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ON BOREL SETS MODULO A a-IDEAL 

Introduction 
Let I denote a proper a-ideal of subsets of an uncountable Polish 

space X. Through the paper we assume that I contains all countable subsets 
of X. By B we denote the family of all Borel subsets of X and, by BAI — 
the smallest tr-algebra including B U / ; then BAI consists of all symmetric 
differences (B\A)l)(A \ B) (denoted by BAA) where B € B and A € I. 
We say that I is Borel supported if, for each A £ I there exists B € B D I 
such that AC B. 

In the paper we are interested in the following problem. For which a-
ideals / and J with I ji J, can we infer that BAI ^ BAJ1 In certain 
cases connected with perfect sets, Bernstein sets make a good tool to get 
the positive answer. We recall some known results, extend them and give 
new applications. In a general case, we follow the method of Pelc [P] to 
show that an answer to the above question can depend on special axioms of 
set theory. Some of those results are applied to the studies of the alternate 
iteration of the operations BA(-) and H(-) where H sends a <r-algebra S to 
the a-ideal of hereditary «S-measurable sets. 

1. Application of Bernstein sets 
We say that B C X is a Bernstein set if it meets each perfect subset of X, 

and X\B has same property. The standard construction of a Bernstein set, 
based on a well-ordering of the family of perfect sets, can be repeated when 
X is replaced by a fixed set A that contains a perfect set (hence it contans 
c = 2n° perfect sets). Then B (included in A) will be called a Bernstein set 
relatively to A. The classical theorem states that each Bernstein set on the 
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real line is nonmeasurable in the Lebesgue sense and it does not possess the 
Baire property (see [0, Th. 5.4]). The following proposition is more general. 

PROPOSITION 1.1 (Cf.[I]) . If a a-ideal I is Borel supported then no Bern-
stein set B C X is in BAI. • 

We are going to extend that result. Let TI denote the family of all totally 
imperfect sets of a given space X (a set is called totally imperfect, if it has no 
perfect subset). Note that a Bernstein set belongs to TI. Several interesting 
<7-ideals containing uncountable sets included in TI for X = R are described 
in [Mi]. 

PROPOSITION 1.2. Let I be a a-ideal of subsets of X and assume that 
A £ I contains a perfect set. The following conditions are equivalent: 

(1) there is E G I such that A\E € TI, 
(2) there is a Bernstein set relatively to A that belongs to J, 
(3) there is a Bernstein set relatively to A that belongs to BAI. 

P r o o f . (l)=>-(2) We can extend A\E to a Bernstein set B C A relatively 
to A. Then A \ B is that Bernstein set which is required in (2). 

(2)=>(3) Obvious. 
(3)=»(1) Let a Bernstein set B satisfy (3). Thus B = DAE for some 

D € B and E £ I. Suppose that (1) is false. Hence A \ E contains a perfect 
set P. Then at least one of the sets P n D and P\D contains a perfect set. 
The first case is impossible since PDD C D\E C B and B does not contain 
perfect sets. The second case is also impossible since P \ D C (A \ E) \ D C 
A\B and A \ B does not contain perfect sets. • 

COROLLARY 1.1. If I is a Borel supported a-ideal of subsets of X and 
A C X is an analytic set such that A £ I then no Bernstein set B relatively 
to A is in BAI. 

P r o o f . Consider an arbitrary E 6 I. Let D G / be a Borel set such that 
E C D. Thus A \ D is analytic and A\D £ I. So, A \ D contains a perfect 
set [K, p. 479]. Hence (1) is false and, consequently (3) is false. • 

That corollary is known, however maybe never written down explicitly. 
Its scheme was applied in [C] several times. Let us give one more application. 

Recall (cf. [Z]) that E € R is said to be porous at a point x € R if 

lim sup 7 ( E , x, r)/r > 0 
»—•0+ 

where 7 (E,x,r) is the length of the longest interval (a, 6) C (x — r, x + r)\E. 
A set E is called porous if it is porous at each of its points, and is called 
a-porous if E is a countable union of porous sets. Porous sets are nowhere 
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dense and of measure zero. The family of cr-porous subsets of R forms a 
<7-ideal denoted further by M. 

Consider additionally the following <r-ideals of subsets of R: 

K — the <7-deal of sets of the first category, 
C — the c-ideal of sets of Lebesgue measure zero, 
C* — the <7-ideal of sets that are contained in Fa sets from C. 

Recall that: 

• M is Borel supported, M C K, fl £ , and there exists a perfect set of 
measure zero which is not <r-porous (see [Z]); 

t C* C K D and there exists a Gg nowhere dense set of measure zero 
which is not in C (see e.g. [BBH]); 

• there exists a Gs set in M \ C* (see [FH]). 

Now, from Corollary 1.1 we derive 

PROPOSITION 1.3. (a) There exists a Bernstein set relatively to a perfect 
nowhere dense Lebesgue null set, which is not in BAM. Consequently, C* \ 
(BAM) ± 0 and BAM £ BA(K n £) . 

(b) There exists a Bernstein set relatively to a G$ nowhere dense Le-
besgue null set, which is not in BAC*. Consequently, BAC* £ BA(JCn £). 

(c) There exists a Bernstein set relatively to a G{ cr-porous set, which is 
not in BAC. Consequently, M \ (BAC) ^ 0. • 

R e m a r k . We have BA(KnC) = (BAJC)n(BAC) (see [B2]). Similarly, 

BA(If\J) = (BAI)n(BAJ), 

if I and J are Borel supported tr-ideals (see [BHWW]). 

For two families T\, Ti of subsets of X we write 

T\ © = {E C X : ( 3 ^ € J i ) ( 3 £ 2 € T2)(E C Ex U E2)}. 

Let [A]<c denote the family of all sets E C A with \E\<c. 
EXAMPLES , (a) The assertion of Corollary 1.1 can hold for some <7-ideals 

which are not Borel supported. Let so denote the <r-ideal of Marczewski null 
sets, namely E € so if each perfect set has a perfect part disjoint from E 
(cf. [Sz], [Mi]). Obviously, «o Q TI and so is not Borel supported since each 
uncountable SQ set (which exists, cf. [Mi]) cannot be covered by a Borel so 
set. For each perfect set A, we have A ^ so and, for each E £ SQ, A \ E 
contains a perfect set. Thus, by Proposition 1.2, no Bernstein set relatively 
to A is in BAI. 
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(b) Let I consist of sets £ C R ! such that EC D U H for some D 
of plane measure zero and H € «o (in R2)- Observe that, O C R 2 is of 
positive inner measure, and if E £ I and D, H are as above, then A \ D has 
positive inner measure, so it contains a perfect set P in which we can pick 
a perfect part disjoint from H. Consequently, A\E contains a perfect set 
and, by Proposition 1.2, no Bernstein set relatively to A is in BA/. Observe 
that I is not Borel supported. It follows from the fact that a nonmeasur-
able so set (which exists, see [W2]) cannot be covered by a Borel set from 
I (see [Bl, Proposition 2]). A similar construction holds for the category 
case. 

(c) There are interesting «r-ideals on R containing Bernstein sets (rela-
tively to R). Namely, if T is a fixed family of one-to-one functions / : R —• R 
and \Jr\ < c then there exists a Bernstein set B such that \BAf[B]\ < c for 
each / € T ([B3], cf. also [S] and [Mo, Th.23, p.168]). Thus 

I = {A C R : A C B U E for some E 6 [R]<c} 

forms a proper /"-invariant cr-ideal which is not Borel supported (the same 
holds for the <r-ideals I($/C and / © £ , provided that JC and C are /"-invariant; 
cf. [B3]). Observe that, if B is replaced by R \ B in the definition of I, we 
get another /"-invariant a-ideal I*. Obviously both B and R \B belong to 
(BAI) n (BAI*). In Section 2, we will show that BAI / BAI*. 

2. Comparing the sizes of quotient <r-algebras and some 
iteration process 

We are going to show, how one can decide whether the implication 

I/J=> BAI ± BAJ 

is true or false, by comparing the sizes of the respective Boolean algebras 
and by the use of special axioms of set theory. In fact we follow the methods 
applied in [P, Th. 3] where a related problem concerning the equality BAI = 
P(X) is studied (P(A) stands for the power set of A) for invariant ideals on 
X = R. 

By B(A) we denote the family of all Borel sets relatively to A. Let 
B(A)AI abbreviate B(A)A(I n V{A)). 

PROPOSITION 2.1. (a) Let I and J be a-ideals of subsets of X. If there 
is A € I \ J with \A\ = c, and [A]<c C J then (BAI) \ (BAJ) ± 0. 

(b) If MA+~>CH holds, there are a-ideals I and J of subsets of X such 
that I \ J ^ 0, J \ I ji 0 and BAI = BAJ. 
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P r o o f , (a) Since [A]<c C J and \A\ = c, we have \V(A)/J\ > c, by the 
result of A. Taylor [T]. From A € I it obviously follows that B(A)AI = 
V(A). Hence 

(*) \(B(A)AI)/J\ > c > \(B(A)AJ)/J\. 

Thus we infer that B(A)AJ £ B(A)AI. Suppose now that BAI C BAJ. 
Hence B(A)AI C B(A)AJ which contradicts (*). 

(b) Consider disjoint sets A, E C X of cardinality a>i. Let I be the <7-ideal 
generated by X \ A and all singletons. Analogously we define J replacing A 
by E. Then X\A£l\J and X \ E e J \ I . By Silver's lemma (see [MS]), 
MA and \A\ = ¡£ | < c imply V(A) = B(A) and V(E) = B(E). That easily 
gives BAI = V{X) = BAJ. u 

R e m a r k s , (i) If CH holds, the assumptions = c and [^4]<c C J in 
Proposition 2.1(a) evidently result from A $ J. The version of Proposition 
2.1(a) in which CH is supposed has a proof analogous to that given in [P, 
Th. 3]. 

(ii) From Proposition 2.1(a) it follows that 

(BAI) \ (BAI*) ± 0 and (BAI*) \ (BAI) £ 0 

for the iT-ideals I and I* defined in Example (c) of Section 1. 
(iii) If X = R, one can choose I and J in Proposition 2.1(b) being 

invariant with respect to all translations by rationals (cf. [P, Th. 3]). 

Further we will assume that S is a proper cr-algebra of subsets of X (i.e. 
S ^ V(X)). Define H(S) as the family of all hereditary S-measurable sets, 
that is 

H(S) = { £ C I : ( V i C E)(A € 5)}. 

Then H(S) is the largest <r-ideal in V(X) contained in S. It is obvious that 
the operation H is monotonic with respect to inclusion. 

LEMMA 2.1 . (a) If S is a cr-algebra of subsets of X, and B C S, then 
BAH(S) C S and H(S) = H(BAH(S)). 

(b) If I is a a-ideal of subsets of X then I C H(BAI) and BAI = 
BAH(BAI). 

We omit an easy proof. • 

We see that , using the operations BA(.) and H(.) alternately, the itera-
tion process starting from a <r-ideal I or from a tr-algebra S D B stabilizes. 

Now, let us discuss some cases when the inclusions BAH(S) C S and 
I C H(BAI) can be (or cannot) be reversed. 
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E X A M P L E . A natural cr-algebra containing B, associated with the <r-ideal 
¿0, consists of s-sets defined as follows (see [Sz]). We say that E C X is an 
«-set (or that E G s) if each perfect set has a perfect part which is contained 
in E or is disjoint from E. It is known that H(s°) = s (see [Sz]). Walsh 
proved in [Wl, Th. 2.4] that for X = R2 there exists a family P C s such 
that \T\ = 2C and AAB g s0 for any distinct A,B G F. Consequently, 
|s/«o| = 2C > c = |(BA«o)/io| and thus BAso ^ s. Hence the inclusion 
BAH(s) C s cannot be reversed. 

R e m a r k . In general, if S D B is a <7-algebra such that | « S / / f ( « S ) | > c 
then BAH(S) £ S. In that case, S cannot be of the form BAI for any 
a-ideal I since if S = BAI then BAH(S) = S (see Lemma 2.1(b)). 

Let us turn to the question about H(BAI) C I. 

E X A M P L E . Since each set of positive outer Lebesgue measure contains a 
nonmeasurable set [O, Th. 5.5], we have H(BAC) = C. Similarly H(BAfC) 

PROPOSITION 2 . 2 . Let I be a a-ideal of subsets of X. 

(a) Each of the following conditions is sufficient for H(BAI) = I: 
1° each set from (BAI) \ I contains a perfect set, 
2° [X]<CCI. 
(b) If MA-i—iCH holds and there is A £ I with |i4| = then I £ 

H(BAI) (in fact, A e H(BAI) \ I). 

P r o o f , (a) It suffices to show that H(BAI) C I. 
Assume 1°. Suppose that there exists A G H(BAI) \ I. Let E £ I. Since 

A € H(BAI), we have A \ E G (BAI) \ I. Thus by 1°, A \ E contains 
a perfect set. By Proposition 1.2, a Bernstein set relatively to A is not in 
BAI. That contradicts A € H(BAI). 

Assume 2°. Suppose that A G H(BAI)\I. Then \ A\ = c and following the 
proof of Proposition 2.1(a) we infer that B(A)AI £ V(A) which contradicts 
A G H(BAI). 

(b) By Silver's lemma (compare the proof of Proposition 2.1(b)), we have 
V(A) = B(A) which implies that A G H(BAI). m 

R e m a r k s . It follows from 1° that H(BAI) = I holds for all Borel 
supported a-ideals I . A verification of 2° for some tr-ideals is unconvenient 
since 2° can depend on special axioms of set theory (e.g. for K, and £) . 
For other tr-ideals, 2° can be clear (e.g. for the a-ideal / given in Exam-
ple (c) of Section 1, or for the tr-ideal s0 ; see [Wl, Th. 2.1]). Of course, 
2° is always true, under CH. For certain CT-ideals I the statement H(BAI) — 
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I is independent of ZFC. Indeed, let I be the a-ideal generated by a Bern-
stein set B in R and by all countable subsets of R. Assume CH. Then 
from 2°, we get H(BAI) = I . If MA+-1CH is assumed, let us choose a set 
A Ç R \ B with |A| = wi. Then A $ I . Hence I Ç H(BAI), by Proposi-
tion 2.2(b). 

Acknowledgements. I would like to thank A.B. Kharazishvili who has 
pointed out an error in the previous version of Proposition 2.1(b). 
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