

J. Patel, M. Acharya

CERTAIN CLASSES OF p -VALENT ANALYTIC FUNCTIONS

1. Introduction

Let A_p , with fixed integer $p > 0$, be the class of functions

$$(1.1) \quad f(z) = z^p + \sum_{k=1}^{\infty} a_{p+k} z^{p+k}$$

analytic and p -valent in the unit disc $E = \{z : |z| < 1\}$.

Let \mathcal{Q} denote the class of bounded analytic functions $w(z)$ in E satisfying the conditions $w(0) = 0$ and $|w(z)| < 1$ for all z in E .

If the functions (1.1) and $g(z) = z^p + \sum_{k=1}^{\infty} b_{p+k} z^{p+k}$ belong to A_p , the convolution or Hadamard product of $f(z)$ and $g(z)$ is defined by the power series

$$(f * g)(z) = z^p + \sum_{k=1}^{\infty} a_{p+k} b_{p+k} z^{p+k}.$$

With the convolution above, we define

$$(1.2) \quad D^{n+p-1} f(z) = \frac{z^p}{(1-z)^{n+p}} * f(z), \quad f(z) \in A_p,$$

where n is any integer greater than $-p$. The symbol D^n (i.e., (1.2) for $p = 1$) was introduced by Ruscheweyh [13] and D^{n+p-1} by Goel and Sohi [5]. Therefore, we call $D^{n+p-1} f(z)$ the Ruscheweyh derivative of $(n+p-1)$ -th order. It follows from (1.2) that

$$(1.3) \quad z(D^{n+p-1} f(z))' = (n+p)D^{n+p} f(z) - nD^{n+p-1} f(z).$$

A function $f(z) \in A_p$ is said to be in the class $V_{n,p}^{\lambda}(A, B, \alpha)$, if it satisfies

Key words and phrases: p -valent analytic functions, subordination, Hadamard product.

the condition

$$\frac{(D^{n+p-1}f(z))'}{z^{p-1}} \prec \frac{p + \{pB + (A - B)(p - \alpha)e^{-i\lambda} \cos \lambda\}z}{1 + Bz}, \quad z \in E,$$

where $-1 \leq B < A \leq 1$, $0 \leq \alpha \leq p$, $|\lambda| < \pi/2$ and the symbol \prec denotes subordination. From the definition of subordination, it follows that $f(z) \in V_{n,p}^\lambda(A, B, \alpha)$ has a representation of the form

$$(1.4) \quad \begin{aligned} & \frac{(D^{n+p-1}f(z))'}{z^{p-1}} \\ &= \frac{p + \{pB + (A - B)(p - \alpha)e^{-i\lambda} \cos \lambda\}w(z)}{1 + Bw(z)}, \quad w(z) \in \Omega. \end{aligned}$$

From this, we note that $f(z) \in V_{n,p}^\lambda(A, B, \alpha)$ if and only if

$$\left| \frac{(D^{n+p-1}f(z))' - pz^{p-1}}{(A - B)(p - \alpha)e^{-i\lambda} z^{p-1} \cos \lambda - B((D^{n+p-1}f(z))' - pz^{p-1})} \right| < 1, \quad z \in E.$$

Clearly, for $n = 0$, $p = 1$, $A = \beta$ and $B = -\beta$, $0 < \beta \leq 1$, we get the class introduced and studied by Ahuja [1] which in turn reduces to the class studied in [9] for $\lambda = 0$. Further, $n = \alpha = \lambda = 0$ and replacement of A by 1 and B by $\frac{1-\delta}{\delta}$, $\delta > \frac{1}{2}$, gives the class studied by Sohi [14].

We further observe that, for special choice of the parameters A , B and λ , our class gives rise to the following new subclasses of p -valent analytic functions:

$$\begin{aligned} V_{n,p}^\lambda(1, -1, \alpha) &\equiv V_{n,p}^\lambda(\alpha) = \\ &= \left\{ f(z) \in A_p : \operatorname{Re} e^{i\lambda} \frac{(D^{n+p-1}f(z))'}{z^{p-1}} > \alpha \cos \lambda, \quad 0 \leq \alpha < p, \quad |\lambda| < \frac{\pi}{2}, \quad z \in E \right\}, \\ V_{n,p}^\lambda(1, \frac{1-\delta}{\delta}, 0) &\equiv V_{n,p,\delta}^\lambda = \left\{ f(z) \in A_p : \right. \\ &\quad \left. \left| \left\{ (1 + i \operatorname{tg} \lambda) \frac{(D^{n+p-1}f(z))'}{z^{p-1}} - i \operatorname{tg} \lambda \right\} - \delta \right| < \delta, \quad \delta > \frac{1}{2}, \quad |\lambda| < \frac{\pi}{2}, \quad z \in E \right\}, \\ V_{n,p}^\lambda(\sigma, 0, 0) &\equiv (V_{n,p}^\lambda)^\sigma = \left\{ f(z) \in A_p : \right. \\ &\quad \left. \left| \left\{ (1 + i \operatorname{tg} \lambda) \frac{(D^{n+p-1}f(z))'}{z^{p-1}} - i \operatorname{tg} \lambda \right\} - 1 \right| < \sigma, \quad 0 < \sigma \leq 1, \quad |\lambda| < \frac{\pi}{2}, \quad z \in E \right\}, \end{aligned}$$

$$V_{n,p}^\lambda(\gamma, -\gamma, 0) \equiv (V_{n,p}^\lambda)_\gamma = \left\{ f(z) \in A_p : \right. \\ \left. \left| \frac{(1 + i \operatorname{tg} \lambda) \frac{(D^{n+p-1} f(z))'}{z^{p-1}} - i \operatorname{tg} \lambda - 1}{(1 + i \operatorname{tg} \lambda) \frac{(D^{n+p-1} f(z))'}{z^{p-1}} - i \operatorname{tg} \lambda + 1} \right| < \gamma, \ 0 < \gamma \leq 1, \ |\lambda| < \frac{\pi}{2}, \ z \in E \right\}.$$

As noticed above, the class $V_{n,p}^\lambda(A, B, \alpha)$ includes various subclasses of p -valent analytic functions; a study of its properties will lead to a unified study of these classes. In the present paper, we first obtain the basic inclusion relation $V_{n+1,p}^\lambda(A, B, \alpha) \subset V_{n,p}^\lambda(A, B, \alpha)$. Then we obtain class preserving integral operators and a sufficient condition in terms of coefficients for a function to be in $V_{n,p}^\lambda(A, B, \alpha)$. We also obtain sharp coefficient estimates and closure theorems for these classes. Papers [1], [3], [4], [9], [14] follow as special cases of our results.

Unless otherwise mentioned, in the sequel we assume that $-1 \leq B < A \leq 1$, $0 \leq \alpha < p$ and $|\lambda| < \pi/2$.

2. Preliminary lemmas

LEMMA 1. A function $f(z) \in A_p$ belongs to the class $V_{n,p}^\lambda(A, B, \alpha)$, if and only if

$$(2.1) \quad \left| \frac{(D^{n+p-1} f(z))'}{z^{p-1}} - m \right| < M, \quad z \in E,$$

where

$$(2.2) \quad \begin{cases} m = p - \frac{B(A - B)(p - \alpha)e^{-i\lambda} \cos \lambda}{1 - B^2}, \\ M = \frac{(A - B)(p - \alpha) \cos \lambda}{1 - B^2}. \end{cases}$$

Proof. First, suppose that $f(z) \in V_{n,p}^\lambda(A, B, \alpha)$. Then, by using (2.2) in (1.4), we have

$$(2.3) \quad \begin{aligned} & \frac{(D^{n+p-1} f(z))'}{z^{p-1}} - m = \\ & = \frac{(p - m) + \{B(p - m) + (A - B)(p - \alpha)e^{-i\lambda} \cos \lambda\}w(z)}{1 + Bw(z)} = Mh(z), \end{aligned}$$

where

$$h(z) = e^{-i\lambda} \frac{B + w(z)}{1 + Bw(z)}.$$

It is clear that $|h(z)| < 1$ for $z \in E$. Hence (2.1) follows from (2.3).

Conversely, suppose that the condition (2.1) holds. Then, we have

$$\frac{1}{M} \left| \frac{(D^{n+p-1}f(z))'}{z^{p-1}} - m \right| < 1.$$

Let

$$g(z) = \frac{e^{i\lambda}}{M} \left\{ \frac{(D^{n+p-1}f(z))'}{z^{p-1}} - m \right\}.$$

Then, by (2.3),

$$\begin{aligned} (2.4) \quad w(z) &= \frac{g(z) - g(0)}{1 - g(0)g(z)} = \\ &= \frac{(D^{n+p-1}f(z))' - pz^{p-1}}{(A - B)(p - \alpha)e^{-i\lambda} \cos \lambda \cdot z^{p-1} - ((D^{n+p-1}f(z))' - pz^{p-1})}. \end{aligned}$$

Clearly, $w(0) = 0$ and $|w(z)| < 1$ for $z \in E$. Rearranging (2.4), we arrive at (1.4). Hence $f(z) \in V_{n,p}^\lambda(A, B, \alpha)$. This completes the proof of Lemma 1.

LEMMA 2 (cf. [6]). *If the function $w(z)$ is analytic for $|z| \leq r < 1$, $w(0) = 0$ and $|w(z_0)| = \max_{|z|=r} |w(z)|$, then $z_0 w'(z_0) = kw(z_0)$, where k is a real number such that $k \geq 1$.*

3. Main results

THEOREM 1. *Let n be any integer greater than $-p$. Then*

$$V_{n+1,p}^\lambda(A, B, \alpha) \subset V_{n,p}^\lambda(A, B, \alpha).$$

Proof. Let $f(z) \in V_{n+1,p}^\lambda(A, B, \alpha)$. Suppose that

$$(3.1) \quad \frac{(D^{n+p-1}f(z))'}{z^{p-1}} = \frac{p + \{pB + (A - B)(p - \alpha)e^{-i\lambda} \cos \lambda\}w(z)}{1 + Bw(z)},$$

where $w(0) = 0$ and $w(z)$ is either analytic or meromorphic in E . Differentiating (3.1) and using (1.3), (2.2), we obtain

$$\begin{aligned} \frac{(D^{n+p}f(z))'}{z^{p-1}} - m &= \frac{p - m + \{B(p - m) + (A - B)(p - \alpha)e^{-i\lambda} \cos \lambda\}w(z)}{1 + Bw(z)} \\ &\quad + \frac{(A - B)(p - \alpha)e^{-i\lambda} \cos \lambda}{n + p} \cdot \frac{zw'(z)}{(1 + Bw(z))^2}. \end{aligned}$$

Let r^* be the distance from the origin to the nearest pole of $w(z)$ in E . Then $w(z)$ is analytic in the disc $\{z : |z| < r_0 = \min(r^*, 1)\}$.

By Lemma 2, for $|z| < r$, $r < r_0$, there exists a point z_0 in E such that

$$(3.3) \quad z_0 w'(z_0) = kw(z_0), \quad k \geq 1.$$

From (3.2) and (3.3) we have

$$(3.4) \quad \frac{(D^{n+p}f(z))'}{z^{p-1}} - m = \frac{N(z_0)}{R(z_0)},$$

where

$$\begin{aligned} N(z_0) &= Me^{-i\lambda}[(n+p)B + \{(n+p) + (n+p)B^2 \\ &\quad + k(1-B^2)\}w(z_0) + (n+p)Bw(w(z_0))^2], \\ R(z_0) &= (n+p)\{1 + 2Bw(z_0) + B^2(w(z_0))^2\}. \end{aligned}$$

Now suppose that $\max_{|z|=r} |w(z)| = 1$ for some r , $r \leq r_0 < 1$. At the point z_0 , where this occurs, we would have $|w(z_0)| = 1$. Then, by using the identities

$$p - m = BM e^{-i\lambda}, \quad (p - m)B + (A - B)(p - \alpha)e^{-i\lambda} \cos \lambda = M e^{-i\lambda},$$

we deduce that

$$(3.5) \quad |N(z_0)|^2 - M^2|R(z_0)|^2 = x + 2y \operatorname{Re} w(z_0),$$

where

$$\begin{aligned} x &= k(1-B^2)M^2\{k(1-B^2) + 2(n+p)(1+B^2)\}, \\ y &= 2k(n+p)BM^2(1-B^2). \end{aligned}$$

From (3.5), it follows that

$$(3.6) \quad |N(z_0)|^2 - M^2|R(z_0)|^2 > 0,$$

provided $x \pm 2y > 0$. Now, in view of the fact that $M > 0$ and $-1 \leq B < 1$, we deduce that

$$x + 2y = k(1-B^2)M^2\{k(1-B^2) + 2(n+p)(1+B^2)\} > 0,$$

$$x - 2y = k(1-B^2)M^2\{k(1-B^2) + 2(n+p)(1-B^2)\} > 0.$$

Thus, from (3.4) and (3.6) we get

$$\left| \frac{(D^{n+p}f(z_0))'}{z_0^{p-1}} - m \right| > M.$$

But, in view of Lemma 1, this is a contradiction to the fact that $f(z) \in V_{n+1,p}^\lambda(A, B, \alpha)$. So, we cannot have $|w(z_0)| = 1$. Thus, $|w(z)| \neq 1$ in $|z| < r_0$. Since $w(0) = 0$, $|w(z)|$ is continuous and $|w(z)| \neq 1$ in $|z| < r_0$, we cannot have a pole at $|z| = r_0$.

Therefore, $w(z)$ is analytic in E and $|w(z)| < 1$ for $z \in E$. Hence, from (3.1), $f(z) \in V_{n,p}^\lambda(A, B, \alpha)$.

In the next theorem, we study the class preserving integral operators for the class $V_{n,p}^\lambda(A, B, \alpha)$.

THEOREM 2. *Let p be a positive integer and n be any integer greater than $-p$. If $f(z) \in V_{n,p}^\lambda(A, B, \alpha)$ and $\operatorname{Re}(c + p) > 0$, then*

$$(3.7) \quad F(z) = \frac{c + p}{z^c} \int_0^z t^{c-1} f(t) dt$$

also belongs to $V_{n,p}^\lambda(A, B, \alpha)$.

P r o o f. From the definition (3.7) of $F(z)$, by (1.3) we have

$$z(D^{n+p-1}F(z))' = (c + p)D^{n+p-1}f(z) - cD^{n+p-1}F(z),$$

so that

$$(3.8) \quad z(D^{n+p-1}F(z))'' = (c + p)(D^{n+p-1}f(z))' - c(D^{n+p-1}F(z))'.$$

Let us suppose that, according to (1.4), we have

$$(3.9) \quad \frac{(D^{n+p-1}F(z))'}{z^{p-1}} = \frac{p + \{pB + (A - B)(p - \alpha)e^{-i\lambda} \cos \lambda\}w(z)}{1 + Bw(z)},$$

where the function $w(z)$ is either analytic or meromorphic in E and such that $w(0) = 0$. Differentiating (3.9) and then using (3.8), we deduce that

$$(3.10) \quad \begin{aligned} & \frac{(D^{n+p-1}F(z))'}{z^{p-1}} - m = \\ & = \frac{(A - B)(p - \alpha)e^{-i\lambda} \cos \lambda}{(c + p)} \frac{zw'(z)}{(1 + Bw(z))^2} \\ & + \frac{(p - m) + \{(p - m)B + (A - B)(p - \alpha)e^{-i\lambda} \cos \lambda\}w(z)}{1 + Bw(z)}. \end{aligned}$$

The required result can be obtained now from (3.10) by using the same technique as applied in (3.2) in the proof of Theorem 1.

Remark. For $n = 0$, $p = 1$, $\alpha = 0$, $A = 1$ and $B = -1$. Theorem 2 improves a result of Bernardi [2], who proved it when c is a positive integer.

THEOREM 3. *Let p be a positive integer and n be any integer greater than $-p$. If $F(z) = \frac{n+p}{z^n} \int_0^z t^{n-1} f(t) dt$, then $F(z) \in V_{n+1,p}^\lambda(A, B, \alpha)$ if and only if $f(z) \in V_{n,p}^\lambda(A, B, \alpha)$.*

P r o o f. We have $(D^{n+p}F(z))' = (D^{n+p-1}f(z))'$ and the result follows.

Now we obtain coefficient inequalities for the class $V_{n,p}^\lambda(A, B, \alpha)$.

THEOREM 4. *If $f(z)$, given by (1.1), belongs to $V_{n,p}^\lambda(A, B, \alpha)$, then*

$$(3.11) \quad |a_{p+k}| \leq \frac{(A - B)(p - \alpha) \cos \lambda}{(p + k)\delta(n, k)}, \quad k \geq 1,$$

where $\delta(n, k) = (n + p - 1)!/k!(n + p - 1)!$. The results is sharp.

Proof. Since $f(z) \in V_{n,p}^\lambda(A, B, \alpha)$, the relation (1.4) hold with $w(z) = \sum_{j=1}^{\infty} w_j z^j$ analytic in E and such that $|w(z)| < 1$ for $z \in E$. Substituting the power series expansion of $f(z)$ and $w(z)$ in (1.4), we have

$$(3.12) \quad \sum_{j=1}^{\infty} (p + j)\delta(n, j)a_{p+j}z^j = \{(A - B)(p - \alpha)e^{-i\lambda} \cos \lambda - B \sum_{j=1}^{\infty} (p + j)\delta(n, j)a_{p+j}z^j\} \sum_{j=1}^{\infty} w_j z^j.$$

Comparing coefficients of the same powers of z on both sides of (3.12), we see that the coefficient a_{p+j} depends only on $a_{p+1}, a_{p+2}, \dots, a_{p+j-1}$ on the right-hand side of (3.12). Hence, for $k = 1, 2, \dots$, it follows from (3.12) that

$$\begin{aligned} & \sum_{j=1}^k (p + j)\delta(n, j)a_{p+j}z^j + \sum_{j=k+1}^{\infty} c_j z^j = \\ & = \left\{ (A - B)(p - \alpha)e^{-i\lambda} \cos \lambda - B \sum_{j=1}^{k-1} (p + j)\delta(n, j)a_{p+j}z^j \right\} w(z), \end{aligned}$$

where c_j are some complex numbers. Since $|w(z)| < 1$, by using Parseval's identity [11], we get

$$\begin{aligned} & \sum_{j=1}^k (p + j)^2 (\delta(n, j))^2 |a_{p+j}|^2 r^{2j} + \sum_{j=k+1}^{\infty} |c_j|^2 r^{2j} \\ & \leq \{(A - B)(p - \alpha) \cos \lambda\}^2 + B^2 \sum_{k=1}^{k-1} (p + j)^2 (\delta(n, j))^2 |a_{p+j}|^2 r^{2j} \\ & \leq \{(A - B)(p - \alpha) \cos \lambda\}^2 + B^2 \sum_{k=1}^{k-1} (p + j)^2 ((\delta(n, j))^2 |a_{p+j}|^2). \end{aligned}$$

Letting $r \rightarrow 1$ on the left-hand side of the above inequality, we obtain

$$\begin{aligned} & \sum_{j=1}^k (p+j)^2 (\delta(n, j))^2 |a_{p+j}|^2 \\ & \leq \{(A-B)(p-\alpha) \cos \lambda\}^2 + B^2 \sum_{j=1}^{k-1} (p+j)^2 (\delta(n, j))^2 |a_{p+j}|^2. \end{aligned}$$

Thus, we get the inequality

$$\begin{aligned} & (p+k)^2 (\delta(n, k))^2 |a_{p+k}|^2 \\ & \leq \{(A-B)(p-\alpha) \cos \lambda\}^2 - (1-B^2) \sum_{j=1}^{k-1} (p+j)^2 (\delta(n, j))^2 |a_{p+j}|^2 \\ & \leq \{(A-B)(p-\alpha) \cos \lambda\}^2 \end{aligned}$$

implying (3.11).

In order to establish the sharpness of (3.11), consider the functions $f_k(z)$ defined by

$$\frac{(D^{n+p-1} f_k(z))'}{z^{p-1}} = \frac{p + \{pB + (A-B)(p-\alpha)e^{-i\lambda} \cos \lambda\} z^k}{1 + Bz^k}, \quad k \geq 1.$$

Clearly, $f_k(z) \in V_{n,p}^\lambda(A, B, \alpha)$ for each $k \geq 1$. Also, it is easy to compute that the functions $f_k(z)$ has the expansions

$$f_k(z) = z^p + \frac{(A-B)(p-\alpha)e^{-i\lambda} \cos \lambda}{(p+k)\delta(n, k)} z^{p+k} + \dots$$

showing that the estimates (3.11) are sharp.

THEOREM 5. *Let $f(z)$, given by (1.1), belong to $V_{n,p}^\lambda(A, B, \alpha)$ and μ be any complex number. Then*

$$\begin{aligned} (3.13) \quad & |a_{p+2} - \mu a_{p+1}^2| \\ & \leq \frac{(A-B)(p-\alpha) \cos \lambda}{(p+2)\delta(n, 2)} \times \\ & \quad \times \max \left\{ 1, |B + \mu \cdot \frac{(A-B)(p-\alpha)(p+2)\delta(n, 2)e^{-i\lambda} \cos \lambda}{(p+2)^2(\sigma(n, 1))^2}| \right\}. \end{aligned}$$

The estimate is sharp.

Proof. Upon equating the coefficients of z and of z^2 in (3.12), we have

$$(3.14) \quad w_1 = \frac{(p+1)\delta(n, 1)a_{p+1}}{(A-B)(p-\alpha)e^{-i\lambda} \cos \lambda}$$

and

$$(3.15) \quad w_2 = \frac{(p+2)\delta(n,2)a_{p+2}}{(A-B)(p-\alpha)e^{-i\lambda}\cos\lambda} + \left\{ \frac{(p+1)\delta(n,1)}{(A-B)(p-\alpha)e^{-i\lambda}\cos\lambda} \right\}^2 a_{p+1}^2,$$

respectively. It is known [7] that for every complex number γ

$$(3.16) \quad |w_2 - \gamma w_1^2| \leq \max\{1, |\gamma|\},$$

so the estimate (3.13) is sharp. Now, using (3.14) and (3.15), we obtain

$$(3.17) \quad |a_{p+2} - \mu a_{p+1}^2| \leq \frac{(A-B)(p-\alpha)\cos\lambda}{(p+2)\delta(n,2)} |w_2 - \gamma w_1^2|,$$

where

$$\gamma = B + \mu \frac{(A-B)(p-\alpha)(p+2)\delta(n,2)e^{-i\lambda}\cos\lambda}{(p+1)^2(\delta(n,1))^2}.$$

The estimate (3.13) follows by using (3.16) in (3.17). The result is sharp as the estimate (3.16) is sharp.

In the following theorem, we obtain a sufficient condition, in terms of coefficients, for a function to be in $V_{n,p}^\lambda(A, B, \alpha)$.

THEOREM 6. *Let $f(z)$, given by (1.1), belong to A_p . If*

$$(3.18) \quad \sum_{k=1}^{\infty} (p+k)\delta(n,k)|a_{p+k}| \leq \frac{(A-B)(p-\alpha)\cos\lambda}{1+B}, \quad B \geq 0,$$

$$(3.19) \quad \sum_{k=1}^{\infty} (p+k)\delta(n,k)|a_{p+k}| \leq \frac{(A-B)(p-\alpha)\cos\lambda}{1-B}, \quad B \leq 0,$$

then $f(z) \in V_{n,p}^\lambda(A, B, \alpha)$. The result is sharp.

Proof. Suppose that (3.18) holds. Then, for $|z| = r < 1$, we have

$$|(D^{n+p-1}f(z))' - pz^{p-1}| - \\ |(A-B)(p-\alpha)e^{-i\lambda}z^{p-1}\cos\lambda - B\{(D^{n+p-1}f(z))' - pz^{p-1}\}| =$$

$$\begin{aligned}
&= \left| \sum_{k=1}^{\infty} (p+k) \delta(n, k) a_{p+k} z^{p+k-1} \right| \\
&\quad - \left| (A-B)(p-\alpha) e^{-i\lambda} z^{p-1} \cos \lambda - B \cdot \sum_{k=1}^{\infty} (p+k) \delta(n, k) a_{p+k} z^{p+k-1} \right| \\
&\leq \sum_{k=1}^{\infty} (p+k) \delta(n, k) |a_{p+k}| r^{p+k-1} \\
&\quad - \left\{ (A-B)(p-\alpha) r^{p-1} \cos \lambda - B \sum_{k=1}^{\infty} (p+k) \delta(n, k) |a_{p+k}| r^{p+k-1} \right\} \\
&\leq \left[\sum_{k=1}^{\infty} (1+B)(p+k) \delta(n, k) |a_{p+k}| - (A-B)(p-\alpha) \cos \lambda \right] r^{p-1} \leq 0,
\end{aligned}$$

by (3.18). Hence $f(z) \in V_{n,p}^{\lambda}(A, B, \alpha)$.

Next, we assume that (3.19) holds. Then

$$\begin{aligned}
&|(D^{n+p-1} f(z))' - p z^{p-1}| \\
&\quad - |(A-B)(p-\alpha) e^{-i\lambda} z^{p-1} \cos \lambda - B \{(D^{n+p-1} f(z))' - p z^{p-1}\}| \\
&\leq \sum_{k=1}^{\infty} (p+k) \delta(n, k) |a_{p+k}| r^{p+k-1} \\
&\quad - \left\{ (A-B)(p-\alpha) r^{p-1} \cos \lambda + B \sum_{k=1}^{\infty} (p+k) \delta(n, k) |a_{p+k}| r^{p+k-1} \right\} \\
&\leq \left[\sum_{k=1}^{\infty} (1-B)(p+k) \delta(n, k) |a_{p+k}| - (A-B)(p-\alpha) \cos \lambda \right] r^{p-1} \leq 0,
\end{aligned}$$

by (3.19). This proves that $f(z) \in V_{n,p}^{\lambda}(A, B, \alpha)$.

Remark. We observe that for $B \neq 0$ the converse of Theorem 6 may not be true. For instance, consider the function $f(z)$ defined in E by

$$\frac{(D^{n+p-1} f(z))'}{z^{p-1}} = \frac{p - \{pB + (A-B)(p-\alpha) e^{-i\lambda} \cos \lambda\}z}{1-Bz}, \quad B > 0.$$

It is easily seen that $f(z) \in V_{n,p}^{\lambda}(A, B, \alpha)$ and

$$a_{p+k} = -\frac{B^{k-1} (A-B)(p-\alpha) e^{-i\lambda} \cos \lambda}{(p+k) \delta(n, k)}, \quad k \geq 1,$$

so that

$$\sum_{k=1}^{\infty} \frac{(1+B)(p+k)\delta(n,k)|a_{p+k}|}{(A-B)(p-\alpha)\cos\lambda} = (1+B) \sum_{k=1}^{\infty} B^{k-1} = \frac{1+B}{1-B} > 1,$$

for A, B, λ satisfying $0 < B < A \leq 1$ and $|\lambda| < \pi/2$.

Further, consider the function $f(z)$ defined in E by

$$\frac{(D^{n+p-1}f(z))'}{z^{p-1}} = \frac{p + \{pB + (A-B)(p-\alpha)e^{-i\lambda}\cos\lambda\}z}{1+Bz}, \quad B < 0.$$

It is easily seen that $f(z) \in V_{n,p}^{\lambda}(A, B, \alpha)$ and

$$a_{p+k} = \frac{(-B)^{k-1}(A-B)(p-\alpha)e^{-i\lambda}\cos\lambda}{(p+k)\delta(n,k)}, \quad k \geq 1.$$

But

$$\sum_{k=1}^{\infty} \frac{(1-B)(p+k)\delta(n,k)|a_{p+k}|}{(A-B)(p-\alpha)\cos\lambda} = (1-B) \sum_{k=1}^{\infty} (-B)^{k-1} = \frac{1-B}{1+B} > 1,$$

for A, B, λ satisfying $-1 < B < 0 \leq A \leq 1$ and $|\lambda| < \pi/2$.

Motivated by Theorem 6, we introduce a new subclass of p -valent analytic functions in the unit disc E . We say that a function $f(z) \in A_p$ is in the class $\tilde{V}_{n,p}^{\lambda}(A, B, \alpha)$ if and only if the conditions (3.18), (3.19) hold. Clearly, $\tilde{V}_{n,p}^{\lambda}(A, B, \alpha) \subset V_{n,p}^{\lambda}(A, B, \alpha)$. Then the following theorem is true.

THEOREM 7. *If $f(z) = z^p + \sum_{k=1}^{\infty} a_{p+k}z^{p+k}$ and $g(z) = z^p + \sum_{k=1}^{\infty} b_{p+k}z^{p+k}$ belong to $\tilde{V}_{n,p}^{\lambda}(A, B, \alpha)$, then so does $F(z)$ defined by*

$$F(z) = z^p + \sum_{k=1}^{\infty} a_{p+k}b_{p+k}z^{p+k}.$$

Proof. Since $f(z) \in \tilde{V}_{n,p}^{\lambda}(A, B, \alpha)$, we have

$$\sum_{k=1}^{\infty} (p+k)\delta(n,k)|a_{p+k}| \leq \begin{cases} \frac{(A-B)(p-\alpha)\cos\lambda}{1+B}, & B \geq 0, \\ \frac{(A-B)(p-\alpha)\cos\lambda}{1-B}, & B \leq 0. \end{cases}$$

This yields

$$|a_{p+k}| \leq \begin{cases} \frac{(A-B)(p-\alpha)\cos\lambda}{(1+B)(p+k)\delta(n,k)}, & B \geq 0, \\ \frac{(A-B)(p-\alpha)\cos\lambda}{(1-B)(p+k)\delta(n,k)}, & B \leq 0, \end{cases}$$

for all $k \geq 1$. Therefore, it follows that

$$(3.21) \quad |a_{p+k}| < 1, \quad k \geq 1.$$

Using (3.21), we have

$$(3.22) \quad \sum_{k=1}^{\infty} (p+k)\delta(n, k)|a_{p+k}|^2 \leq \sum_{k=1}^{\infty} (p+k)\delta(n, k)|a_{p+k}|.$$

Similarly, since $g(z) \in \tilde{V}_{n,p}^{\lambda}(A, B, \alpha)$, we have

$$(3.23) \quad \sum_{k=1}^{\infty} (p+k)\delta(n, k)|b_{p+k}| \leq \begin{cases} \frac{(A-B)(p-\alpha)\cos\lambda}{1+B}, & B \geq 0, \\ \frac{(A-B)(p-\alpha)\cos\lambda}{1-B}, & B \leq 0, \end{cases}$$

and

$$(3.24) \quad \sum_{k=1}^{\infty} (p+k)\delta(n, k)|b_{p+k}|^2 \leq \sum_{k=1}^{\infty} (p+k)\delta(n, k)|b_{p+k}|.$$

Now, we have

$$\begin{aligned} (3.25) \quad & \sum_{k=1}^{\infty} (p+k)\delta(n, k)|a_{p+k}b_{p+k}| \\ & \leq \left(\sum_{k=1}^{\infty} (p+k)\delta(n, k)|a_{p+k}|^2 \right)^{1/2} \left(\sum_{k=1}^{\infty} (p+k)\delta(n, k)|b_{p+k}|^2 \right)^{1/2} \\ & \leq \left(\sum_{k=1}^{\infty} (p+k)\delta(n, k)|a_{p+k}| \right)^{1/2} \left(\sum_{k=1}^{\infty} (p+k)\delta(n, k)|b_{p+k}| \right)^{1/2}, \end{aligned}$$

where we have applied Cauchy-Schwarz inequality and the relations (3.22) and (3.24). By (3.20) and (3.23), the relation (3.25) becomes

$$\sum_{k=1}^{\infty} (p+k)\delta(n, k)|a_{p+k}b_{p+k}| \leq \begin{cases} \frac{(A-B)(p-\alpha)\cos\lambda}{1+B}, & B \geq 0, \\ \frac{(A-B)(p-\alpha)\cos\lambda}{1-B}, & B \leq 0. \end{cases}$$

This proves that $F(z) \in \tilde{V}_{n,p}^{\lambda}(A, B, \alpha)$.

THEOREM 8. *If $f(z) = z^p + \sum_{k=1}^{\infty} a_{p+k}z^{p+k}$ and $g(z) = z^p + \sum_{k=1}^{\infty} b_{p+k}z^{p+k}$ belong to $V_{n,p}^{\lambda}(A, B, \alpha)$, then so does the function $F(z)$*

defined by

$$(3.26) \quad F(z) = z^p + \sum_{k=1}^{\infty} \left(\frac{p+k}{p} \right) \delta(n, k) a_{p+k} \cdot b_{p+k} z^{p+k}.$$

P r o o f. Since $f(z) \in V_{n,p}^{\lambda}(A, B, \alpha)$, we have for $f(z)$ the inequality (2.1) with (2.2).

It is known [11] that, if $h(z) = \sum_{n=0}^{\infty} c_n z^n$ is analytic in the unit disc E and $|h(z)| \leq l$, then

$$(3.27) \quad \sum_{n=0}^{\infty} |c_n|^2 \leq l^2.$$

Using (3.27) in (2.1), we get

$$|p - m|^2 + \sum_{k=1}^{\infty} (p+k)^2 (\delta(n, k))^2 |a_{p+k}|^2 \leq \left\{ \frac{(A-B)(p-\alpha) \cos \lambda}{1-B^2} \right\}^2$$

implying after simplification,

$$(3.28) \quad \sum_{k=1}^{\infty} (p+k)^2 (\delta(n, k))^2 |a_{p+k}|^2 \leq \frac{\{(A-B)(p-\alpha) \cos \lambda\}^2}{1-B^2}.$$

Similarly,

$$(3.29) \quad \sum_{k=1}^{\infty} (p+k)^2 (\delta(n, k))^2 |b_{p+k}|^2 \leq \frac{\{(A-B)(p-\alpha) \cos \lambda\}^2}{1-B^2}.$$

Now, using the Cauchy-Schwarz inequality and then (3.28), (3.29) and (2.2), for $|z| < r$ we get

$$\begin{aligned} & \left| \frac{(D^{n+p-1} F(z))'}{z^{p-1}} - m \right|^2 \\ &= |(p-m) + \frac{1}{p} \sum_{k=1}^{\infty} (p+k)^2 (\delta(n, k))^2 a_{p+k} b_{p+k} z^k|^2 \\ &\leq |p-m|^2 + \frac{1}{p^2} \left[\sum_{k=1}^{\infty} (p+k)^2 (\delta(n, k))^2 |a_{p+k} b_{p+k}| r^k \right]^2 \\ &\quad + \frac{2|p-m|}{p} \sum_{k=1}^{\infty} (p+k)^2 (\delta(n, k))^2 |a_{p+k} b_{p+k}| r^k \\ &\leq |p-m|^2 + \frac{1}{p^2} \left(\sum_{k=1}^{\infty} (p+k)^2 (\delta(n, k))^2 |a_{p+k}|^2 r^k \right) \times \end{aligned}$$

$$\begin{aligned}
& \times \left(\sum_{k=1}^{\infty} (p+k)^2 (\delta(n, k))^2 \cdot |b_{p+k}|^2 r^k \right) \\
& + \frac{2|p-m|}{p} \left(\sum_{k=1}^{\infty} (p+k)^2 (\delta(n, k))^2 |a_{p+k}|^2 r^k \right)^{1/2} \times \\
& \times \left(\sum_{k=1}^{\infty} (p+k)^2 (\delta(n, k))^2 |b_{p+k}|^2 r^k \right)^{1/2} \\
& \leq |p-m|^2 + \frac{1}{p^2} \left(\sum_{k=1}^{\infty} (p+k)^2 (\delta(n, k))^2 |a_{p+k}|^2 \right) \times \\
& \times \left(\sum_{k=1}^{\infty} (p+k)^2 (\delta(n, k))^2 |b_{p+k}|^2 \right) \\
& + \frac{2|p-m|}{p} \left(\sum_{k=1}^{\infty} (p+k)^2 (\delta(n, k))^2 |a_{p+k}|^2 \right)^{1/2} \times \\
& \times \left(\sum_{k=1}^{\infty} k = 1^{\infty} (p+k)^2 (\delta(n, k))^2 |b_{p+k}|^2 \right)^{1/2} \\
& \leq \left\{ \frac{B(A-B)(p-\alpha) \cos \lambda}{1-B^2} \right\}^2 + \frac{\{(A-B)(p-\alpha) \cos \lambda\}^4}{(1-B^2)^2 p^2} \\
& + \frac{2B\{(A-B)(p-\alpha) \cos \lambda\}^3}{(1-B^2)^2 p} \\
& = \left\{ \frac{(A-B)(p-\alpha) \cos \lambda}{1-B^2} \right\}^2 \times \\
& \times \left\{ B^2 + \frac{\{(A-B)(p-\alpha) \cos \lambda\}^2}{p^2} + \frac{2B(A-B)(p-\alpha) \cos \lambda}{p} \right\} \\
& = M^2 \left\{ B + \frac{(A-B)(p-\alpha) \cos \lambda}{p} \right\}^2.
\end{aligned}$$

Thus, $F(z) \in V_{n,p}^{\lambda}(A, B, \alpha)$, in view of Lemma 1, if

$$B + \frac{(A-B)(p-\alpha) \cos \lambda}{p} < 1$$

which is certainly true. Hence $F(z) \in V_{n,p}^{\lambda}(A, B, \alpha)$.

Lastly, we establish a closure property for the class $V_{n,p}^{\lambda}(A, B, \alpha)$, its proof being obvious.

THEOREM 9. *If the functions $f(z)$ and $g(z)$ belong to the class $V_{n,p}^{\lambda}(A, B, \alpha)$ and $0 \leq s \leq 1$, then the function $F(z) = sf(z) + (1-s)g(z)$ also belongs to $V_{n,p}^{\lambda}(A, B, \alpha)$.*

Remark. Taking appropriate values of the parameters A, B, α in the results of section 3, we may get the corresponding results for functions in the classes $V_{n,p}^\lambda(\alpha)$, $V_{n,p,\delta}^\lambda$, $(V_{n,p}^\lambda)^\delta$ and $(V_{n,p}^\lambda)_\gamma$.

References

- [1] O. P. Ahuja, *Univalent functions whose derivatives have a positive real part*, Rend. Mat., 2 (1982), 173–187.
- [2] S. D. Bernardi, *Convex and starlike functions*, Trans. Amer. Math. Soc., 135 (1969), 429–446.
- [3] T. R. Capling, W. M. Causey, *A class of univalent functions*, Proc. Amer. Math. Soc., 39 (1973), 357–361.
- [4] R. M. Goel, *A class of analytic functions whose derivatives have a positive real part in the unit disc*, Indian J. Math., 3 (1971), 141–145.
- [5] R. M. Goel, N. S. Sohi, *A new criteria for p -valent functions*, Proc. Amer. Math. Soc., 78 (1980), 353–357.
- [6] I. S. Jack, *Functions starlike and convex of order α* , J. London Math. Soc., 3 (1971), 464–474.
- [4] F. R. Keogh, E. P. Merkes, *A coefficient inequality for certain classes of analytic functions*, Proc. Amer. Math. Soc., 20 (1960), 8–12.
- [8] T. H. MacGregor, *Functions whose derivative has a positive real part*, Trans. Amer. Math. Soc., 104 (1962), 532–537.
- [9] M. L. Mogra, *On a class of univalent functions whose derivatives have a positive real part*, Riv. Mat. Univ. Parma, 7 (1981), 163–172.
- [10] M. L. Mogra, *On a special class of p -valent analytic functions*, Bull. Inst. Math. Academia Sinica, 14 (1986), 51–65.
- [11] Z. Nehari, *Conformal mapping*, McGraw-Hill Book Co., Inc., New York, 1952.
- [12] K. S. Padmanabhan, *On a certain class of functions whose derivatives have a positive real part in the unit disc*, Ann. Polon. Math., 23 (1970), 73–81.
- [13] S. Ruscheweyh, *New criteria for univalent functions*, Proc. Amer. Math. Soc., 49 (1975), 109–115.
- [14] N. S. Sohi, *A class of p -valent analytic functions*, Indian J. Pure Appl. Math., 10 (1979), 826–834.

P.G. DEPARTMENT OF MATHEMATICS
 UTKAL UNIVERSITY, VANI VIHAR
 BHUBANESWAR-751004, INDIA

Received June 30, 1994.

