F~(V)) is a-open in X for
every regular open set V of Y. They obtain some characterizations and
several properties concerning upper (lower) almost a-continuous multifunc-
tions. The relationships between these multifunctions and a-closed graphs
are investigated.

1. Introduction

In 1965, Njastad [11] introduced a weak form of open sets called a-sets.
In [18, 24] the authors investigated a class of functions called almost a-
continuous or almost feebly continuous. In 1986, Neubrunn [10] introduced
the notion of upper (lower) a-continuous multifunctions. The purpose of the
present paper is to define upper (lower) almost a-continuous multifunctions
and to obtain some characterizations of upper (lower) almost a-continuous
multifunctions and several properties of such multifunctions.

2. Preliminaries

Let X be a topological space and A a subset of X. The closure of A and
the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A
is said to be a-open [11] (resp. semi-open (6], preopen [9], 3-open [1] or semi-
preopen [2]) if A C Int(Cl(Int(A))) (resp. A4 C Cl(Int(A)), A C Int(Cl(A)),
A C Cl(Int(Cl{A)))). The family of all semi-open (resp. a-open) sets of X
containing a point z € X is denoted by SO(X, z) (resp. a(X, z)). The family
of all a-open (resp. semi-open, preopen, semi-preopen) sets in X is denoted
by a(X) (resp. SO(X), PO(X), SPO(X)). For these four families, it is shown
in [16, Lemma 3.1] that SO(X) N PO(X) = a(X) and it is obvious that
SO(X)UPO(X) C SPO(X). Since (X ) is a topology for X [11, Proposition
2], by a CI(A) (resp. alInt(A)) we denote the closure (resp. interior) of A
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with respect to a(X). The complement of a semi-open (resp. a-open) set is
said to be semi-closed (resp. a-closed). The intersection of all semi-closed
sets of X containing A is called the semi-closure {3] of A and is denoted by
sCl(A). The union of all semi-open sets of X contained in A is called the
semi-interior of A and is denoted by sInt(A). A subset A is said to be feebly
open [5] if there exists an open set U such that U C A C sCl(U). It is shown
in [16, Lemma 4.12] that the notion of feebly open sets is equivalent to that
of a-open sets. A subset A of a space X is said to regular open (resp. regular
closed) if A = Int(Cl(A)) (resp. A = Cl(Int(A))). The family of regular
open (resp. regular closed) sets of X is denoted by RO(X) (resp. RC(X)).
Maheshwari et al. [7] defined a function to be almost feebly continuous if the
inverse image of every regular open set is feebly open. Noiri [18] defined a
function f: X — Y to be almost a-continuous if f~1(V) € a(X) for every
V € RO(Y) and pointed out that almost feeble continuity is equivalent to
almost a-continuity.

Throughout this paper, spaces (X,7) and (X, 0) (or simply X and Y)
always mean topological spaces and F : X — Y (resp. f: X — Y) presents
a multivalued (resp. single valued) function. For a multifunction F': X - Y,
we shall denote the upper and lower inverse of a set G of Y by F+(G) and
F~(G), respectively, that is

FH (G ={ze€eX:F(2)CG} and F (G)={z€ X:F(z)NG #0}.

3. Characterizations
DEFINITION 1. A multifunction F : X — Y is said to be

(a) upper almost a-continuous (briefly u.a.a.c.) at a point z € X if for
each U € SO(X,z) and each open set V containing F(z), there exists a
nonempty open set G C U such that F(G) C sCYV);

(b) lower almost a-continuous (briefly l.a.a.c.) at a point z € X if for
each U € SO(X,z) and each open set V such that F(z)NV # §, there exists
a nonempty open set G C U such that F(g) nsCl(V) # 0 for every g € G;

(c) upper (lower) almost a-continuous if F has this property at every
point of X.

THEOREM 1. The following are equivalent for a multifunction F :
X-Y:

(1) F is v.a.a.c. at a point z € X;

(2) for any open set V of Y containing F(z), there erists § € o X, z)
such that F(S) C sCI(V');

(3) z € aInt(F+(sC(V))) for every open set V containing F(z);

(4) z € Int(Cl(Int(F*+(sCL(V))))) for every open set V containing F(z).
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Proof. (1)=(2): Let V be any open set of Y containing F(z). For each
U € SO(X,z), there exists a nonempty open set Gy such that Gy C U
and F(Gy) C sCI(V). Let W = |J{Gy : U € SO(X,z)}. Put § = W{J{z},
then W is open in X,z € sCI(W) and F(W) C sCl(V). Therefore, we have
S € a(X,z) [26, Lemma 2.1] and F(§) C sClI(V).

(2)=(3): Let V be any open set of Y containing F(z). Then there exists
S € a(X, z) such that F(S) C sCI(V). Thus we obtain z € § C F*(sCl(V))
and hence z € alnt(F*(sCl(V))).

(3)=(4): Let V be any open set of Y containing F(z). Now put U =
aInt(F+(sCi(V))). Then U € a(X) and z € U C F*(sCl(V)). Thus we
have z € U C Int(Cl(Int(F+(sCL(V))))).

(4)=(1): Let U € SO(X,z) and V be any open set of Y containing F(z).
Then we have z € Int(Cl{Int(F+(sCl(V))))) = sCl(Int(F+(sCL(V)))). It fol-
lows from [13, Lemma 3] and [12, Lemma 1] that # # UNInt(F(sCl(V))) €
SO(X). Put G = Int(U NInt(F*+(sCl(V)))). Then G is a nonempty open set
of Y [12, Lemma 4], G C U and F(G) C sCI(V).

THEOREM 2. The following are equivalent for a multifunction F :
X-Y:

(1) F is l.a.a.c. at a point z of X;

(2) for any open set V of Y such that F(z) NV # 0, there ezists S €
a(X,z) such that F(s)NsCl(V) # @ for every s € §;

(3) z € alnt(F~(sCl(V))) for every open set V of Y such that F(z) N
V #9;

(4) z € Int(Cl(Int(F~(sCl(V))))) for every open set V of Y such that
Flz)nV #90.

Proof. The proof is similar to that of Theorem 1.

THEOREM 3. The following are equivalent for a multifunction F :
X-Y:

(1) F is v.a.a.c

(2) for each € X and each open set V of Y containing F(z), there
ezists U € a(X, z) such that F(U) C sCl(V);

(3) for each z € X and each V € RO(Y) containing F(z), there ezists
U € o(X,z) such that F(U) C V;

(4) F*(V) € a(X) for every V € RO(Y);

(5) F~(K) is a-closed in X for every K € RC(Y);

(6) FH(V) C aInt(F*(sCl(V))) for every open set V of Y;

(7) aCl(F~(sInt(K))) C F~(K) for every closed set K of Y;

(8) a CY{(F~(Cl(Int(K)))) C F~(K) for every closed set K of Y;

(9) a CI(F~(Cl(Int(CI(B))))) ¢ F~(CL(B)) for every subset B of Y;
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(10) Cl(Int(CY{ F~(Cl(Int(K)))))) C F~(K) for every closed set K of Y;
(11) Cl(Int(Cl(F~(sInt(K))))) C F~(K) for every closed set K of Y;
(12) F*(V) C Int(CY(Int( F*(sCL(V))))) for every open set V of Y.

Proof. (1)=(2): The proof follows immediately from Theorem 1.

(2)=(3): This is obvious.

(3)=(4): Let V € RO(Y) and =z € F*(V). Then F(z) C V and there
exists Uy € o/ ", z) such that F(U;) C V. Therefore, we have z € U, C
F*(V) and hence F+(V) € a(X).

(4)=(5): This follows from the fact that F*(Y — B) = X — F~(B) for
svuiy subset B of Y.

(5)=(6): Let V be any open set of Y and z € F*(V). Then we have
F(z) C V C sCl(V) and hence z € Ft(sCl(V)) = X — F~(Y - sCl(V)).
Since Y — sCI(V) € RC(Y), F~(Y — sCl(V)) is a-closed in X. Therefore,
F*(sCl(V)) € a(X,z) and hence z € aInt(F*(sCl(V))). Consequently, we
obtain F* (V) C aInt(F*(sCl(V))).

(6)=(7): Let K be any closed set of Y. Then, since ¥ — K is open, we
obtain

X — F~(K) = F¥*(Y = K) C aInt(F*(sCl(Y — K)))

= aInt(F* (Y - sInt(K)))
= alnt(X — F~(sInt(K))) = X — a CI(F~(sInt(K))).

Therefore, we obtain a CI( F~(sInt(K))) C F~(K).
(7)=>(8): The proof is obvious since sInt(K) = Cl(Int(K)) for every
closed set K.
(8)=(9): The proof is obvious.
(9)=(10): 1t follows from {26, Lemma 2.2] that Cl(Int(CI(A4))) C a Cl(A)
for every subset A. Thus for every closed set K C Y, we have
Cl(Int(Cl( F~(Cl(Int( K)))))) C a C{F~(Cl(Int( K ))))
= a Cl(F~(Cl{Int(Cl(K))))) € F~(CI(K)) = F~(K).
(10)=>(11): The proof is obvious since sInt(K) = Cl(Int(K)) for every
closed set K.
(11)=(12): Let V be any open set of Y. Then Y — V is closed in Y and

we have
Ci{Int(CYF~(sInt(Y = V))))) C F~(Y = V) = X — FH(V).
Moreover, we have
Cl(Int(CYF~ (sInt(Y — V)))))) = Cl(Int(CI(F~(Y —sCl(V))))) =
Cl(Int(CI(X — F*(sCi(V))))) = X — Int(Cl(Int( F* (sCL(V')))).
Therefore, we obtain F+(V) C Int(Cl(Int(F*(sCl(V))))).
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(12)=(1): Let z be any point of X and V be any open set of Y containing
F(z). Then z € F*(V) C Int(Cl(Int(F*(sCl(V))))) and hence F is u.a.a.c.
at z by Theorem 1.

THEOREM 4. The following are equivalent for a multifunction F :
X-Y:

(1) F is w.a.a.c.;

(2) aCI(F~(V)) C F~(CKV)) for every V € SPO(Y);

(3) aCl(F~(V)) C F~(CLV)) for every V € SO(Y);

(4) F*(V) € aInt(F(Int(Cl(V)))) for every V € PO(Y).

Proof. (1)=(2): Let V be any semi-preopen set of Y. Since Cl(V) €
RC(Y'), by Theorem 3 F'~(Cl(V)) is a-closed in X and F~(V) C F~(CI(V)).
Therefore, we obtain a CI(F~(V)) C F~(CI(V)).

(2)=>(3): This is obvious since SO(Y) C SPO(Y).

(3)=(1): Let K € RC(Y). Then K € SO(Y) and hence a CI( F~(K)) C
F~(K). Therefore, F~(K) is a-closed in X and hence F is u.a.a.c. by
Theorem 3.

(1)=(4): Let V be arbitrary preopen set of Y. Since Int(Cl(V)) € RO(Y),
by Theorem 3 we have F*(Int(Cl(V))) € a(X) and hence

FY (V) c F¥*(Int(CI(V))) = a Int(F+(Int(CLV)))).
(4)=>(1): Let V be any regular open set of Y. Since V € PO(Y'), we have
F*(V) c aInt(Ft(Int(CI(V)))) = aInt(F¥(V))
and hence F+(V) € a(X). It follows from Theorem 3 that F is u.a.a.c.

THEOREM 5. The following are equivalent for a multifunction F :
X-Y:

(1) F is La.a.c

(2) for each x € X and each open set V of Y such that F(z)NV # §,
there ezists U € a(X, z) such that U C F~(sCI(V));

(3) for each z € X and each V € RO(Y) such that F(z) NV # @, there
erists U € a(X,z) such that U ¢ F~(V);

(4) F~(V) € a(X) for every V € RO(Y);

(5) F*(K) is a-closed in X for every K € RC(Y);

(6) F~(V) C alnt(F~(sCl(V))) for every open set V of Y;

(7) a Cl(F*(sInt(K))) C F*(K) for every closed set K of Y;

(8) a CI(F*(Cl(Int(K)))) C F*(K) for every closed set K of Y;

(9) a CI(F*(CY(Int(CI(B))))) C F+(CI(B)) for every subset B of Y;

(10) Cl(Int(CI(F*(Cl(Int(K)))))) C F+(K) for every closed set K of Y

(11) Cl(Int(CI(F*(sInt(K))))) C F*(K) for every closed set K of Y;

(12) F=(V) C Int(Cl(Int(F~(sCI(V))))) for every open setV of Y.
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Proof. The proof is similar to that of Theorem 3.

THEOREM 6. The following are equivalent for a multifunction F :
X-Y:

(1) F is La.a.c;

(2) a(;l(F"‘(V)) C F+(CIV)) for every V € SPO(Y);

(3) aCI(F+(V)) Cc F(CIV)) for every V € SO(Y);

(4) F~(V) C aInt(F~(Int(CKV)))) for every V € PO(Y).

Proof. The proof is similar to that of Theorem 4.

A function f : X — Y is said to be almost a-continuous [18] if f~1(V) €
a(X) for every V € RO(Y).

CoROLLARY 1 (Maheshwari et al. [7], Noiri [18] and Popa [24]). The
following are equivalent for a function f: X - Y:

(1) f is almost a-continuous;

(2) for each z € X and each open set V of Y containing f(z), there
ezists U € a( X, z) such that f(U) C sCI(V);

(3) for each z € X and each V € RO(Y') containing f(z), there ezists
U € a(X,z) such that f(U) C V;

(4) for each z € X and each open set V of Y containing f(z), there
erists U € a(X,z) such that f(U) C Int(Cl(V));

(5) f"Y(K) is a-closed in X for every K € RC(Y);

(6) f~Y(V) € alnt(f~11(sCV))) for every open set V of Y;

(7) aCl(f~(sInt(K))) C f~}(K) for every closed set K of Y;

(8) aCl(f~Y(Cl(Int(K)))) C f~Y(K) for every closed set K of Y;

(9) a Cl(f~Y(Cl(Int(CI( B))))) C f~}(CL(B)) for every subset B of Y;

(10) Cl(Int(C1(f "1 (Cl(Int(K)))))) C f~1(K) for every closed set K of Y;

(11) Cl(Int(CI(f~(sInt(K))))) C f~Y(K) for every closed set K of Y,

(12) f~YV) € Int(Cl(Int(f~1(sCl(V))))) for every open set V of Y.

COROLLARY 2. The following are equivalent for a function f : X - Y

(1) f is almost a-continuous;

(2) aCI(f~Y(V)) C f~YH(CYV)) for every V € SPO(Y);

(3) aCI(f~Y(V)) C f~H(CV)) for every V € SO(Y);

(4) f~Y(V) C aInt(f~(Int(Cl(V)))) for every V € PO(Y).

4. Almost a-continuity and a-continuity

DEFINITION 2. A multifunction F : X — Y is said to be

(a) upper a-continuous [26] (resp. upper weakly a-continuous [28]) at
a point z of X if for each open set V of Y containing F(z), there exists
U € a(X,z) such that F(U) C V (resp. F(U) Cc CI(V));
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(b) lower a-continuous [26] (resp. lower weakly a-continuous [28]) at
z € X if for each open set V of Y such that F(z) NV # @, there exists
U € a(X,z) such that F(u) NV # @ (resp. F(u) N CI(V) # 0) for every
u€eU;

(c) upper (or lower) a-continuous [10] (resp. weakly a-continuous [28])
if it is upper (or lower) a-continuous (resp. weakly a-continuous) at every
point of X.

DEFINITION 3. A multifunction F : X — Y is said to be

(a) upper almost continuous [22] (resp. upper weakly continuous [21, 32])
at z € X if for each open set V of Y containing F(z), there exists an open
set U of X containing z such that F(U) C Int(CL(V)) (resp. F(U) C CI(V));

(b) lower almost continuous [22] (resp.lower weakly continuous [21, 32])
if for each open set V of Y such that F(z)NV # 0, there exists an open set U
of X containing z such that F(u)NInt(Cl(V)) # @ (resp. F(u)NCIV) # )
for every u € U;

(c) upper (or lower) almost continuous [22] (resp. weakly continuous 21,
32]) if it is upper (or lower) almost continuous (resp. weakly continuous) at
every point of X.

THEOREM 7. (1) A multifunction F : (X,7) — (X,0) is upper a-
continuous (resp. u.a.a.c., upper weakly a-continuous) if and only if F :
(X,7*) — (Y, 0) is upper continuous (resp. upper almost continuous, upper
weakly continuous).

(2) A multifunction F : (X,7) — (Y,0) is lower a-continuous (resp.
la.a.c., lower weakly a-continuous) if and only if F : (X,7*) — (Y,0) is
lower continuous (resp. lower almost continuous, lower weakly continuous).

Proof. The proof is obvious from the definitions.

DEFINITION 4. A subset A of a space X is said to be
(a) a-paracompact [35] if every cover of A by open sets of X is refined
by a cover of A which consists of open sets of X and is locally finite in X;

(b) a-regular [5] if for each point £ € A and each open set U of X
containing z, there exists an open set G of X such thatz € G ¢ CI(G) C U.

THEOREM 8. For a multifunction F : (X, 1) — (Y, 0) such that F(z) is
an a-regular a-paracompact set for each z € X, the following are equivalent:

(1) F is upper weakly a-continuous;
(2) F is v.a.a.c;
(3) F is upper a-continuous.
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Proof. (1)=>(3): By Theorem 7, F : (X,7*) — (Y, 0) is upper weakly
continuous and hence upper continuous [25, Theorem 1]. Thus, it follows
from Theorem 7 that F : (X,7) — (Y, 0) is upper a-continuous.

THEOREM 9. For a multifunction F : X — Y such that F(z) is an
a-reqular set for every z € X, the following are equivalent:

(1) F is lower weakly a-continuous;
(2) F is lLa.a.c;
(3) F is lower a-continuous.

Proof. (1)=(3): By Theorem 7, F : (X,7%) — (Y, 0) is lower weakly
continuous and hence lower continuous [25, Theorem 2]. Thus, it follows
from Theorem 7 that F': (X, 1) — (Y, 0) is lower a-continuous.

DEFINITION 5. A subset A of a space X is said to be a-semi-regular
[25] if for each point a € A and each open set U containing a, there exists

V € RO(X)such thata e V C U.

THEOREM 10. Let F : (X, 7) — (Y, a) be a multifunction such that F(z)
ts an a-semi-regular set for each z € X. Then F is l.a.a.c. if and only if F
ts lower a-continuous.

Proof. Suppose that F : (X,7) — (Y,0) is La.a.c. By Theorem 7,
F:(X,7*) - (Y, 0)is lower almost continuous. It follows from [25, Theorem
5] that F : (X,7%) — (Y, ) is lower continuous. Therefore, by Theorem 7
F:(X,r)— (Y,0) is lower a-continuous.

DEFINITION 6. A space X is said to be

(a) semi-regular if for each point z of X and each open set U containing
z, there exists V € RO(X) such that z € V C U.

(b) rim-compact if each point of X has a base of neighbourhoods with
compact frontiers.

COROLLARY 3. Fvery la.a.c. multifunction FF : X — Y is lower a-
continuous if Y is semi-regular.

COROLLARY 4 (Maheshwari et al. [7] and Thakur and Paik [33]). Every
almost a-continuous function f : X — Y is a-continuous if Y is semi-
regular.

THEOREM 11. IfY is a rim-compact space and F' : X — Y is a compact
valued multifunction with the closed graph, then the following are equivalent:

(1) F is upper weakly a-continuous;
(2) F is v.a.a.c;
(8) F is upper a-continuous.
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Proof. Suppose that F is upper weakly a-continuous. Let z € X and
V be any open set of Y containing F(z). Since Y is rim-compact, for each
z € F(z) there exists an open set W(z) such that z € W(z) C V and the
frontier Fr(W(z)) is compact. The family {W(z) : 2 € F(z)} is a cover of
F(z) by open sets of Y. Since F(z) is compact, there exists a finite number
of points, say, 21, 22, ..., 2p in F(z) such that F(z) C U{W(z;):1 < j < n}.
Let W = U{W(z;);1 < j < n}, then we have Fr(W) is compact, F(z) C
W CcV,and

F@)nFr (W)= Fz)nC(W)NCY - W) C F(z)n(Y —-W)=4.
For each y € Fr(W), (z,y) € X X Y — G(F). Since G(F) is closed, there
exist open sets U(y) C X and V(y) C Y containing z and y, respectively,
such that F(U(y)) N V(y) = 0. The family {V(y) : y € Fr(W)} is a cover
of Fr(W) by open sets of Y. Since Fr(W) is compact, there exists a finite
subset K of Fr(W) such that Fr(W) c U{V(y) : y € K}. Since F is upper
weakly a-continuous, there exists Uy € a(X,z) such that F(Uy) C C(W).
Put U = U N [N{U(y) : y € K}]. Then we obtain U € a(X,z) [15, Lemma
3.3], F(U) c C(W) and F(U) N Fr(W) = §. Therefore, we obtain F(U) C
W C V. This shows that F is upper a-continuous.

CoroLLARY 5 (Popa [24]). If Y is a rim-compact space and f : X —
Y is an almost a-continuous function with the closed graph, then f is a-
continuous.

THEOREM 12. If (Y, @) is rim-compact Hausdorff, then for a multifunc-
tion F : (X,7) — (Y, a) the following are equivalent:

(1) F is lower weakly a-continuous;
(2) F is La.a.c;
(3) F is lower a-continuous.

Proof. Suppose that F is lower weakly a-continuous. It follows from
Theorem 7 that F : (X,7*) — (X,o0) lower weakly continuous. Since
(Y, a) is rim-compact Hausdorff, it is regular [14, Theorem 4] and hence
F : (X,7*) - (Y,0) is lower continuous [21, Theorem 2]. Therefore, F :
(X,7) = (Y, 0) is lower a-continuous by Theorem 7.

DEFINITION 7. The semi-frontier [4], sFr(A), of a subset A of a space X
is defined as follows: sFr(A) = sCl(4) N sCl{(X — A) = sCl(A) — sInt(A).

DEFINITION 8. A multifunction F : X — Y is said to be complementary
almost quasi continuous [27] if for each open set V of Y, F~(sFr(V)) is a
closed set of X.

THEOREM 13. If F : X - Y is u.a.a.c. and complementary almost quasi
continuous, then it is upper a-conlinuous.
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Proof. Let z € X and V be any open set of Y such that F(z) C V.
By Theorem 3, there exists G € a(X,z) such that F(G) C sCl(V). Now,
put U = G N[X — F~(sFi(V))]. Since F~(sFr(V)) is closed in X,U €
a(X) [15, Lemma 3.3]). Moreover, we have F(z) N sFr(V) = ® and hence
z € X — F~(sFr(V)). Therefore, we obtain z € U € o(X) and F(U) C V
since F(U) C F(G) C sC(V) and F(U) C Y — sFr(V). So, F is upper

a-continuous.

COROLLARY 6 (Popa [24]). If f : X — Y is an almost a-continuous
function and f~1(sFr(V)) is closed in X for each open set V of Y, then f
is a-continuous.

5. Properties

DEFINITION 9. A multifunction F : X — Y is said to be

(a) upper precontinuous [23] if F+(V) € PO(X) for each open set V
of Y;

(b) lower precontinuous [23] if F~(V) € PO(X) for each open set V
of Y.

DEFINITION 10. A multifunction F : X — Y is said to be

(a) upper almost quasi continuous [27] at a point = € X if for each open
set U containing z and each open set V containing F(z), there exists a
nonempty open set G of X such that G C U and F(G) C sCI(V);

(b) lower almost quasi continuous [27] at a point £ € X if for each open
set U containing z and each open set V such that F(z)NV # @, there exists
a nonempty open set G of X such that G C U and F(g)NsCl(V) # 0 for
every g € G;

(c) upper almost quasi continuous (lower almost quasi continuous) if F
has the property at every point of X.

THEOREM 14. If a multifunction F : X — Y is upper precontinuous and
upper almost quasi continuous, then it is u.a.a.c.

Proof. Let V be a regular open set of Y. Since F'is upper precontinu-
ous, F*(V) € PO(X). Since F is upper almost quasi continuous, F*(V) €
SO(X) [27, Theorem 3.3] and hence F* (V) € a(X) [16, Lemma 3.1]. There-
fore, F is u.a.a.c.

THEOREM 15. If a multifunction is lower precontinuous and lower almost
quasi continuous, then it is l.a.a.c.

Proof. The proof is similar to that of Theorem 14.
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CoRrOLLARY 7 (Popa [24]). If a function f : X — Y is almost continuous
(in the sense of Husain) and almost quasi continuous [20], then f is almost
a-continuous.

DEFINITION 11. A subset S of a space X is called an A-set [34]if § =
U -V, where U is an open set and V € RO(X).

LEMMA 1 (Tong [34]). A subset of a space X is open in X if and only if
it is both a-open and A-set.

DEFINITION 12. A multifunction F : X — Y is said to be upper (resp.
lower) almost A-continuous if F*(V) (resp. F~(V)) is an A-set of X for
each V € RO(Y).

It follows from [24, Remark 1] that every upper almost continuous (resp.
lower almost continuous) multifunction is upper almost A-continuous (resp.
lower almost A-continuous) but the converse need not be true.

THEOREM 16. A multifunction F : X — Y is upper almost continu-
ous (resp. lower almost continuous) if and only if it is both u.a.a.c. (resp.
l.a.a.c.) and upper almost A-continuous (resp. lower almost A-continuous).

Proof. This follows from Lemma 1 and {22, Theorem 2,4] (resp. {22,
Theorem 2.2]).

CoroLLARY 8 (Popa [24]). A function f: X — Y is almost continuous
(in the sense of Singal [31]) if and only if it is both almost feebly continuous
and almost A-continuous.

DEerINITION 13. A multifunction F': X — Y is said to be

(a) upper B-continuous [26] if for each z € X and each open set V of
Y such that F(z) C V, there exists a §-open set U containing z such that
FU)cVv;

(b) lower (-continuous [26] if for each z € X and each open set V of Y
such that F(z) NV # @, there exists a S-open set U containing z such that
Fu)NV # @ for every u € U.

LEMMA 2 (Popa and Noiri [26]. A multifunction F: X — Y is upper B~
continuous (resp. lower B-continuous) if and only if Int(Cl{(Int( F~(B)))) C
F=(CI(B)) (resp. Int(Cl(Int(F*(B)))) C F*(CI(B))) for every subset B of
Y.

THEOREM 17. If a multifunction F : X — Y is la.a.c. and upper (-
continuous, then it is lower weakly continuous.

Proof. Let V be any open set of Y such that F(z)NV # @. Since F is
La.a.c., by Theorem 2 z € Int(Cl(Int(F~(sCl(V))))). Let

U = Int(Cl(Int(F~ (sCI(V))))),
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then U is an open set containing z. Since F'is upper 3-continuous, by Lemma
2 we have U C F~(CI(sCI(V))) ¢ F~(CI(V)). This shows that F is lower
weakly continuous.

CoroLLARY 9 (Popa and Noiri [26)). If a multifunction is lower a-
continuous and upper (-continuous, then it is lower weakly continuous.

CoRoLLARY 10 (Neubrunn [10]). If @ multifunction is lower a-continuous
and upper quas. continuous, then it is lower weakly continuous.

COROLLARY 11. If @ multifunction is l.a.a.c. and upper precontinuous,
then it is lower weakly continuous.

CoROLLARY 12 (Neubrunn [10]). If a multifunction F : X - Y is lower
almost continuous and upper precontinuous andY is regular, then F is lower
continuous.

Proof. This follows from Corollary 11 and [21, Theorem 2].

THEOREM 18. If a multifunction is u.a.c..c. and lower 3-continuous, then
it is upper weakly continuous.

Proof. The proof is similar to that of Theorem 17.

CoroLLARY 13 (Popa and Noiri [26]). If a multifunction is upper a-
continuous and lower (3-continuous, then it is upper weakly continuous.

CoroLLARry 14 (Neubrunn [10]). If a multifunction is upper a-conti-
nuous and lower quasi continuous, then it is upper weakly continuous.

COROLLARY 15. If a multifunction is u.a.a.c. and lower precontinuous,
then it is upper weakly continuous.

DEFINITION 14. A subset A of a space X is said to be quasi H-closed
relative to X [29] if for every cover {V, : a € V} of A by open sets of X,
there exists a finite subset V of V such that A C J{Cl(Va):a € Vy}. If X
is quasi H-closed relative to X, then the space X is called quasi H-closed.
A subset A is said to be quasi H-closed if the subspace A is quasi H-closed.
A quasi H-closed Hausdorff space is called H-closed.

DEFINITION 15. A space X is said to be a-compact [8] if every cover of
X by a-open sets of X has a finite subcover.

THEOREM 19. Let F : X — Y be an upper weakly a-continuous surjective
multifunction such that F(z) is compact for each z € X. If X is a-compact,
then'Y is quasi H-closed.

Proof. Let {Vy: XA € A} be any open cover of Y. For each z € X, F(z)
is compact and hence there exists a finite subset A(z) of A such that F(z) C
U{Vx : A € A(z)}. Since F is upper weakly a-continuous, there exists
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U(z) € a(X) such that F(U(z)) € U{CKV)) : X € A(z)}. Since X is
a-compact, there exist a finite number of points, say, zy,22,...,2, in X
such that X = [J{U(z;) : 1 < i < n}. Therefore, we obtain

Y = F(X)
= F(UlUG):1<i<n}) c{QW) i A e A(z), 1<i<n)
This shows that Y is quasi H-closed.

THEOREM 20. Let F : (X,7) — (Y,0) be a surjective connected val-
ued multifunction. If F is upper weakly a-continuous (or lower weakly a-
continuous) and (X, 1) is connected, then (Y, o) is connected.

Proof. Since (X, 7) is connected (X, 7%) is connected {30, Theorem 2].
By Theorem 7, F : (X,7*) — (Y,0) is upper weakly continuous (or lower
weakly continuous) and hence (Y, o) is connected [32, Theorem 11].

CoroLLARY 16 (Noiri [17]). If f : X — Y is a weakly a-continuous
surjection and X is connected, then Y is connected.

DEFINITION 16. A multifunction F : X — Y has an a-closed graph if
for each (z,y) € X XY — G(F), there exist U € a(X,z) and an open set V
containing y such that [U x C{(V)]n G(F) = §.

LEMMA 3. A multifunction F : X — Y has an a-closed graph if and only
if for each (z,y) € X XY — G(F), there ezist U € a(X,z) and an open set
V of Y containing y such that F(U)N CI(V) = 0.

THEOREM 21. If F: X - Y is an u.a.a.c. compact valued multifunction
and Y is Hausdorff, then F has an a-closed graph.

Proof. Let (z,y) € XxXY —G(F),theny € Y—F(z). Foreach a € F(z),
there exist open sets V(a) and W(a) containing a and y, respectively, such
that V(a) N W(a) = 0. The family {V(a) : a € F(z)} is an open cover of
F(z) and there exist a finite number of points in F(z), say, a;,as,...,a,
such that F(z) C U{V(a;) : 1 < i < n}. Set V = U{V(a;) : 1 < i<
n} and W = Nn{W(a;) : 1 < i < n}. Then F(z) C V,V NW = § and
VNCI(W) = 0. Thus F(z) C Y — Cl{W). Since W is open, Cl(W) is regular
closed and Y — CI(W) € RO(Y). Theorem 3, there exists U € a(X,z) such
that F(U) C Y — C(W), thus F(U)n CI(W) = @ and by Lemma 3 F has
an a-closed graph.

COROLLARY 17. If F : X — Y 1is an upper a-continuous multifunction
into a Hausdorff space Y and F(z) is compact for each z € X, then F has
an a-closed graph.
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THEOREM 22. If a multifunction F : X — Y has an a-closed graph, then
F has the following property:

(P)  For each set K quasi H-closed relative to Y, F~(K) is an a-closed
set of X.

Proof. Let G(F) be a-closed. Suppose that there exists a set K quasi H-
closed relative to Y such that FF~(K) is not a-closed in X. Then there exists
z€aCl(F~(K))— F(K).Sincez € X — F~(K), we have F(z)NK =0
and hence (z,y) € X XY — G(F) for each y € K. Since G(F) is a-closed,
there exist U(y) € a(X,z) and an open set V(y) of Y containing y such
that F(U(y)) N Cl(V(y)) = 0. The family {V(y): y € K} is an open cover
of K. Since K is quasi H-closed relative to Y, there exist a finite number of
points in K, say, ¥1,¥2,...,¥n such that K C U{CH(V(y:)):1 < i < n}. Let
U=n{U(y):1<i¢<n}. Then U € a(X,z)and F(U)NK = @. Therefore,
we have U N F~(K) = 0. This contradicts the fact that z € o CI{ F~(K)).

COROLLARY 18. If a multifunction F : X — Y has an a-closed graph
and Y is quast H-closed, then F is u.a.a.c.

Proof. Let K be a regular closed set of Y. Since Y is quasi H-closed,
K is quasi H-closed relative to Y and by Theorem 22 F~(K) is a-closed in
X. Therefore, F is u.a.a.c. by Theorem 3.

DEFINITION 17. A Hausdorff space X is said to be locally H-closed [19]
if every point of X has an H-closed neighborhood.

THEOREM 23. Let Y be a locally H-closed space. If a multifunction F :
X > Y is compact valued and has the following properiy:

(P*)  For each quast H-closed set of Y, F~(K) ts a-closed in X,
then F has an a-closed graph.

Proof. Let Y be locally H-closed and (z,y) € X XY — G(F), then
y € Y — F(z). Since Y is Hausdorff and F(z) is compact for every z € X,
as in Theorem 21 there exist open sets U and V such that y € U, F(z) C
Vand UNV = 0. Since Y is locally H-closed, there exists an H-closed
neighborhood W of y. So there exists an open set Wy such that y € Wo C W.
Let G = U N Wy, then G is open, y € G and GNV = @ which implies
C(G)NV = 0. Since Y is Hausdorff and W is H-closed, W is closed and
hence CI(G) ¢ W. Since G is open in Y,G is open in W and CI(G) is
regular closed in W. Since W is H-closed, CI(G) is H-closed. Since F has
the property (P*), F~(Cl(G)) is a-closed in X. Let H = X — F~(CI(G)).
Then we obtain H € a(X,z) and F(H)NCI(G) = @ because VNCKG) = 0.
Thus F has an a-closed graph.
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COROLLARY 19. Let Y be an H -closed space. Then for a compact valued

multifunction F : X — Y, the following are equivalent:

(1) F is v.a.a.c;

(2) F has an a-closed graph;
(3) F has the property (P);
(4) F has the property P*).

Proof. This is an immediate consequence of Theorems 21, 22 and 23

and Corollary 18.
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