

Cihan Orhan

FK SPACES THAT INCLUDE STRONGLY
A-SUMMABLE SEQUENCES

1. Introduction

Let c , ℓ^∞ and ϕ denote the spaces of convergent sequences, bounded sequences and finite sequences, respectively. By c_A we denote the convergence domain of the infinite matrix $A = (a_{nk})$, i.e., $c_A = \{x = (x_k) : Ax \in c\}$. It is known that c_A can be made into a locally convex FK space ([11], Chapter 4). For $0 < p < \infty$ let $w(p)$ denote the space of strongly C_1 summable sequences with index p , i.e.,

$$w(p) = \left\{ x = (x_k) : \lim_n \frac{1}{n} \sum_{k=1}^n |x_k - L|^p = 0 \text{ for some } L \right\}.$$

If $L = 0$, we then write $w_0(p)$ instead of $w(p)$.

In 1946, Kuttner [4] proved that, if $0 < p < 1$ and A is a regular matrix, then there is always a sequence which is strongly Cesàro summable with index p but which is not A -summable. Maddox [5] proved that, if $c_A \supset w(p)$, ($0 < p < 1$), then $c_A \supset \ell^\infty$ which includes Kuttner's result. Recently Thorpe [8] has shown that Maddox's result remains true, if c_A is replaced by any locally convex FK space (see also [7]).

Recall that the space of strongly A -summable sequences with index p , $0 < p < \infty$, is denoted by $w(A, p)$. Thus

$$w(A, p) = \left\{ x = (x_k) : \lim_n \sum_k a_{nk} |x_k - L|^p = 0 \text{ for some } L \right\},$$

1991 *Mathematics Subject Classification*: Primary 46A45; Secondary 46A04, 46A35, 40H05.

Key words and phrases: FK space, strongly A -summable sequence, lacunary statistically convergent sequence.

This research was supported by the Scientific and Technical Research Council of Turkey, (TUBA-GEBİP).

(with the usually summation convention k changing from 1 to n), where A is a non-negative regular matrix [3], [6]. If $L = 0$, we write $w_0(A, p)$ for $w(A, p)$. The space $w_0(A, p)$ is a topological vector space paranormed by

$$g(x) = \sup_n \sum_k a_{nk} |x_k|^p, \quad 0 < p < 1,$$

(see [6], p. 190). Actually it is an FK space.

The aim of this paper is to give necessary and sufficient conditions for a locally convex FK space X to include ℓ^∞ , whenever it includes $w_0(A, p)$, $0 < p < 1$.

Throughout the paper A is a non-negative regular matrix, $e = (1, 1, \dots)$, $\delta^k = (0, \dots, 0, 1, 0, \dots)$, (1 in the k -th place), X is locally convex FK space with continuous dual X' , $X \supset \phi$ and $X^f := \{(f(\delta^k)) : f \in X'\}$.

2. The main results

Before proving the main result we introduce a sequence space related to $w_0(A, p)$. Let

$$N(p) := \left\{ x = (x_k) : \lim_n \sum_k (a_{nk})^{\frac{1}{p}} |x_k| = 0 \right\}, \quad 0 < p < \infty.$$

The following theorem gives some properties of $N(p)$ which we shall need in the sequel.

THEOREM 1. *Let $0 < p < 1$; then*

(i) *$N(p)$ is a locally convex FK space under the paranorm*

$$q(x) = \sup_n \sum_k (a_{nk})^{\frac{1}{p}} |x_k|;$$

(ii) *$\{\delta^k\}$ is a Schauder basis for $N(p)$;*

(iii) *$w_0(A, p)$ is a closed subspace of $N(p)$;*

(iv) *$w_0(A, p)^f = N(p)^f$;*

(v) *$N(p) \supset \ell^\infty$ if and only if $e \in N(p)$.*

P r o o f. It is routine to establish that (i) and (ii) hold, and (v) is trivial.

(iii) If $0 < p < 1$, then

$$\sum_k (a_{nk})^{\frac{1}{p}} |x_k| \leq \left(\sum_k a_{nk} |x_k|^p \right)^{\frac{1}{p}}$$

which yields that $w_0(A, p) \subset N(p)$. Now let $x = (x_i) \in \overline{w_0(A, p)}$. Then there exists $x^m = (x_k^m) = (x_1^m, x_2^m, \dots, x_k^m, \dots) \in w_0(A, p)$ such that $q(x^m - x) \rightarrow 0$, as $m \rightarrow \infty$. Thus given $\varepsilon > 0$, there is $N_1(\varepsilon)$ so that for all

$m \geq N_1(\varepsilon)$ and for all n , we have

$$(1) \quad \sum_k (a_{nk})^{\frac{1}{p}} |x_k^m - x_k| < \varepsilon.$$

Using the well-known inequality $(a+b)^{\frac{1}{p}} \leq H(a^{\frac{1}{p}} + b^{\frac{1}{p}})$, where $a \geq 0, b \geq 0$, $\frac{1}{p} > 1$ and H is a positive constant, we get, by (1), that

$$H^{-p} \sum_k a_{nk} |x_k^m - x_k|^p \leq \left\{ \sum_k (a_{nk})^{\frac{1}{p}} |x_k^m - x_k| \right\}^p < \varepsilon^p.$$

Hence $g(x^m - x) \rightarrow 0$, as $m \rightarrow \infty$, which yields that $(x^m - x) \in w_0(A, p)$. Since $x = (x - x^m) + x^m \in w_0(A, p)$, (iii) is proved. Combining (iii) and Theorem 7.2.6 of [11], we get (iv).

We now prove the main theorem.

THEOREM 2. *Let $0 < p < 1$ and X be a locally convex FK space. Then the following assertions are equivalent.*

- (i) $e \in N(p)$, i.e., $\lim_n \sum_k (a_{nk})^{\frac{1}{p}} = 0$,
- (ii) $X \supset \ell^\infty$ whenever $X \supset w_0(A, p)$.

Proof. Suppose that (i) holds and $X \supset w_0(A, p)$. It follows from Theorem 7.2.6 of [11] that $X^f \subset w_0(A, p)^f$ whence $X^f \subset N(p)^f$, by Theorem 1(iv). Also, by Theorem 1(ii), ϕ is dense in $N(p)$. Now Theorem 4 of [9] implies that $X \supset N(p)$. Thus, by Theorem 1(v), we have $X \supset \ell^\infty$, and so, (i) implies (ii).

Suppose now that (ii) holds but $\lim_n \sum_k (a_{nk})^{\frac{1}{p}} \neq 0$. Since $\{\sum_k (a_{nk})^{\frac{1}{p}}\}_{n=1}^\infty$ is bounded, there exists a subsequence $\{n(j)\}$ of positive integers such that

$$\lim_j \sum_k (a_{n(j),k})^{\frac{1}{p}} = L \neq 0.$$

Now define $b_{jk} := (a_{n(j),k})^{\frac{1}{p}}$, $0 < p < 1$. It is obvious that the matrix $B = (b_{jk})$ is conservative, i.e., maps c into c . Since

$$\chi(B) = \lim_j \sum_k b_{jk} = \sum_k \lim_j b_{jk} = L \neq 0,$$

B is a co-regular matrix. Moreover, we have

$$|(Bx)_j| = \left| \sum_k b_{jk} x_k \right| \leq \sum_k (a_{n(j),k})^{\frac{1}{p}} |x_k| \leq \left(\sum_k a_{n(j),k} |x_k|^p \right)^{\frac{1}{p}},$$

hence B maps $w_0(A, p)$ into c , so $c_B \supset w_0(A, p)$. But c_B is a locally convex FK space (see, e.g. [11], Chapter 4), so (ii) implies that $c_B \supset \ell^\infty$ which is a contradiction to the fact that a coregular matrix cannot sum all bounded sequences [10]; so (ii) implies (i).

Note that if we take $A = C_1$ in Theorem 2, then (i) is automatically satisfied. Thus we immediately get the following main result of Thorpe [8].

COROLLARY 3. *If $0 < p < 1$ and X is locally convex FK space with $X \supset w_0(p)$, then $X \supset \ell^\infty$.*

We remark that Theorem 2 is very useful in order to show that some sequence spaces cannot be given FK topology. To make such an application we pause to collect some further notations.

By a lacunary sequence we mean an increasing integer sequence $\theta = \{k_r\}$ such that $k_0 = 0$ and $h_r := k_r - k_{r-1} \rightarrow \infty$, as $r \rightarrow \infty$. The intervals determined by θ will be denoted by $I_r := (k_{r-1}, k_r]$.

The number sequence $\{x_k\}$ is S_θ -convergent to L provided that for every $\varepsilon > 0$

$$\lim_r \frac{1}{h_r} \|\{k \in I_r : |x_k - L| \geq \varepsilon\}\| = 0,$$

where the bold vertical bars indicate the number of elements in the enclosed set. By S_θ we denote the set of all S_θ -convergent sequences. It is known that $c \subset S_\theta$ and S_θ contains some bounded divergent sequences as well as it contains some unbounded ones (for details, see [1], [2]). Theorem 3.1 of [3] implies that $S_\theta \supset w_0(C^\theta, p)$, where $p > 0$ and $C^\theta = (c_{rk}^\theta)$ is a non-negative regular matrix given by

$$c_{rk}^\theta = \begin{cases} \frac{1}{h_r}, & \text{if } k \in I_r, \\ 0, & \text{if } k \notin I_r. \end{cases}$$

Furthermore

$$\lim_r \sum_k (c_{rk}^\theta)^{\frac{1}{p}} = 0, \quad 0 < p < 1.$$

If S_θ is given locally convex FK topology, then the present Theorem 2 implies $S_\theta \supset \ell^\infty$ which is impossible [1], [2]. So we have already proved the following theorem.

THEOREM 4. *The set of all S_θ -convergent sequences cannot be given locally convex FK topology.*

References

- [1] J. Fridy, C. Orhan, *Lacunary statistical convergence*, Pacific J. Math., 160 (1993), 43–51.
- [2] J. Fridy, C. Orhan, *Lacunary statistical summability*, J. Math. Anal. Appl., 173 (1993), 497–504.
- [3] E. Kolk, *The statistical convergence in Banach spaces*, Acta et Comment. Univ. Tartuensis, 928 (1991), 41–52.
- [4] B. Kuttner, *Note on strong summability*, J. London Math. Soc. 21 (1946), 118–122.
- [5] I. J. Maddox, *On Kuttner's theorem*, J. London Math. Soc. 43 (1968), 285–290.
- [6] I. J. Maddox, *Elements of Functional Analysis*, Cambridge, 1970.
- [7] I. J. Maddox, *FK spaces which include strongly summable sequences*, Math Proc. Cambridge Phil. Soc. 93 (1983), 131–134.
- [8] B. Thorpe, *An extension of Kuttner's theorem*, Bull. London Math. Soc. 13 (1981), 301–302.
- [9] A. K. Snyder, A. Wilansky, *Inclusion theorems and semiconservative FK spaces*, Rocky Mountain J. Math. 2 (1972), 595–603.
- [10] A. Wilansky, *An application of Banach linear functionals to summability*, Trans. Amer. Math. Soc. 67 (1949), 59–68.
- [11] A. Wilansky, *Summability Through Functional Analysis*, North-Holland, 1984.

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
ANKARA UNIVERSITY
06100 TANDOĞAN, ANKARA, TURKEY

Received September 20, 1994.

