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s-STABILITY AND RANDOM INTEGRAL
REPRESENTATIONS OF LIMIT LAWS

Introduction

In the first part, the notion of s-stability is presented using a semigroup
of non-linear shrinking transformations. This may have some potential appli-
cations in technical sciences. Then, two open problems associated with these
transformations are discussed. In the second part, the advantages of random
integral representations are illustrated on classes U, which are limit distri-
butions of some averages of independent Lévy processes. It is shown that the
random integral mappings induced by these representations are homeomor-
phisms between appropriate convolution semigroups. Stable measures are
characterized as invariant elements of these random integral mappings. Us-
ing the classes U a subclassification of the class I.D of all infinitely divisible
measures is given.

1. s-stable distributions

Contemplating the notion of stability, in the probability theory, one can
notice that it is featured by three properties. First, one deals with samples
of observations (i.e., independent identically distributed random variables).
Second, the observed variables are modified (normalized) by some trans-
formations (mappings on the space where the random variables take on
their values). Third, on the modified sample of observations the operation
in underlying space is performed and then the limit distributions of such
constructed sequences are investigated. To be more specific let us illustrate
the above steps by well-known examples.

EXAMPLE 1 (stable distributions). The underlying space is R, T,z := az,
a >0,z € R, are the transformations on R and “+” is the operation in R.
So, (X1,X2,...,X) is an observed sample, (T, X1,7T,5, X2,...,T5, Xk) is a
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modified sample and therefore we get the sequence
(1) To, X1+ Te, X2+ ...+ Ty, Xic + by,

where by are some real shifts. The limits of (1) are called stable distributions
(measures), and are studied for about 70 years; cf. Loéve (1955), Zolotarev
(1986), Linde (1986).

EXAMPLE 2 (maz-stable distrubutions). Replacing in Example 1 the op-
eration “4+” by “V”, which is the maximum in R, we obtain sequences of
the form

(2) Ty X1V Ta, X2 V...V To, X + bi.

The limits of (2) are called maz-stable (or extremal) distributions and were
introduced by Gnedenko, cf. Leadbetter-Lindgren-Rootzen (1983).

EXAMPLE 3 (operator-stable distributions). The underlying space is R?
(or any linear vector space E) with “+” as the operation. Modifications of
observed samples are done by invertible matrices Ay on R? (or bounded
linear operators on E). So, this leads to sequences

(3) ArXa + AeXo + oo A X + by,

with b € R?, whose limits are called operator-stable distributions cf. Sharpe
(1969), Krakowiak (1979), Sakovi¢ (1965); Jurek-Mason (1993).

The formulas (1) and (3) are usually written as a modification of partial
sums and the formula (2) as a modification of the maximum of a sample. It
is so, because the transformation in question are distributive with respect
to the operation in the underlying space. Moreover, it is important that
T,,a > 0, are invertible operators and form a group of transformations.

The example below of s-operations lacks both these properties.

Let E be a Banach space and U, be shrinking operation (for short: s-
operation) from E to E given by the formula

(4) Urz := (0V (||z|| — 7))z/||z|| forz#0, U.0=0,

where £ € E and » > 0. Of course, U, are non-linear and form an one-
parameter semigroup, because

Us(Ur(2)) = OV (|Urzl| = 8))z/ |zl = (OV (llel| — 7 — s))e/l|2]| = Usr4s(2)-
For E = R, the formula (4) gives the following

{ 0, for |z| <,

U= z—7r, forz>r,

z+r, forz<-—r.

So, if C, denotes the censoring (truncation) at the level 7, then z = C;z +
U,z, i.e., s-operation is a complementary to the censoring. Furthermore,
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if z represents a true signal and a measuring gauge is not very sensitive
we read off zero when the signal is “small”, i.e., |z|] < r, and we receive
only z — r, i.e., the excess above the level r, when z > r. Thus, it models
many real problems in technical sciences. Also, the shrinking operation may
be viewed in terms of erosion function when applied to sets; cf. Matheron
(1975). But the main objective was the theoretical question how far one can
go with limits of sequences of the form (1), (2) or (3) when dealing with the
semigroup of non-linear transformations U,. This problem was raised by K.
Urbanik in 1972 and was completely solved by the end of 1976; cf. Jurek
(1981).

Let us take Banach space E with addition “4” as the underlying space
and s-operations U,,r > 0, as the transformations on E. Thus, a sample
(X1, X2,...,Xx) of E-valued variables produces a sequence

(5) Urle-I-U,-sz-i-...U,-ka-i-bk, b€ E,

which weak limits are called s-stable distributions (not to be confused with
a stable law with an exponent s !). Additionally we assume that rv’s X;
are not uniformly bounded and the triangular array U,, X;,1 < j <k, is
uniformly infinitesimal, i.e., for each ¢ > 0

li P X;||>¢€}=0.

Jim  max P{[|Un X;ll 2 ¢}
Hence, all s-stable distributions are infinitely divisible. They are charaterized
in [3] as follows.

THEOREM 1. A measure p on a Hilbert space H is s-stable if and only
if either u is purely Gaussian or p is infinitely divisible without Gaussian
component, its Lévy spectral measure M is finite and of the following form

M(A) = f TIA(t:c)e""t dt m(dz),
S 0

where m is a finite Borel measure on the unit sphere S in H and o is a
posttive constant.

The proofs from (3] can be extended to Banach space setting using the
General Central Limit Theorem, Theorem 5.9, from Araujo-Giné (1980),
Chapter 3. Some of them may require additional assumptions on a geometry
of the Banach space.

ProBLEM 1. Constructing distributions of X; from Gaussian covariance
operator and the standard normal distributions on Rt and then using the
solutions of the equation

z’exp(z?/2) = Kn, K is a constant,
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as r,’s we obtain Gaussian measure v as the s-stable distribution, i.e., ¥
is a weak limit of (5); cf. Lemma 5.2 in [3]. What is a condition on the
distribution of X; (probably moment condition) and what are canonical
rn’s such that Gaussian measure is the only limit in (5)? In other words,
find an analogue of CLT for s-operations U,. (Of course, in the classical
CLT second moment is the condition, and a, = n~1/? are the canonical
constants in (1).)

PROBLEM 2. Looking at the extremal distributions (Example 2) as limit
of maximum of modified sample, one might ask for limits of sequences

(7) Un XaVU, X V...V Ur, Xk + bg,

where b, € R, Xy,...,X} are ii.d R-valued and U,’s are the shrinking
operations. So, the modification of the sample is done by U, instead of T,,
as it is in (2).

2. Random integral representations

The Fourier transform (characteristic function) is the main analytic
tool, in probability theory, for description of laws or limit laws. In some
cases the Choquet-Krein-Millman Theorem was used to prove such char-
acterizations; cf. Urbanik (1975), Jurek (1981), Section 6. However, in re-
cent years many classes of limit distributions were identified as classes of
probability distributions of certain random integrals. Usually one integrates
a deterministic function with respect to some Lévy processes (processes
with independent and stationary increments). Random integral represen-
tation immediately gives the Fourier transform and provides the connection
between the theory of stochastic processes and the theory of limit distribu-
tions.

We are going to illustrate the above ideas on classes U of limit distri-
butions.

For a § € R, we say that a measure yu € Up provided it is a weak limit
of a sequence

(8) (G )+ &P+ ...+ Ea(n7P))/n,

where £;’s are independent Lévy processes with £,(0) = 0 a.s. So, if v; =
L(€;(1)) denotes the probability distribution of £;(1), then the probability
distribution of (8) is equal to

(9) Trn-1(v1 %12 *...*un)*"_ﬁ.

From [5], Theorem 1.1, we obtain the following
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THEOREM 2. (Convolution equation characterization) A measure p € Ug
if and only if for each 0 < ¢ < 1 there ezists a measure pu. such that

(10) p= Top*® % e

The equation (10) can be expressed in terms of stochastic processes. Namely,
if € is a Lévy process with u = L£(£(1)) and process 7 is independent of £,
then

£(1) 2 c€(cP)+n(c), for0<e<1,

above £ means equality in distribution.

From Theorem 2 we see that Uy = Lg is the Lévy class of selfdecomposable
distributions, i.e., these are the limits of (1) when instead of dealing with
samples one has sequences of independent rv’s such that the triangular array
Te,X;,1 L j <k, is uniformly infinitesimal. Of course, in such a setting one
loses the immediate applications in mathematical statistics which almost
exclusively deals with samples. Yet, DeConinck (1984) proved that measures
from class Ly are limit distributions in the Ising model for ferromagnetism.
Moreover, he showed that except Cauchy distribution (stable measure with
exponent p = 1) none of stable distributions can be obtained that way.

Class U, coincides with so called s-selfdecomposable measures. These
are limits of (5) when once again samples are subsituted by sequences of
independent rv’s such that triangular array U, X;, 1 < j < k, is uniformly
infinitesimal; cf. Jurek (1985), Corollary 2.3. Of course, s-stable measures
are elements of the class U;.

Another conclusion from Theorem 2 is that Us’s form an increasing se-
quence of closed convolution subsemigroups of the semigroup, ID, of all
infinitely divisible measures. Furthermore, if 4 # 6(z) € Ug, then § > -2
and U_; consists of all Gaussian measures; cf. Jurek (1985), Corollary 1.1
and (1989), Proposition 1.1.

The main objective of this section is the following characterization.

THEOREM 3 (Random integral representations). (a) For § > 0, p € Up
if and only if there exists a unique Lévy process Y such that

p=L( [tdy ().
(0.1)

(b) A measure p € Uy = Lo if and only if there exists a unique Lévy
process Y such that E[log(1 + |[Y(1)]])] < oo and

p=L( [etav()= (- f tdY(—lnt)).

(0,00) (0,1)
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(c) For —1 < 8 < 0 and measure . on a Hilbert space H we have p € Uy
iff there ezists a unique Lévy process in H such that E[||Y(1)||7°] < oo and

p= 7p*£( [ tav (%)),
(0,1)
where 73 is a strictly stable measure with ezponent (—f3).
(d) For -2 < B < -1 and symmetric measures 1 cn a Hilbert space the
characterization from (c) is true.

These random integral representations were proved in a sequence of pa-
pessi part (a) in Jurek (1988), part (b) in Jurek-Vervaat (1983) and parts (c)
and (d) in Jurek (1989). Also, let us note that these representations can be
viewed as probability distribution of integral functionals of Lévy processes
with changed time scale. Moreover, the random integrals above, are defined
by the formal formula of integration by parts, i.e.,

[ 1) dy @) := fOY@)liss - [ YO df(2),
(a,b) (a,b]
and the integral on the right-hand side exists for a function f with bounded
variation because Y has its paths in Skorohod space Dg[0, o).

From the random integral representation we get immediately the charac-
terizations in terms of the Fourier transform. Simply one needs to calculate
the Fourier transforms of appropriate random integrals, cf. Jurek (1988).
Furthermore, we obtain a subclassification of the class ID of all infinitely
divisible measures. Namely, we have

COROLLARY 1. ID = Uy oUp (closure in weak topology).

Proof. From Theorem 3 (a),

im  [¢dY(#) = lim [¢/Pay()= [dY()=Y(1-),
(0,1) (0,1) (0,1)
and we may take any infinitely divible measure as the probability distri-
bution of Y(1). (In fact, in Corollary 1 it is enough to sum up over any
sequence [, — +00).

Each random integral representation in Theorem 3 indicates an appro-
priate random integral mapping. Namely, for 3 > 0 we have

(11) I8 :ID - Us, where IP(v):= E( f tdY(tﬁ)),
(0,1)

where Y is a Lévy process such that £(Y (1)) = v. For § = 0, the random
integral mapping Z° is given by the integral in part (b) of Theorem 3 and its
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domain is the subset of infinitely divisible measures with finite logarithmic
moments. Let us quote from Jurek (1988) the following

THEOREM 4. (a) For 3 > 0, the random integral mapping I? is a home-
omorphism between topolgical convolution semigroups ID and Up.

(b) If v is a stable measure with ezponent, p then IP(v) = v*P(P+P) % §(z)
for some = € E. Conversely, if u has the property that IP(u) = p*¢  6(2)
for some ¢ > 0 and z € E, then u is stable with the exponent B(1 — c)e™?.

Note that the above property (b), of ZP-invariance, may be used as
the characterization of stability using the random integral representation
technique and the appropriate random integral mapping.

In case of the class Uy = Lo of selfdecomparable measures, cf. Theorem
3(b), we have the processes

(12) Z(t) = [ed¥(s)E [et9dv(s), t>0,
©.] (0.4

which are of the Ornstein-Uhlenbeck type, (take Brownian motion as Y).
Their infinitesimal generators were described in Sato and Yamazato (1984).
Thus the Lévy class Lo concides with limits distribution of (12), when
t — oo.

The survey of results, in Section 2 of this note, clearly indicates how use-
ful are random integral representations and how they connect the theory of
limit distributions and the theory of stochastic processes (stochastic integra-
tion). On the other hand, the random integral mappings provide homeomor-
phism between classes of limit distributions and convolution subsemigroups
of the semigroup ID of all infinitely divisible measures. The examples of
classes U discussed above, as well as some others, lead to the formulation
of the following conjucture:

Each class of limit distributions, derived from sequences of independent
random variables, is the image of some subset of ID by some mapping de-
fined as a random integral.

Cf. Jurek (1985), p. 607 and Jurek (1988), p. 474.
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