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CERTAIN CLASSES OF p-VALENT ANALYTIC FUNCTIONS

1. Introduction
Let Ap, with fixed integer p > 0, be the class of functions

o0
(1.1) f(2)= 2P+ ) apyrzt*
k=1
analytic and p-valent in the unit disc £ = {z:|2]| < 1}.
Let 2 denote the class of bounded analytic functions w(z) in E satisfying
the conditions w(0) = 0 and |w(z)| < 1 for all zin E.
If the functions (1.1) and g(2) = 2P + Y ;o bp+#2PT* belong to A,, the
convolution or Hadamard product of f(z) and g(z) is defined by the power
series

(f* g)(z) =2zP + Z ap+kbp+klp+k.

k=1
With the convolution above, we define
(1.2) D) = =Tk f(2), f(2)eA
. = (1 _ Z)"+p ’ Py

where n is any integer greater than —p. The symbol D™ (i.e., (1.2) for
p = 1) was introduced by Ruscheweyh [13] and D"*P~1 by Goel and Sohi
[5]. Therefore, we call D**?~1 f(z) the Ruscheweyh derivative of (n+p—1)-th
order. It follows from (1.2) that

(1.3) 2(D™P71f(2)) = (n + p)D™*Pf(2) — nD™ P71 f(2).

A function f(z) € A, is said to be in the class V;} (4, B, a), if it satisfies
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the condition

(D71 f(2))  p+{pB+ (A~ B)(p— a)e™cos /\}Z

" zp-1 1+ Bz z€ E,

where -1 < B< A<1,0< a<p]|A < /2 and the symbol < denotes
subordination. From the definition of subordination, it follows that f(z) €
V,;\’p(A, B, a) has a representation of the form

(D271 f(2))!

(1.4) pres
_p+{pB+(A-B)(p- a)e=** cos A}w(z)
= T3 Ba(s) , w(z)€ .
From this, we note that f(z) € V;} (A, B,a) if and only if
n+p-1 1 __ p—1
(D f(z)) - pz <1, z€E.

(A=B)(p-a)e~ P71 cos \— B((D™ 71 [(z))—pz*-1)

Clearly, for n = 0,p =1, A= fand B= -3,0< 3 <1, we get the
class introduced and studied by Ahuja [1] which in turn reduces to the class
studied in [9] for /\ 0. Further, n = o = A = 0 and replacement of A by 1
and B by 15%,6 > 1, gives the class studied by Sohi [14].

We further observe that, for special choice of the parameters A, B and
A, our class gives rise to the following new subclasses of p-valent analytic
functions:

Vi (1,~1,0) =V} (a) =

n+p-1 '
={f(z)eAp: "‘(sz—lf(z))->acos/\,05a<p, |z\|<g,zEE},

vaa, it )= pa—{f(Z)GAp’

n+p 1 [
{(l+ztg,\)(——¢z)) itgA}—él <6 6§> %, [A] < %, z € E},

V), (0,0,0) = (V2,)° = { f(z) € A,

n+p-1 !
‘{(H—ztg/\)w itg/\}-—l‘ <o, 0<o<1, A< g, zZ € E},



Classes of p-valent functions 319

Vn.A,p('Y’ _7,0) = (Vnk,p)"/ = {f(z) € AP :

(1+itgA) RIS jggn 1
(14 itg ) B @) g 41

As noticed above, the class V,f"p(A,B,a) includes various subclasses of
p-valent analytic functions; a study of its properties will lead to a unified
study of these classes. In the present paper, we first obtain the basic inclusion
relation V., (4, B,a) C V2 (A, B,a). Then we obtain class preserving
integral operators and a sufficient condition in terms of coefficients for a
function to be in V,;\'p(A, B, a). We also obtain sharp coefficient estimates
and closure theorems for these classes. Papers (1], [3], [4], [9], [14] follow as
special cases of our results.

Unless otherwise mentioned, in the sequel we assume that -1 < B <
A<1l,0<a<pand A< 7/2

|<7,0<7g1, |/\|<g,zeE}.

2. Preliminary lemmas

LEMMA 1. A function f(z) € A, belongs to the class V,f"p(A,B,a), if
and only if

(D™P 1 f(2)

(2.1) m{<M, z€E,

zp-1
where
B(A - B)(p — a)e™** cos A
nepo BA=Bp=0) |
(2.2)
M (A= B)(p—- a)cos A
- 1- B? '

Proof. First, suppose that f(z) € V,} (A, B,a). Then, by using (2.2)
in (1.4), we have

(D1 f(z))

(2.3) i m=
_ (p=m)+{B(p—m)+ (A - B)(p-a)e*cosA}uw(z) _
= 1+ Bu(z) = Mh(2),
where
_ -ix B+ uw(z)
h(z) = e Al + Bw(z)’

It is clear that |h(z)| < 1 for z € E. Hence (2.1) follows from (2.3).
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Conversely, suppose that the condition (2.1) holds. Then, we have

1 |(D™+P-Lf(2))
M zp-1 B

ml < 1.
Let

o= LT )

Then, by (2.3),

9(z) - ¢(0)
24) w(z)= ——F17= =
S O,
_ (D71 f(z))' ~ por~t |
~ (A= B)(p-a)e~*cos - zp=1 — ((D*P=1f)z)) — pzp-1)’
Clearly, w(0) = 0 and |w(z)| < 1 for z € E. Rearranging (2.4), we arrive at
(1.4). Hence f(z) € V2 (A, B,a). This completes the proof of Lemma 1.
LEMMA 2 (cf. [6)). If the function w(z) is analytic for [z| < r < 1,w(0) =
0 and |w(z0)| = max,|=, |w(2)|, then zow'(20) = kw(z), where k is a real
number such that k > 1.

3. Main results
THEOREM 1. Let n be any integer greater than —p. Then
Vh1,(A,B,a) C V.2 (A, B,a).
Proof. Let f(2) € V;};; ,(A, B, a). Suppose that
any  DTUE) | pk B+ (A B)p— ) cos Mulz),
zp-1 1+ Bw(z)

where w(0) = 0 and w(2) is either analytic or meromorphic in E. Differen-
tiating (3.1) and using (1.3), (2.2), we obtain

(D™Pf(2)) _ _p—m+{B(p—m)+(A- B)(p—a)e™cos \}u(2)
zp-1 B 1 + Buw(z)
+ (A - B)(p-a)e~**cos A 2w'(z)
"t {1+ Bu(a)]
Let 7* be the distance from the origin to the nearest pole of w(z) in E. Then
w(z) is analytic in the disc {z: |z| < 7o = min(r*,1)}.
By Lemma 2, for |2| < 7, r < 7, there exists a point zp in E such that

(3.3) z2ow'(20) = kw(z), k>1.
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From (3.2) and (3.3) we have

D5 _ N(z)

(3.4) =5 = R’

where _

N(z0) = Me™*{(n+p)B + {(n +p) + (n + p)B’

+ k(1 - B*)}w(z) + (n + p) Bw(w(2))?),

R(z0) = (n + p){1 + 2Bw(2) + B*(w(0))’}.
Now suppose that maxj,|=,|w(z)] = 1 for some r, r < 7o < 1. At the
point 29, where this occurs, we would have |w(zp)| = 1. Then, by using the
identities

p—m=BMe >, (p—-m)B+(A-B)(p-a)ePcosh=Me

we deduce that
(3.5) |N(20)* = M?|R(20)|* = = + 2y Re w(20),
where

z = k(1- B )M*{k(1 - B*) + 2(n + p)(1 + B%)},

y = 2k(n + p)BM?*(1 - B?).
From (3.5), it follows that
(3.6) |N(20)? = M?|R(2)* > 0,

provided z 4+ 2y > 0. Now, in view of the fact that M > 0and -1 < B < 1,
we deduce that

z+2y=k(1-B)M*{k(1- B*)+2(n+p)(1+ B)*} >0,
z — 2y = k(1 — B )M*{k(1 — B®) + 2(n 4 p)(1 — B)*} > 0.

Thus, from (3.4) and (3.6) we get
(D7 f(z0))'

p—1
2

-m|> M.

But, in view of Lemma 1, this is a contradiction to the fact that f(z) €
V,;\_‘_l'p(A, B, a). So, we cannot have |w(zp)| = 1. Thus, |w(z)| # 1in |2] < 7.
Since w(0) = 0, |w(z)| is continuous and |w(z)] # 1 in |2| < ry, we cannot
have a pole at [z} =7

Therefore, w(z) is analytic in E and |w(2)| < 1 for z € E. Hence, from
(3'1)’ f(Z) € VnA,p(A’ Baa)'

In the next theorem, we study the class preserving integral operators for
the class V) (4, B, a).
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THEOREM 2. Let p be a positive integer and n be any integer greater than
—p. If f(2) € V),(A, B,a) and Re(c + p) > 0, then

c

(3.7) F(z) =

;p fz 1= f(t) dt
0
also belongs to V,} (A, B, a).
Proof. From the definition (3.7) of F(z), by (1.3) we have
2(D™P7IF(2)) = (c+p)D™P7 f(2) — cD™PTIF(2),
so that
(38)  D™PTNF(2))" = (c+ p)(D™PT f(2)) - (D™MPTIF(2))
Let us suppose that, according to (1.4), we have

(D™P=1F(2))' _ p+ {pB + (A - B)(p— a)e”" cos AJu(z)

(3.9) — T ol :

where the function w(z) is either analytic or meromorphic in E and such
that w(0) = 0. Differentiating (3.9) and then using (3.8), we deduce that

(D1 F()

(3.10) = =
- (A-B)(p—a)e"Pcos A zw'(2)
(c+p) (1+ Buw(z))?
+ (p—m)+{(p—m)B+(A-B)(p- a)e-i)‘ cos A}w(z)
1+ Buw(2) :

The required result can be obtained now from (3.10) by using the same
technique as applied in (3.2) in the proof of Theorem 1.

Remark. Forn =0, p=1,a =0, A =1 and B = —1. Theorem
2 improves a result of Bernardi [2], who proved it when ¢ is a positive
integer.

THEOREM 3. Let p be a positive integer and n be any integer greater than
~p. If F(2) = ZE2 [*4n=1 f(t) dt, then F(z) € V), (A, B,a) if and only
if f(z) € V2, (A, B,a).

Proof. We have (D™"tPF(z)) = (D™*?~! f(z))' and the result follows.
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Now we obtain coefficient inequalities for the class V;} (4, B, ).

THEOREM 4. If f(z), given by (1.1), belongs to V.2 (A, B, @), then

(A-B)(p—a)cos A
(3'11) 'aP+k| < (p+ k)6(n, k) ’ k > 17

where §(n, k) = (n+ p — 1)1/k!(n + p — 1)!. The results is sharp.

Proof. Since f(z) € V, 25(A, B,a), the relation (1.4) hold with w(z) =
Z ~; wjz’ analytic in E and such that |w(z)| < 1 for z € E. Substituting
the power series expansion of f(z) and w(z) in (1.4), wehave

(312) o+ 7)6(n, aps 27 = {(A— B)(p - a)e™ cos )

j=1

-B Z(P +5)é(n, 5)aps;2’} Z ;2.

i=1

Comparing coefficients of the same powers of z on both sides of (3.12),
we see that the coefficient a,,; depends only on ap41,ap42,...,8p4j-1 OD
the right-hand side of (3.12). Hence, for k = 1,2,..., it follows from (3.12)
that

Z(p+3)6(n,nap+,z + Z ¢zl =
j=k+1
k-1

= {(4- B)(p - )™ cos A = BY (p+ 1)é(n, f)aps;#’ Jul2),
=1

where c; are some complex numbers. Since |w(z)| < 1, by using Parseval’s
identity [11], we get

Z(pﬂ)?(&(n,n)ﬂapﬂﬁ % 4 z Jej|?r%
Jj= j=k+1
k-1
<{(A-B)(p - o) cos A} + B Y (p + 1)*(6(n, §))*laps ;7%
k=1
k-1
<{(A- B)(p-a)cos AY’ + B> > _(p+ 5)*((8(n,5))*|aps1*.
k=1
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Letting 7 — 1 on the left-hand side of the above inequality, we obtain

k
- 2+ (6 5) lepesl”

k-1
<{(A- B)(p— @)cos A}’ + B* Y (p + 1)*(8(n,5))*|ap+l*.
Jj=1
Thus, we get the inequality
(p + k)*(6(n, k))*|aps&l*
k-1

<{(A- B)p-a)cos 2}’ — (1= B%) Y (p+5)*(8(n,5)) laps I’

i=1
< {(A- B)(p - a)cosA)?
implying (3.11).
In order to establish the sharpness of (3.11), consider the functions. fi(2)
defined by
(D™**71fi(2)) _ p+{pB + (A = B)(p — @)e™ cos A} 2*
zp-1 B 1+ Bzk
Clearly, fi(2) € V,;\’p(A,B,a) for each & > 1. Also, it is easy to compute
that the functions fx(2) has the expansions
(A - B)(p— a)e=**cos /\zp+k
(p + k)é(n, k)
showing that the estimates (3.11) are sharp.

THEOREM 5. Let f(z), given by (1.1), belong to V) (A, B,a) and p be
any complez number. Then

. k>1.

fi(z) =2+

+...

(3.13) |apy2 — #a;z;+1|
(A= B)(p— a)cos A
= (p+2)8(n,2)

A—- B)(p-a)p+2)6(n,2)e"** cos A
X max {1, |B+ - ( )(p(p +)§]))2(a()n,(1))2) I}
The estimate is sharp.
Proof. Upon equating the coefficients of z and of 2% in (3.12), we have
wy = (p +1)8(n, )api1
(A= B)(p— a)e~*cos A

(3.14)
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and
(42 Yy
7 (A= B)(p- a)e=*cos A

(p+ 1)é(n,1) 2
¥ { (A= B)(p— a)e~*cos A } G541

(3.15)

respectively. It is known [7] that for every complex number y
(3.16) lwz — yw]| < max{1,|v]},
so the estimate (3.13) is sharp. Now, using (3.14) and (3.15), we obtain

A—B)(p- a)cosA
. _ 2 < ( _ 2
(3 17) IaP+2 #ap"'ll - (p+ 2)6(n’ 2) |w2 7wl|’

where
(A - B)(p-a)(p+2)§(n,2)e **cos A
(p + 1)2(6(n, 1))? '

The estimate (3.13) follows by using (3.16) in (3.17). The result is sharp as
the estimate (3.16) is sharp.

T=B+p

In the following theorem, we obtain a sufficient condition, in terms of
coefficients, for a function to. be in V,f"p(A, B, a).

THEOREM 6. Let f(z), given by (1.1), belong to A,. If

> (A- B)(p—a)cosA

(3.18) ) _(p+ k)é(n,k)lapsx| < , B2>0,
k=1 1 + B
a A- B)(p—a)cos A

(19) 300+ Bi(nBlapsal < A-Bp—e)cosd - p

then f(z) € V) (A, B,a). The result is sharp.
Proof. Suppose that (3.18) holds. Then, for |z] = r < 1, we have

(D™= f(2))' — paP -
(A= B)(p — a)e™" " cos A = B{(D™71f(2))' - p"~1}| =
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[e <]
= l Z(p + k)é(n, k)a,,+;,z”+k'1|
k=1

(e ¢}
- |(A ~ B)(p—-a)e 2’ cos A~ B - Z(p + k)&(n,k)ap+kz”+"’1|

k=1
[e o]
< Y (p+ k)8(n, k)lapyilrPtr?
k=1
[ o]
~{(A= B)p - a)r* cos A = BY (p+ K)S(n, K)lapyslr™*~1 )

k=1
< [k;(l + B)(p + k)é(n, k)|ap4x] — (A — B)(p — a) cos ,\] P71 <0,

by (3.18). Hence f(z) € V,},(A, B, a).
Next, we assume that (3.19) holds. Then

(D™= (@)Y - p2? |
~I(4 - B)(p — @)e™*27 cos A = B{(D™*"1f(2))' - p22 )

o
< Y (P + B)8(n,k)lapyulrPtE?
k=1

- {(A - B)(p—-a)r" 'cosA+ B i(p + k)é(n, k)|ap+k|r”+k'1}

k=1
< [;a — B)(p+ k)3(n, K)lapexl - (A - B)(p - a) cos A]r*1 < 0,

by (3.19). This proves that f(z) € V;} (4, B, a).

Remark. We observe that for B # 0 the converse of Theorem 6 may
not be true. For instance, consider the function f(z) defined in E by

(D71 f(2)) _ p={pB+ (A= B)(p = o)e= cos )}
Zp—1 - 1- Bz ’

B > 0.

It is easily seen that f(2) € V) (A, B,a) and

_ _B¥Y(A-B)(p—-a)e*cos A
e (o + k)8(m. k) !

k>1,
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so that

— (14 B)(p + k)é(n, k)lapssl _ — k-1 _ 1+B
; (A- B)(p—a)cos ) —(1+B)§B —1—B>1’

for A, B, ) satisfying 0 < B < A< 1and |} < 7/2.
Further, consider the function f(z) defined in E by

(DMP1f(2)) _ p+{pB+(A- B)(p— a)e P cos A}z

1 13 Bz B < 0.
It is easily seen that f(2) € V;},(A, B,a) and
_BYe-1(A — — o)e—iA
(=B)*"1(A - B)(p— a)e™**cos A k> 1

ik = (p + E)6(n, k) ’
But

i (1 - B)(p+ k)6(n’k)|ap+k| _ (1 _ B) i(__B)k—l - 1-B > 1,
k=1

= (A- B)(p—a)cosA 1+ B

for A, B, A satisfying - 1< B<0< A<1and |\ <7/2.

Motivated by Theorem 6, we introduce a new subclass of p-valent ana-
lytic functions in the unit disc E. We say that a function f(z) € A, isin the
class ‘7n>‘,p(A, B, a) if and only if the conditions (3.18), (3.19) hold. Clearly,
V,f"p(A, B,a) C Vnk‘p(A, B, ). Then the following theorem is true.

THEOREM 7. If f(2)=2P+ pe; apprzPtF and g(z)=2P+ Y 4o, bpsi2zPt®
belong to 1’7,3,,,(,4, B, a), then so does F(z) defined by

F(z) = 22+ apabpirz™™.
k=1
Proof. Since f(z) € V,;‘yp(A,B, a), we have
(A= B)(p-a)cosA

S (p+ k)8(n, K)lapsl < 1+ B 72h
kg(“ ) E)lapeil < q 4 Do oo,
This yields
(A~ B)(p—a)cos A
apead < { (0 F DY ERRC R 720
— B)(p— a)cos A B <o,

(1= B)(p+k)é(n, k)" —
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for all £ > 1. Therefore, it follows that
(3.21) lapsl <1, k2>1.
Using (3.21), we have

(3.22) Y+ k)b(n, E)lapsal? < ) (p+ B)8(n, k)lapsn.
k=1 k=1

Similarly, since g(z) € Vﬁ,p(A, B, a), we have
(A-B)(p-a)cos A

oo 1+ B ’ B2 0
) <
(3.23) kz_l(p + k)o(n, k)|bpsi| < (A— B)(p - a)cos A
. e , B<O,

and

(3.24) Y (P +E)s(n, B)bpakl® < Y (0 + k)(n, k)|Bpl-
k=1 k=1

Now, we have

0o
(3.35) (0 + k)S(n, B)lapsabpsl
k=1
1/2

< (0 + 080, Blapisl?) " (o4 K)o, Kby l?)
k=1 k=1

1/2
?

< (X +08(m, Dlapal) (3 0+ £, k)bpesl)
k=1 k=1

where we have applied Cauchy-Schwarz inequality and the relations (3.22)
and (3.24). By (3.20) and (3.23), the relation (3.25) becomes

(A-B)(p—a)cos

00 1+ B » B20,
§ <

Z(P +k)8(n, k)lapskbpyi| < (A— B)(p—a)cos A

k=1 1-B ) B S 0.

This proves that F(z) € V,},(4, B, a).

THEOREM 8. If f(2) = 2P + X po; appi2®tt and g(z) = 27 +
+ Y re1 bprkzPtE belong to V) (A, B,a), then so does the function F(z)
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defined by
(3.26) F(z)=2"+ Z <]%) §(n,k)apyk - bpyr2®tE.
k=1

Proof. Since f(z) € V) (A, B,a), we have for f(2) the inequality (2.1)
with (2.2).

It is known [11] that, if h(z) = Y2, cn2™ is analytic in the unit disc E
and [h(z)| <!, then

(3.27) > leal? <22

n=0

Using (3.27) in (2.1), we get

oo 2
lp=ml* + 3o+ B (6(n, )Y laps ol < { A= BN c0AY

k=1
implying after simplification,

3 - — @) cos \}?
I Y L
Similarly,
(329) Yo+ BE(m 0 by < LAZBNR= ) cosd}

k=1
Now, using the Cauchy-Schwarz inequality and then (3.28), (3.29) and (2.2),
for |2] < r we get
n+p-—1 !
(D EG)
zp—1

1 oo
=|(p-m)+ » Y (P + k)2(8(n, k) apykbprizt]?
k=1

2

1 [ 2
<lp=ml + 5[ S (p+ KV (8(n, ) lapysbyelr*]
k=1

2p — m| =
4 —'p—' 3 (p+ £)(8(n, ) laps sbpa slr*
k=1

l o0
<lp=ml + (D0 + 06, k) lapsal?r*) x
k=1
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x (g(p + BP(8(n, B - Iopanlr)
+ 2ol g(p + (8, B)Plapael'r*)
(204 B )
< lp= i+ (30 + 6 B )
x (gm B (8(n, k) by 4I?)
+ 22520+ 1t 0l

x (Lk = 120+ kY (6(m, ) Iopal?)
< { B(4 — B)(p — @) cos ) }2 L A4-B)p- a) cos A}
+

1- B2 (1- B2)?p?
2B{(A - B)(p — @) cos \}®
(1- B*)’p
_f(A-B)(p—a)cos]A 2
= { 1- B } X
g {B2 + ((A - B)(p — a)cos \)? + 2B(A- B)(p - o) cosA}
p? P
(A- B)(p- a)cos A }2
5 .
Thus, F(z) € Vn",p(A, B,a), in view of Lemma 1, if
B+ (A—-B)(p- a)cos A <1

=M2{B+

which is certainly true. Hence F(z) € V2 (4, B, a).

Lastly, we establish a closure property for the class V,;\,p(A,B,a), its
proof being obvious.

THEOREM 9. If the functions f(z) and g(z) belong to the class
V2o(A,B,a) and 0 < s < 1, then the function F(z) = sf(z)+ (1 — s)g(2)
also belongs to V,) (A, B, ).
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Remark. Taking appropriate values of the parameters A, B,a in the

results of section 3, we may get the corresponding results for functions in
the classes V2 (a),V;}, 5,(Vi,)? and (V;),),.
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