

Marian Liskowski

SOME CHARACTERIZATION OF DUAL SPACE
 OF ORLICZ-SLOBODECKII SPACE

1. Let Ω be a nonempty open set in the n -dimensional real Euclidean space \mathbb{R}^n . By a function $M : [0, \infty) \rightarrow [0, \infty)$ we mean a map which is convex, vanishing and continuous at zero. If M satisfies additionally the conditions

$$\frac{M(u)}{u} \rightarrow 0 \quad \text{as } u \rightarrow 0 \quad \text{and} \quad \frac{M(u)}{u} \rightarrow \infty \quad \text{as } u \rightarrow \infty$$

then M is called an N -function.

We say that M satisfies the condition Δ_2 if there exists a constant $K > 0$ such that $M(2u) \leq K \cdot M(u)$ for every u . If M is an N -function, then we define the complementary (conjugate) N -function N by

$$N(u) = \sup\{uv - M(v); v > 0\} \quad \text{for } u \geq 0.$$

Let k be an arbitrary positive, noninteger number and $k = [k] + \lambda$, where $[k]$ denotes the entire part of k and $0 < \lambda < 1$. Denote by X the vector space of all real-valued, measurable functions defined on Ω with equality almost everywhere on Ω . Define a functional I on X in the following manner:

$$\begin{aligned} I(f) = \sum_{|\alpha| \leq [k]} & \left(\int_{\Omega} M(|D^{\alpha}f(x)|) dx \right. \\ & \left. + \int_{\Omega} \int_{\Omega} M\left(\frac{|D^{\alpha}f(x) - D^{\alpha}f(y)|}{|x - y|^{\lambda}}\right) \frac{dx dy}{|x - y|^n} \right) \end{aligned}$$

where $D^{\alpha}f$ is the distributional derivative of f . Note that this functional I is a convex modular on X .

By the Orlicz-Slobodeckii space $B^{k,M}$ we mean the set of all functions $f \in X$, possessing distributional derivatives $D^{\alpha}f$ up to order $[k]$, for which there exists a constant $a > 0$, depending of f such that $I(af) < \infty$, [3]. The

space $B^{k,M}$ equipped with the Luxemburg norm generated by the modular I , is a Banach space, (see [2]).

Define $B = \{(x, y) \in \Omega \times \Omega : x = y\}$. For any set A in the σ -algebra of Lebesgue measurable subsets of $\Omega \times \Omega$, $\Omega \subset \mathbb{R}^n$, consider the nonnegative measure ν given by

$$\nu(A) = \iint_A |x - y|^{-n} dx dy \quad \text{and} \quad \nu(B) = 0.$$

The measure ν is separable and σ -finite, [3]. Let $L^M(\Omega \times \Omega, \nu)$ denote the Orlicz space of all real and measurable functions F defined on $\Omega \times \Omega$, generated by the modular

$$J(F) = \iint_{\Omega \times \Omega} M(|F(x, y)|) d\nu(x, y), \quad (\text{see [3]}).$$

Put

$$l = \sum_{|\alpha| \leq [k]} 1$$

and

$$\mathcal{L}^M = \prod_{i=1}^l (L^M(\Omega) \times L^M(\Omega \times \Omega, \nu)).$$

For any $u \in \mathcal{L}^M$, $u = (u_i, U_i)_{i=1}^l$, we define

$$\rho(u) = \sum_{i=1}^l \left(\int_{\Omega} M(|u_i(x)|) dx + \iint_{\Omega \times \Omega} M(|U_i(x, y)|) d\nu(x, y) \right).$$

Then ρ is a convex modular in \mathcal{L}^M . The space \mathcal{L}^M with the Luxemburg norm $\|\cdot; \mathcal{L}^M\|$ generated by ρ is complete. We also define on \mathcal{L}^M the Orlicz norm by

$$\begin{aligned} {}^o\|u; \mathcal{L}^M\| &= \\ &\sup \left\{ \left| \sum_{i=1}^l \left(\int_{\Omega} u_i(x) v_i(x) dx + \iint_{\Omega \times \Omega} U_i(x, y) V_i(x, y) d\nu(x, y) \right) \right| : \|v; \mathcal{L}^N\| \leq 1 \right\} \end{aligned}$$

where $v \in \mathcal{L}^M$ and the function N is complementary to M .

Let N be complementary to M . Then the following inequality

$$\begin{aligned} (1) \quad \left| \sum_{i=1}^l \left(\int_{\Omega} u_i(x) v_i(x) dx + \iint_{\Omega \times \Omega} U_i(x, y) V_i(x, y) d\nu(x, y) \right) \right| &\leq \\ &\leq {}^o\|v; \mathcal{L}^N\| \cdot \|u; \mathcal{L}^M\| \end{aligned}$$

holds for any $u \in \mathcal{L}^M$ and $v \in \mathcal{L}^N$.

If an N -function M satisfies the condition Δ_2 then every continuous linear functional over \mathcal{L}^M is of the form

$$f^*(u) = \sum_{i=1}^l \left(\int_{\Omega} v_i(x) u_i(x) dx + \iint_{\Omega \Omega} V_i(x, y) U_i(x, y) \frac{dxdy}{|x-y|^n} \right)$$

for $u = (u_i, U_i)_{i=1}^l \in \mathcal{L}^M$, where $v = (v_i, V_i)_{i=1}^l \in \mathcal{L}^N$ and N is complementary to M , [3]. Moreover $\|f^*\| = {}^o\|v; \mathcal{L}^N\|$.

Suppose that the l multiindices α satisfying $|\alpha| \leq [k]$ are linearly ordered so that with each $u \in B^{k,M}(\Omega)$ we may associate a well-defined vector Pu in \mathcal{L}^M given by

$$Pu = \left(D^\alpha u(x) - D^\alpha u(y) \right)_{|\alpha| \leq [k]}.$$

Then $\|u; B^{k,M}\| = \|Pu; \mathcal{L}^M\|$ for any $u \in B^{k,M}(\Omega)$. So P is an isometric isomorphism of $B^{k,M}(\Omega)$ onto a subspace $P(B^{k,M}(\Omega))$ of \mathcal{L}^M . Hence for $u \in B^{k,M}(\Omega)$ we have

$$(2) \quad \left| \sum_{|\alpha| \leq [k]} \left(\int_{\Omega} D^\alpha u(x) v_\alpha(x) dx + \iint_{\Omega \Omega} \frac{D^\alpha u(x) - D^\alpha u(y)}{|x-y|^\lambda} V_\alpha(x, y) d\nu(x, y) \right) \right| \leq {}^o\|v; \mathcal{L}^N\| \cdot \|u; B^{k,M}\|.$$

Thus each $v \in \mathcal{L}^N$ defines a continuous linear functional on $B^{k,M}$ by

$$(3) \quad L(u) = \sum_{|\alpha| \leq [k]} \left(\int_{\Omega} D^\alpha u(x) v_\alpha(x) dx + \iint_{\Omega \Omega} \frac{D^\alpha u(x) - D^\alpha u(y)}{|x-y|^\lambda} V_\alpha(x, y) \frac{dxdy}{|x-y|^n} \right),$$

where $v = (v_\alpha, V_\alpha)_{|\alpha| \leq [k]}$.

Let M be an N -function satisfying the condition Δ_2 and L be arbitrary continuous linear functional over $B^{k,M}(\Omega)$. Then there exists $v \in \mathcal{L}^N$, $v = (v_\alpha, V_\alpha)_{|\alpha| \leq [k]}$, such that L is of the form (3) and $\|L\| = \inf {}^o\|v; \mathcal{L}^N\|$, where the infimum is taken over, the set of all $v \in \mathcal{L}^N$ such that L can be expressed by formula (3).

Every element L of the space $(B^{k,M}(\Omega))^*$ is an extension to $B^{k,M}(\Omega)$ of a distribution $T \in \mathcal{D}'(\Omega)$. To see this suppose that L is given by (3) for some $v \in \mathcal{L}^N$, $v = (v_\alpha, V_\alpha)_{|\alpha| \leq [k]}$ and consider

$$T_{(v_\alpha, V_\alpha)}(\varphi) = \int_{\Omega} v_\alpha(x) \varphi(x) dx + \iint_{\Omega \Omega} V_\alpha(x, y) \frac{\varphi(x) - \varphi(y)}{|x-y|^\lambda} d\nu(x, y)$$

for $\varphi \in \mathcal{D}(\Omega)$ and every α , $|\alpha| \leq [k]$, and

$$(4) \quad T = \sum_{|\alpha| \leq [k]} (-1)^{|\alpha|} D^\alpha T_{(v_\alpha, V_\alpha)}.$$

For every $\varphi \in \mathcal{D}(\Omega) \subset B^{k,M}(\Omega)$ we have

$$T(\varphi) = \sum_{|\alpha| \leq [k]} T_{(v_\alpha, V_\alpha)}(D^\alpha \varphi) = L(\varphi),$$

so that L is clearly an extension of T . But if T is any element of $\mathcal{D}'(\Omega)$ having the form (4) for some $v \in \mathcal{L}^N$, then the continuous extension of T to $B^{k,M}(\Omega)$ may be not unique. However, T possesses a unique extension to $B_0^{k,M}(\Omega)$, where $B_0^{k,M}(\Omega)$ denotes the closure in $B^{k,M}(\Omega)$ of the set $C_0^\infty(\Omega)$ with respect to the norm generated by the modular I .

Now suppose T is any element of $\mathcal{D}'(\Omega)$ having the form (4) for some $v \in \mathcal{L}^N$. Let $u \in B_0^{k,M}(\Omega)$. Then there exists a sequence (φ_n) in $C_0^\infty(\Omega)$ such that $\|u - \varphi_n; B^{k,M}\| \rightarrow 0$, as $n \rightarrow \infty$. We have

$$\begin{aligned} |T\varphi_n - T\varphi_m| &= \left| \sum_{|\alpha| \leq [k]} T_{(v_\alpha, V_\alpha)}(D^\alpha \varphi_n - D^\alpha \varphi_m) \right| \leq \\ &\leq {}^\circ \|v; \mathcal{L}^N\| \cdot \|\varphi_n - \varphi_m; B^{k,M}\| \rightarrow 0 \end{aligned}$$

as $m, n \rightarrow \infty$. Therefore $(T\varphi_n)$ is a Cauchy sequence and so it is convergent. Observe that its limit equals $L(u)$,

$$L(u) = \lim_{n \rightarrow \infty} T(\varphi_n),$$

since it is clear that if also $(\psi_n) \subset C_0^\infty(\Omega)$ and $\|u - \psi_n; B^{k,M}\| \rightarrow 0$, then $T(\varphi_n) - T(\psi_n) \rightarrow 0$ as $n \rightarrow \infty$, where

$$u = \lim_{n \rightarrow \infty} \varphi_n.$$

So L is a linear functional on $B_0^{k,M}(\Omega)$. Furthermore

$$|L(u)| \leq \lim_{n \rightarrow \infty} {}^\circ \|v; \mathcal{L}^N\| \cdot \|\varphi_n; B^{k,M}\| = {}^\circ \|v; \mathcal{L}^N\| \cdot \|u; B^{k,M}\|.$$

Hence L is bounded and $\|L\| \leq {}^\circ \|v; \mathcal{L}^N\|$.

Denote by $B^{-k,N}(\Omega)$ the space consisting of those distributions $T \in \mathcal{D}'(\Omega)$ satisfying (4) for some $v \in \mathcal{L}^N$, $v = (v_\alpha, V_\alpha)_{|\alpha| \leq [k]}$, normed by

$$\|T\| = \inf \{{}^\circ \|v; \mathcal{L}^N\| : v \text{ satisfies (4)}\}.$$

Then the following theorem holds:

THEOREM 1. *The dual space $(B_0^{k,M}(\Omega))^*$ is isometrically isomorphic to the space $B^{-k,N}(\Omega)$.*

The space $B^{-k,N}(\Omega)$ is complete. If N satisfies Δ_2 then $B^{-k,N}(\Omega)$ is separable and reflexive provided that M and its complementary function N satisfy Δ_2 .

Let M and N be complementary N -functions and both the functions satisfy the condition Δ_2 . Each element $v = (v_0, V_0) \in L^N(\Omega) \times L^N(\Omega \times \Omega, \nu)$ determines a functional $L_v \in (B_{k,M}(\Omega))^*$ of the form

$$(5) \quad L_v(u) = \int_{\Omega} u(x) v_0(x) dx + \int_{\Omega} \int \frac{u(x) - u(y)}{|x - y|^\lambda} V_0(x, y) d\nu(x, y).$$

Let us define the norm of $v \in L^N(\Omega) \times L^N(\Omega \times \Omega, \nu)$ as the norm of L_v given by (5), that is

$$\|v\|_{-k,N} = \sup \{|L_v(u)| : u \in B^{k,M}(\Omega) \text{ and } \|u; B^{k,M}\| \leq 1\}.$$

Clearly, for any $u \in B^{k,M}(\Omega)$ and $v \in L^N(\Omega) \times L^N(\Omega \times \Omega, \nu)$ we have

$$\|v\|_{-k,N} \leq \|v; L^N(\Omega) \times L^N(\Omega \times \Omega, \nu)\|.$$

Let

$$W = \{L_v : v \in L^N(\Omega) \times L^N(\Omega \times \Omega, \nu)\}.$$

Thus W is a vector subspace of $(B^{k,M}(\Omega))^*$. We shall show that W is dense in $(B^{k,M}(\Omega))^*$.

LEMMA ([1] p.51). *Let X be a subspace of vector space Y^* . The density of X in Y^* is equivalent to that if $F \in Y^{**}$ and $F(x) = 0$ for every $x \in X$, then $F = 0$ in Y^{**} .*

Let $U \in (B^{k,M}(\Omega))^{**}$. Since $B^{k,M}(\Omega)$ is reflexive, [3], there exists $u \in B^{k,M}(\Omega)$ such that

$$\int_{\Omega} u(x) v_0(x) dx + \int_{\Omega} \int \frac{u(x) - u(y)}{|x - y|^\lambda} V_0(x, y) d\nu(x, y) = L_v(u) = U(L_v) = 0$$

for every $v = (v_0, V_0) \in L^N(\Omega) \times L^N(\Omega \times \Omega, \nu)$. Hence $u(x) = 0$ almost everywhere in Ω . Then $u = 0$ in $B^{k,M}(\Omega)$ and $U = 0$ in $(B^{k,M}(\Omega))^{**}$.

Let $H^{-k,N}(\Omega)$ denotes the completion of $L^N(\Omega) \times L^N(\Omega \times \Omega, \nu)$ with respect to the norm $\|\cdot\|_{-k,N}$. Then we have

THEOREM 2. *The dual space $(B^{k,M}(\Omega))^*$ is isomorphic to the space $H^{-k,N}(\Omega)$.*

Proof. Let H denote the closure of $L^N(\Omega) \times L^N(\Omega \times \Omega, \nu)$ with respect to the norm $\|\cdot\|_{-k,N}$. Then the spaces $W_1 = \{L_v : v \in H\}$ and $H^{-k,M}(\Omega)$ are isomorphic. From the density of W in $(B^{k,M}(\Omega))^*$ it follows that $W_1 = (B^{k,M}(\Omega))^*$. Hence $H^{-k,M}(\Omega)$ and $(B^{k,M}(\Omega))^*$ are isomorphic.

2. Remarks

Let Ω be an open, bounded and convex subset in \mathbb{R}^n . Let us consider a function $M : \Omega \times [0, \infty) \rightarrow [0, \infty)$ which is convex, vanishing and continuous at zero, not identically equal zero for a.e. $t \in \Omega$ and measurable for every $u \geq 0$. If the function M satisfies the conditions

$$\frac{M(t, u)}{u} \rightarrow 0 \quad \text{as } u \rightarrow 0 \quad \text{and} \quad \frac{M(t, u)}{u} \rightarrow \infty \quad \text{as } u \rightarrow \infty$$

for a.e. $t \in \Omega$ then it is called an N -function with parametr t .

Furthermore, the following conditions for the function M will be used:

$$(6) \quad \int_{\Omega} M(t, u) dt < \infty \quad \text{for every } u \geq 0, \quad \text{and}$$

Δ_2 : there exists a constant $K > 0$ such that $M(t, 2u) \leq K \cdot M(t, u)$ for a.e. $t \in \Omega$ and every $u \geq 0$.

Then, for any function M , let us define on X a modular I generating the space $B^{k,M}(\Omega)$ by

$$I(f) = \sum_{|\alpha| \leq [k]} \left(\int_{\Omega} M(x, |D^{\alpha} f(x)|) dx + \int_{\Omega} \int_{\Omega} M\left(\frac{x+y}{2}, \frac{|D^{\alpha} f(x) - D^{\alpha} f(y)|}{|x-y|^{\lambda}}\right) \frac{dx dy}{|x-y|^n} \right).$$

In the sequel by the space $L^M(\Omega \times \Omega, \nu)$ we mean the Orlicz space of all real and measurable functions F on $\Omega \times \Omega$, generated by the modular

$$J(F) = \int_{\Omega} \int_{\Omega} M\left(\frac{x+y}{2}, |F(x, y)|\right) d\nu(x, y), \quad (\text{see [3]}).$$

If a function M satisfies the condition (6), then the inclusion $C_0^{\infty}(\Omega) \subset B^{k,M}(\Omega)$ holds for every $k > 0$ and $k \neq 1, 2, \dots$. The inclusion follows from the fact that for every $u \in C_0^{\infty}(\Omega)$ and α , $|\alpha| \leq [k]$,

$$I_{\alpha} = \int_{\Omega} \left(\int_Z M\left(\frac{x+y}{2}, \frac{|D^{\alpha} u(x) - D^{\alpha} u(y)|}{|x-y|^{\lambda}}\right) \frac{dx}{|x-y|^n} \right) dy$$

is finite, where Z denotes the support of u . Applying the mean-value theorem and Jensen's inequality, we obtain

$$I_{\alpha} \leq c_1 \int_{\mathbb{R}^n} \left(\int_{\Omega} M\left(t, \frac{|D^{\alpha} u(2t-y) - D^{\alpha} u(y)|}{|2t-2y|^{\lambda}}\right) \frac{dt}{|2t-2y|^n} \right) dy \leq$$

$$\begin{aligned}
&\leq c_1 \int_{|h| \leq 1} \left(\int_{\Omega} M \left(t, \frac{|D^\alpha u(t + \frac{h}{2}) - D^\alpha u(t - \frac{h}{2})|}{|h|^\lambda} \right) \frac{dt}{|h|^n} \right) dh + \\
&\quad + c_1 \int_{|h| > 1} \left(\int_{\Omega} M \left(t, \frac{|D^\alpha u(t + \frac{h}{2}) - D^\alpha u(t - \frac{h}{2})|}{|h|^\lambda} \right) \frac{dt}{|h|^n} \right) dh \leq \\
&\leq c_1 \left(\int_{|h| \leq 1} \frac{dh}{|h|^{n-1+\lambda}} + \int_{|h| > 1} \frac{dh}{|h|^{n+\lambda}} \right) \int_{\Omega} M(t, c) dt < \infty.
\end{aligned}$$

Obviously $\int_{\Omega} M(x, |D^\alpha u(x)|) dx = \int_{\mathbb{Z}} M(x, |D^\alpha u(x)|) dx < \infty$ for every $|\alpha| \leq [k]$ and $u \in C_0^\infty(\Omega)$. This shows that $C_0^\infty(\Omega) \subset B^{k,M}(\Omega)$. The same inclusion holds also if the set Ω has finite measure.

The facts relating to the space \mathcal{L}^M and the dual space $(B^{k,M}(\Omega))^*$ used in Section 1 hold also in the case when M depends on the parameter. By an argument similar to that in Section 1 the dual space $(B_0^{k,M}(\Omega))^*$ can be characterized as the space consisting of those distributions $T \in \mathcal{D}'(\Omega)$ satisfying (4) for some $v \in \mathcal{L}^N$ and the dual space $(B^{k,M}(\Omega))^*$ as the completion of $L^N(\Omega) \times L^N(\Omega \times \Omega, \nu)$ with respect to the norm $\|\cdot\|_{-k,M}$.

References

- [1] R. A. Adams, *Sobolev spaces*. Academic Press, 1975.
- [2] M. Liskowski, *On generalized Besov spaces $B^{k,M}(\Omega)$* , *Funct. Approx.*, 15 (1986), 175–184.
- [3] M. Liskowski, *Separability, duality and reflexivity of Orlicz-Besov spaces*, *Comm. Math.*, 30 (1991), 377–382.

INSTITUTE OF MATHEMATICS
 POZNAŃ UNIVERSITY OF TECHNOLOGY
 ul. Piastrowo 3A
 60-965 POZNAŃ, POLAND

Received August 29, 1994.

