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¿-STABILITY A N D R A N D O M INTEGRAL 
REPRESENTATIONS OF LIMIT LAWS 

Introduction 
In the first part, the notion of ¿-stability is presented using a semigroup 

of non-linear shrinking transformations. This may have some potential appli-
cations in technical sciences. Then, two open problems associated with these 
transformations are discussed. In the second part, the advantages of random 
integral representations are illustrated on classes Up, which are limit distri-
butions of some averages of independent Levy processes. It is shown that the 
random integral mappings induced by these representations are homeomor-
phisms between appropriate convolution semigroups. Stable measures are 
characterized as invariant elements of these random integral mappings. Us-
ing the classes Up a sub classification of the class ID of all infinitely divisible 
measures is given. 

1. ¿-stable distributions 
Contemplating the notion of stability, in the probability theory, one can 

notice that it is featured by three properties. First, one deals with samples 
of observations (i.e., independent identically distributed random variables). 
Second, the observed variables are modified (normalized) by some trans-
formations (mappings on the space where the random variables take on 
their values). Third, on the modified sample of observations the operation 
in underlying space is performed and then the limit distributions of such 
constructed sequences are investigated. To be more specific let us illustrate 
the above steps by well-known examples. 

E X A M P L E 1 (stable distributions). The underlying space is R, Tax := ax, 
a > 0, x 6 R, are the transformations on R and "+" is the operation in R. 
So, (XUX2, • • -iXk) is an observed sample, ( T a k X \ , T a k X 2 , . . .,TakX*.) is a 
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modified sample and therefore we get the sequence 

(1) TatX1+TakX2 + ... + TaiXk + bk, 
where bk are some real shifts. The limits of (1) are called stable distributions 
(measures), and are studied for about 70 years; cf. Loeve (1955), Zolotarev 
(1986), Linde (1986). 

EXAMPLE 2 (max-stable distrubutions). Replacing in Example 1 the op-
eration "+" by "V", which is the maximum in R, we obtain sequences of 
the form 

(2) TakX1 V TakX2 V . . . V TakXk + bk. 
The limits of (2) are called max-stable (or extremal) distributions and were 
introduced by Gnedenko, cf. Leadbetter-Lindgren-Rootzen (1983). 

E X A M P L E 3 (operator-stable distributions). The underlying space is R d 

(or any linear vector space E) with "+" as the operation. Modifications of 
observed samples are done by invertible matrices Ak on (or bounded 
linear operators on E). So, this leads to sequences 

(3) AkX! + AkX2 + • • • + AkXk + bk, 
with bk € R d , whose limits are called operator-stable distributions cf. Sharpe 
(1969), Krakowiak (1979), Sakovic (1965); Jurek-Mason (1993). 

The formulas (1) and (3) are usually written as a modification of partial 
sums and the formula (2) as a modification of the maximum of a sample. It 
is so, because the transformation in question are distributive with respect 
to the operation in the underlying space. Moreover, it is important that 
Ta,a > 0, are invertible operators and form a group of transformations. 

The example below of ¿-operations lacks both these properties. 
Let E be a Banach space and Ur be shrinking operation (for short: 5-

operation) from E to E given by the formula 

(4) Urx := (0 V (||z|| - r ) > / | | z | | for z ^ 0, UT0 = 0, 

where x £ E and r > 0. Of course, Ur are non-linear and form an one-
parameter semigroup, because 
Us(Ur(x)) = (0 V ( I I M I - s))x/\\x\\ = (0 V (||*|| - r - s ) W | | z | | = I7 r+.(x). 

For E — R, the formula (4) gives the following 

0, for |x| < r, 
Urx — x — r, for a: > r, 

x + r, for x < —r. 

So, if CT denotes the censoring (truncation) at the level r, then x = CTx + 
UTx, i.e., s-operation is a complementary to the censoring. Furthermore, 
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if x represents a true signal and a measuring gauge is not very sensitive 
we read off zero when the signal is "small", i.e., |x| < r , and we receive 
only x — r , i.e., the excess above the level r , when x > r. Thus, it models 
many real problems in technical sciences. Also, the shrinking operation may 
be viewed in terms of erosion function when applied to sets; cf. Matheron 
(1975). But the main objective was the theoretical question how far one can 
go with limits of sequences of the form (1), (2) or (3) when dealing with the 
semigroup of non-linear transformations Ur • This problem was raised by K. 
Urbanik in 1972 and was completely solved by the end of 1976; cf. Jurek 
(1981). 

Let us take Banach space E with addition "+" as the underlying space 
and s-operations Ur, r > 0, as the transformations on E. Thus, a sample 
( X i , X 2 , . . . , Xk) of £-valued variables produces a sequence 

(5) UrkXl + UrkX2 + ...UrkXk + bk, bk £ E, 

which weak limits are called s-stable distributions (not to be confused with 
a stable law with an exponent s !). Additionally we assume that rv's Xj 
are not uniformly bounded and the triangular array UrkXj,l < j < k, is 
uniformly infinitesimal, i.e., for each e > 0 

lim mix P{\\UrkXj\\>e} = 0. 
At—»OO 1<]<K 

Hence, all s-stable distributions are infinitely divisible. They are charaterized 
in [3] as follows. 

T H E O R E M 1 . A measure fi on a Hilbert space H is s-stable if and only 
if either /z is purely Gaussian or fi is infinitely divisible without Gaussian 
component, its Levy spectral measure M is finite and of the following form 

oo 
M(A)= f f 1 A(tx)e~atdtm(dx), 

S 0 
where m is a finite Borel measure on the unit sphere S in H and a is a 
positive constant. 

The proofs from [3] can be extended to Banach space setting using the 
General Central Limit Theorem, Theorem 5.9, from Araujo-Giné (1980), 
Chapter 3. Some of them may require additional assumptions on a geometry 
of the Banach space. 

P R O B L E M 1. Constructing distributions of X j from Gaussian covariance 
operator and the standard normal distributions on R + and then using the 
solutions of the equation 

x3 exp(x2/2) = Kn, K is a constant, 
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as r n ' s we obtain Gaussian measure 7 as the s-stable distribution, i.e., 7 
is a weak limit of (5); cf. Lemma 5.2 in [3]. What is a condition on the 
distribution of X j (probably moment condition) and what are canonical 
r„ ' s such that Gaussian measure is the only limit in (5)? In other words, 
find an analogue of CLT for ¿-operations Ur. (Of course, in the classical 
CLT second moment is the condition, and an = n - 1 / 2 are the canonical 
constants in (1).) 

P R O B L E M 2 . Looking at the extremal distributions (Example 2 ) as limit 
of maximum of modified sample, one might ask for limits of sequences 

where bk € R, X\,...,Xk are i.i.d R-valued and Ur's are the shrinking 
operations. So, the modification of the sample is done by Ur instead of Ta, 
as it is in (2). 

2. Random integral representations 
The Fourier transform (characteristic function) is the main analytic 

tool, in probability theory, for description of laws or limit laws. In some 
cases the Choquet-Krein-Millman Theorem was used to prove such char-
acterizations; cf. Urbanik (1975), Jurek (1981), Section 6. However, in re-
cent years many classes of limit distributions were identified as classes of 
probability distributions of certain random integrals. Usually one integrates 
a deterministic function with respect to some Levy processes (processes 
with independent and stationary increments). Random integral represen-
tation immediately gives the Fourier transform and provides the connection 
between the theory of stochastic processes and the theory of limit distribu-
tions. 

We are going to illustrate the above ideas on classes Up of limit distri-
butions. 

For a /? £ R, we say that a measure fx £ Up provided it is a weak limit 
of a sequence 

where are independent Levy processes with £¿(0) = 0 a.s. So, if Vj = 
denotes the probability distribution of £,(1), then the probability 

distribution of (8) is equal to 

(7) UrkXi VUrkX2 V . . . V UrkXk + bk, 

(8) 

(9) r B - i (»1*1^2*... •!/„)* 

From [5], Theorem 1.1, we obtain the following 
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T H E O R E M 2 . (Convolution equation characterization) A measure fi € Up 
if and only if for each 0 < c < 1 there exists a measure p,c such that 

(10) /i = T c /x* c %/z c . 

The equation (10) can be expressed in terms of stochastic processes. Namely, 
if £ is a Levy process with fi = £ ( f ( l ) ) and process 77 is independent of 
then 

{(1) = cf (c^) + 17(c), for 0 < c < 1, 

above = means equality in distribution. 
From Theorem 2 we see tha t UQ = LQ is the Levy class of selfdecomposable 

distributions, i.e., these are the limits of (1) when instead of dealing with 
samples one has sequences of independent rv 's such tha t the triangular array 
T a k X j i 1 < J < A:, is uniformly infinitesimal. Of course, in such a setting one 
loses the immediate applications in mathematical statistics which almost 
exclusively deals with samples. Yet, DeConinck (1984) proved that measures 
from class LQ are limit distributions in the Ising model for ferromagnetism. 
Moreover, he showed tha t except Cauchy distribution (stable measure with 
exponent p = 1) none of stable distributions can be obtained that way. 

Class U\ coincides with so called s-selfdecomposable measures. These 
are limits of (5) when once again samples are subsituted by sequences of 
independent rv's such tha t triangular array UTkXj, 1 < j < k, is uniformly 
infinitesimal; cf. Jurek (1985), Corollary 2.3. Of course, s-stable measures 
are elements of the class l i \ . 

Another conclusion f rom Theorem 2 is tha t Mp's form an increasing se-
quence of closed convolution subsemigroups of the semigroup, ID, of all 
infinitely divisible measures. Furthermore, if p ^ 6(x) € Up, then f3 > — 2 
and U-2 consists of all Gaussian measures; cf. Jurek (1985), Corollary 1.1 
and (1989), Proposition 1.1. 

The main objective of this section is the following characterization. 

T H E O R E M 3 (Random integral representations), (a) For 0 > 0, fi € lip 
if and only if there exists a unique Levy process Y such that 

H = £( J tdY(tp)). 
(0,1) 

(b) A measure p, £ lio = LQ if and only if there exists a unique Levy 
process Y such that E[log(l + | | y ( l ) | | ) ] < ex and 

= f e-ldY{t)) = £ ( - J tdY(-int)). 
(O.oo) (0,1) 
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(c) For — 1 < (3 < 0 and measure fi on a Hilbert space H we have fi £ Up 
iff there exists a unique Levy process in H such that E[||Y"(1)||-^] < oo and 

M = 70*£( J tdY(tP)), 
(o,i) 

where is a strictly stable measure with exponent (—0). 
(d) For —2 < /? < —1 and symmetric measures n on a Hilbert space the 

characterization from (c) is true. 

These random integral representations were proved in a sequence of pa-
per- part (a) in Jurek (1988), part (b) in Jurek-Vervaat (1983) and parts (c) 
and (d) in Jurek (1989). Also, let us note that these representations can be 
viewed as probability distribution of integral functionals of Levy processes 
with changed time scale. Moreover, the random integrals above, are defined 
by the formal formula of integration by parts, i.e., 

f f ( t ) dY(t) mY(t)\i=b
a ~ f Y(t) df(t)), 

(a,6] (a,6] 

and the integral on the right-hand side exists for a function / with bounded 
variation because Y has its paths in Skorohod space Df;[0,oo). 

From the random integral representation we get immediately the charac-
terizations in terms of the Fourier transform. Simply one needs to calculate 
the Fourier transforms of appropriate random integrals, cf. Jurek (1988). 
Furthermore, we obtain a subclassification of the class ID of all infinitely 
divisible measures. Namely, we have 

COROLLARY 1. ID = \Jp>0Mp (closure in weak topology). 

P r o o f . From Theorem 3 (a), 

lim ftdY(tf})= lim f t1^ dY(t) = f dV(t) = Y(l-), 
3—t-foo " t—* 00 J J 

(0,1) (0,1) (0,1) 

and we may take any infinitely divible measure as the probability distri-
bution of F ( l ) . (In fact, in Corollary 1 it is enough to sum up over any 
sequence fin —* +00). 

Each random integral representation in Theorem 3 indicates an appro-
priate random integral mapping. Namely, for f5 > 0 we have 

(11) : ID Up, where Ip(v) := £ ( / tdY(tp)^ 
(0,1) 

where Y is a Levy process such that £(Y(1)) = v. For (3 — 0, the random 
integral mapping 1° is given by the integral in part (b) of Theorem 3 and its 
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domain is the subset of infinitely divisible measures with finite logarithmic 
moments. Let us quote from Jurek (1988) the following 

THEOREM 4. (a) For ¡3 > 0 , the random integral mapping is a home-
omorphism between topolgical convolution semigroups ID and Up. 

(b) I f v is a stable measure with exponent, p then = 
for some x £ E. Conversely, i//x has the property that I^(ft) = fi*c * 6(z) 
for some c > 0 and z £ E, then n is stable with the exponent (3(1 — c)c~1. 

Note that the above property (b), of I^-invariance, may be used as 
the characterization of stability using the random integral representation 
technique and the appropriate random integral mapping. 

In case of the class UQ = Zo of selfdecomparable measures, cf. Theorem 
3(b), we have the processes 

(12) Z(t):= Je~adY(s)= f e^-* dY(s), t > 0, 
(<M] (o,f] 

which are of the Ornstein-Uhlenbeck type, (take Brownian motion as Y). 
Their infinitesimal generators were described in Sato and Yamazato (1984). 
Thus the Levy class LQ concides with limits distribution of (12), when 
t —• oo. 

The survey of results, in Section 2 of this note, clearly indicates how use-
ful are random integral representations and how they connect the theory of 
limit distributions and the theory of stochastic processes (stochastic integra-
tion). On the other hand, the random integral mappings provide homeomor-
phism between classes of limit distributions and convolution subsemigroups 
of the semigroup ID of all infinitely divisible measures. The examples of 
classes Up discussed above, as well as some others, lead to the formulation 
of the following conjucture: 

Each class of limit distributions, derived from sequences of independent 
random variables, is the image of some subset of ID by some mapping de-
fined as a random integral. 

Cf. Jurek (1985), p. 607 and Jurek (1988), p. 474. 
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