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IDEMPOTENT A N D DISTRIBUTIVE GROUP 
RELATED GROUPOIDS, II 

In a former paper [E4] we were concerned with the basic properties of cer-
tain idempotent and distributive resp. merely idempotent groupoids •) 
(SGRID- resp. 5Gi?/-groupoids), the binary operation of which is influ-
enced by the structure of an abelian group (G, -f): We assume 11 to be a 
subset of G with 0 € H, and • being given by 

x • y = cr(x) + r(y) (x,y£ll) 

where <r, r : H —• G are mappings. Group related groupoids are of a certain 
interest for topological purposes, SGRIZ?-groupoids turned out to form 
groupoid modes ([E4], (2.1)) and are linked with the point of view presented 
in ([JK], (3,3.9)) (see introduction of [E4]). 

Throughout this second half of a series of papers on group related group-
oids we use without any further explanation the notation, notions, and con-
ventions of the first part [E4]. 

In chapter 1 we turn to homomorphisms of SGflZ-groupoids and, as 
a characterization for homomorphisms between canonically monoid split-
ting SGJ2/.D-groupoids, we find a kind of natural decomposition of the 
given homomorphism into a monoid homomorphism and a homomorphism 
of quotients of the SGRID-groupoids under consideration. 

As a guiding line for chapter 2 we use a result in ([E2],(2.17)), where 
it is shown for group related (2-)symmetric groupoids that the equivalence 
relation £ coming from successive left translation coincides with the one 
induced by a certain subgroup of the underlying group, which is closely 
related to the given (2-)symmetric groupoid. After some general consider-
ations concerning £ on a SGRID-groupoid 1Z, we develop necessary and 
sufficient conditions for the coincidence of £ with the equivalence relation 
given by a subgroup of the underlying group, which is assigned to TZ in a 
way analogous to the (2-)symmetric case. 
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In the final chapter we deal with the transfer of algebraic identities and 
the property of being a SGii/£)-groupoid from a groupoid (TZ,*) to its 
derived groupoids, i.e. to groupoids with the same underlying set and a 
binary operation, which is made up of iterated applications of • and the 
trivial binary operations on TZ. In particular, we turn our attention to the 
¿-symmetry law and describe SGRID-groupoids satisfying this identity. 

For describing mappings or homomorphisms of 5G!.ft/-groupoids, de-
pending on the situation we sometimes only need their counterparts re-
stricted in domain, or range, or domain and range, respectively (see also 
text after ([E4],(1.5))). Since what is meant always comes clear from the 
context, and since we don't want to exaggerate with precision in notation, 
which would make a mess of the formulation of some results, for a mapping 
and corresponding restrictions we use the same symbol. 

1. Homomorph i sms of SGRID-groupoids 
Now we discuss some aspects concerning homomorphisms between idem-

potent group related groupoids. Any such groupoids (11', •) and (S', •) and a 
homomorphism 77: TZ' —• S' being given, applying ([E4],(1.5)) we first find a 
strictly group related copy 7Z of TV and an isomorphism i: (7Z, •) -*• (TV, •), 
and again by ([E4],(1.5)) (via the translation in the underlying 
group of S') a strictly group related copy S of S' and an isomorphism 
j : (S1, •) —• (S, •) such that ( j o 77 0 t)(0) = 0. Hence we can restrict our-
selves to the consideration of homomorphisms between 5Gi2/-groupoids 
preserving the neutral elements of the respective underlying groups. We call 
such homomorphisms distinguished. 

In addition and parallel to the convention after ([E4],(1.5)) concerning 
SGiZJ-groupoids written by (1Z,*), we note that throughout this chapter, 
for a SGfiZ-groupoid written by («S, •), the pair of describing mappings will 
be denoted by (£, 1?), and its underlying group by H. 

1.1. Proposition. Let (TZ,*), (S, •) be SGRI-groupoids , A : 1Z —* S a 
mapping such that A(0) = 0. The following are equivalent: 

(1) A is a distinguished groupoid homomorphism, 
(2) A € Par t ly (TZ,H), A 0 <7 = C o A, 
(3) A e Par t ly i7jx (TZ, H), A 0 r = 1? o A. 

P r o o f . (1) =>• (2),(3). For r ,s G TZ, A being a groupoid homomorphism 
is equivalent to 

A(<r(r) + T(S)) = C(A (r)) + i?(A(,)). 



Idempotent and distributive group related groupoids, II 293 

If we put by turns s := 0 resp. r := 0, we get A(cr(r)).= £(A(r)), A(r(s)) = 
t?(A(5)), hence \oa = £oA and Aor = do\. Therefore A £ Part-£T)7jj.(72, H). 

(2) =>• (3). For r £ U we conclude 

A W O ) = C(A(r)) =* A(<x(r)) + A(r(r)) - A(r(r)) = C(A(r)) 
=> A(<r(r) + r ( r ) ) - A(r(r)) = A(r) - 0(A(r)), 
=> A ( r ) - A ( r ( r ) ) = A(r)- i?(A(r)) ; 

consequently, A o r = t? o A. 
(3) =>• (1). For r,s £1Z we calculate 

A(r • a) = A(<r(r) + r(«)) 
= A(er(r)) + A(r(s)), since A G P a r t l y ^ ( f t , H), 
= A(tr(r)) + tf(A(s)), since A o r = d 0 A, 
= A(a(r)) + A ( r ( r ) ) - A ( r ( r ) ) + rf(A(*)) 
= A(a(r) + r ( r ) ) - 0(A(r)) + tf(A(«)), 

since A (E P a r t ^ - r ^ j ^ S , i f ) and A o r = o A, 
= A(r) - t?(A(r)) + tf(A(«)) = A(r) • A(a). • 

Now we are in a situation to present a second example of an SGRID-
groupoid which is not isomorphic to a subreduct of an affine space (cf. text 
before ([E4],(2.3))). 

1.2 . E X A M P L E . We denote by Z ° ° the direct sum of infinitely many copies 
of Z; and for 1/ £ N by t„ : Z°° —• Z°° we mean the i^-th shift operator given 
by the assignment 

(Si)l<i<oo (Zi)i/<t<<x>-

One can see immediately that both t„ and 1 - t„ are group epimorphisms, 
where 1 stands for the identity map of Z0 0 . According to example ([E4], 
(2.3),(a)), by we get a binary operation •„ on Z°°, which makes (Z°°, •„) 
a SGRID-grou^oid. Furthermore, we can consider Z°° in a canonical way 
as A'-module for rings K £ {Z,Z°°}. For a £ K let ta : Z°° - • Z°° be 
the homomorphism defined by component wise multiplication j !-• a j . Also 
according to ([E4],(2.3),(a)), we equip Z°° with the binary operation •„ 
coming from ta. 

Now we show that for any choice of v and a, the groupoid (Z°°,«„) is 
never isomorphic to a subalgebra of (Z°°, «a). Assume the contrary and let 
k : —» (Z°°,*0) be a distinguished (cf. text before (1.1)) algebra 
monomorphism. Applying (1.1) we find k £ P a r t a « , ^ « ^ 0 0 ^ 0 0 ) is even a 
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group monomorphism, the diagrams 

z oo k 
- z oo z 00 k 

• z oo 

K 1-K 1-t. 
z oo k - z oo z oo k • z oo 

commute, and fc(Z°°) is not trivial. Since both l„ and 1 - t„ are onto, we 
get k(Z°°) = ta(k(Z°°)) = (1 - ta)(k(Z°°)), which contradicts non-triviality 
of k(Z°°) and the fact that each element of Z has a unique decomposition 
in prime numbers. 

Now we prepare for a characterization of homomorphisms between 
canonically monoid splitting 5Gi2/D-groupoids. To this end we introduce 
two mappings on quotients by monoids. 

1 .3 . DEFINITION. Let (7Z,*) be a canonically monoid splitting SGRID-
groupoid. Denote by crj, : TZ/TZy —+ lZy/a(lZy) the mapping given by x + 

~ <r(x) + o{ni f ) . 

<T|, is well defined, since for x,x' £ 1Z and x + IZy = x' + IZy there is 
n € TZy such that x — x' = n. By a £ Part^ ^¿(T^Cr) we get a(x) = 
cr(x' + x — x') = <T(X') + A(x — x') , consequently 

<r(x - x') = <r(x) - c(x') = a(n) £ <r(1Z$). 
Again by partiality of a follows that o\1Zy is a monoid homomorphism and 
therefore, O(1Zy) is a subgroup of 7Zy. From the above, <T(X) + A{1Zy) = 
a(x') + a{TZy). 

1.4. DEFINITION. Let A,B be submonoids of abelian groups, a : A —• A, 
/? : B —• B, k : A —• B be monoid homomorphisms such that koa = /3ok. By 
k* : A/a(Ay) —• B/p(By) we denote the mapping given by the assignment 

a + a ( . 4 Y ) ~ f c ( a ) + /?(0Y) . 

k* is well defined: Since Ay < A implies a(«4Y) < Ay, and for a,a' £ A 
satisfying a + a(Ay ) = a' + a ( . 4 Y ) equivalently holds a - a' 6 a(.-4Y), there 
exists u 6 Ay such that a — a' = a(u), and 

Jb(<i) - Jb(o') = k(a - a') = Jb(a(ti)) = /?(*(«))• 
But k(u) £ By, for u £ A implies k(u) £ B and —u £ A yields -k(u) = 
k(-u) £ B, thus k(a) - fc(a') € 0(By), where (3(By) < By, and we conclude 
k(a) + P(By) = k(a') + P(By). The next result shows that homomorphisms 
between canonically monoid splitting SGRID-groupoids are made up in a 
natural way of two components, a monoid homomorphism and a groupoid 
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homomorphism of respective quotients of the considered 5Gi2/Z?-groupoids. 
Moreover, the properties of groupoid homomorphisms shown in (1.1), i.e. 
partiality and commutativity with describing mappings, are transferred to 
these components in an analogous way. 

1.5. Theorem. Let (K,•), (<S,*) be S GRID-groupoids and let H be 
canonically monoid splitting. The following are equivalent. 

(1) There exists a distinguished homomorphism A : (72., •) —• (5 ,*) . 
(2) There is a canonically monoid splitting SGRID-groupoid T C S, 

a monoid homomorphism I : TZy —• Ty commuting with a and and a 
homomorphism A : (1Z/Hy,u ) —• (T/Ty,m ), satisfying for A,Be 71/TZy, 
m , n € TZy 

(i) A + m = B + n^ A(A) + /(m) = A ( B ) + Z(n), 
(ii) Z ' ( a l ( A . f l ) ) = C t(A(A).A(B)). 

(3) There is a canonically monoid splitting S GRID -groupoid T C S, 
a monoid homomorphism I : TZy Ty commuting with a and and a 
mapping A : TZ/TZ^. T¡T¿ satisfying for A,B G UjUy, m,n € fty 

(i) A + m = B + A(A) + /(m) = A ( B ) + l(n), 
(ii) r ( a ¿ A ) ) = C|(A(il)). 

P r o o f . (1) (2). By (1.1), A € P a r t n ^ ( T Z , H ) , hence X\TẐ  is a 
monoid homomorphism, and A commutes with <r and ( . 

Put T := A(TZ). Clearly, (T, •) is a 5G/?/Z?-groupoid, and T is canoni-
cally monoid splitting, since 7~x = A(7£x) implies 

r > = U k T ± = U = A ( ( J kTZx) = A ( f t x ) , 

JfceN fc€ N k€N 

and consequently, 
r + = a (7I) + a = X(N + N c a (TZ) = r. 

Moreover, for t 6 T, u € Ty and r G TZ, n G TZy such that A(r) = t, 
A(n) = « we calculate by commutativity of A with a and ( and partiality of 
the mappings under consideration 

C(i + » ) = C(A(r) + A ( n ) ) = C(A(r + n ) ) 
= A(<r(r + n)) = A(<r(r))+A(<r(n)) 

= C(A(r)) + C(A(»)) = C(0 + C(«). 

Let I : TZy -* Ty be the restriction of A in both domain and range. Ob-
viously, / is a monoid homonjorphism commuting with a and Now we 
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define A : TZ/TZ^ T/Tyx assigning x + TZ£ A(x) + Ty. The mapping 
A is well defined by partiality of A and definition of T . A satisfies (i), since 
for x,x' £ TZ, m,n £ TZy such that x + TZy + m — x' + TZy + n w e get 
the desired implication applying A on both sides of the equation above. A 
satisfies (ii), since for a,b £TZ and A := a + TZy, B := b -f TZy we calculate 

/>*(AbB)) = / > ( a . b) + a(TZ$)) = A(<r(a . b)) + ((Tj-) 

= C(A(a . 6)) + C(rYx) = C^(A(a) . A(6) + Ty) 

= Ck((A(a) + Ty1) . (A(6) + 7 ? ) ) = C<(A(A).A(5)). 

Finally, by calculations similar to the above one can show that A is a 
groupoid homomorphism. 

(2) (3). By idempotency of (3),(ii) follows from (2),(ii). 
(3) (1). Parallel to the proof of ([E4],(3.1)), we take an index set J 

with 0 £ J and a subset {x j | j £ J} of TZ with Xo 0 satisfying 

V A € TZjTZ^ 3 j £ J : X j + TZi D A, 
v j , k e J , j ^ k : xj + n xk + n i = 0. 

Now we define a groupoid homomorphism A. Put A(xo) := 0, and for 
0 # j £ J let w'j £ T such that A(xj + TZ^) = w'j + Ty . By virtue of (ii), 

CK-) + c(rYx) = c » K + T > ) = + n > ) ) 
= r ( a „ ( x j + 7It)) = n<r{z j ) + o { K t n - n i ) ) 

= l(cr(xj)) + C(Ty)\ 

hence there exists p £ such that /(cr(xj)) = C(w j) + C(p)- Put M x j ) : = 

wj := consequently A(tr(xj)) = £ ( A ( x j ) ) , and for x £ TZ and m, n £ 
TJjJ: with Xj + m = x + n we define 

A(x) := A ( x j ) + l(m)-l(n). 

A is well defined, since for x,xj £ TZ and m,n,m',n' £ TZy satisfying Xj + 
m = x + n,Xj + m' = x-\-n' we deduce calculating in G that m + rc' = m' + n, 
which implies /(m) — /(n) = Z(m') — l(n'), for / is a monoid homomorphism. 
Therefore A (x_,) + l(m) - l(n) and A(xj) + l(m') - l(n') coincide. Obviously 
by definition, A and I are the same on TZy. A(x) £ 7", since for x,xj £ TZ 
and m,n £ TZy such that Xj + m = x + n we get Xj + TZy -f m = x + + 
and by (i), A(xj + + /(m) = A(x + + l(n), from which we deduce 

w'j + TJ- + l(m) - Z(n) = A(x + TZ^) C T, 

consequently, A(x) = A(xj) + l(m) - l(n) £ T. A G P a r t ^ ^ ( T Z , H), since 
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f o r x, Xj £ 1Z, m, n, m o € 1Zy a n d x j + m + m o = x + n + tuq w e c a l c u l a t e 

A ( x + m o ) = K x j ) + + m o ) _ = + A ( m 0 ) . 

F i n a l l y w e s h o w t h a t A c o m m u t e s w i t h a a n d £ . F o r x 6 H , m,n € 

a n d i + n = i j | m w e d e d u c e u s i n g t h e d e f i n i t i o n o f A a s w e l l a s ( € 

PartT)T>i.(r, H), I o tr = C o / a n d A ( < r ( z j ) ) = C ( A ( x j ) ) , 

C ( A ( « ) ) = C ( A ( * ; ) ) + C ( / ( m ) ) - C ( / ( n ) ) 

= A ( c r ( x j ) ) + l ( a ( m ) ) — l ( a ( n ) ) 

= l ( a ( x j ) ) + l(o(m)) - /(*(«)) 
= l(a(xj) + e r ( m ) — c ( n ) ) , f o r / i s a m o n o i d h o m o m o r p h i s m , 

= l ( < r ( x j + m — n ) ) , f o r a G P a r t ^ ^ x (7£ , G ) , 

= A ( < r ( z ) ) . 

I n p a r t i c u l a r c a s e s , m o n o m o r p h i s m s b e t w e e n c a n o n i c a l l y m o n o i d s p l i t -

t i n g SGRID-grou^oids c a n b e c h a r a c t e r i z e d u s i n g d e s c r i b i n g m a p p i n g s o f 

t h e r e s p e c t i v e q u o t i e n t s t r u c t u r e . U s i n g t h e n o t a t i o n Tj f o r t h e m a p p i n g r v 

f r o m ( [ E 4 ] , ( 1 . 1 8 ) ) w i t h M : = T l £ w e c a n s t a t e 

1 . 6 . T H E O R E M . Let (II,»), (S,») be S GRID -groupoids, let (II,») be 
canonically monoid splitting and cr(lZy ) = IZy. The following are equivalent: 

(1) There exists a distinguished monomorphism A : (11, •) —• (S, •). 
(2) There is a canonically monoid splitting SGRID-groupoid T C S 

such that C(7VX) = 
a monoid monomorphism I : IZy —• Ty, which 

commutes with r and'd, and a homomorphism A : (1Z/1Zy,M ) —• (T/Ty,m ) 
such that for A,B € 1Z/1Zy, m,n € 1Z£ holds 
( i ) A + m = B + n A ( 4 ) + l(m) = A ( B ) + l(n), 

( i i ) A ( n ( A . B ) ) = M M A ) » A ( B ) ) . 

(3) There is a canonically monoid splitting SGRID-groupoid T C S 
such that C ( T y

x ) = 7 ^ - , a monoid monomorphism I : 11$; which 
commutes with r and d, and a mapping A : 11/11$; -»• r / T x

x s u c A </ia< / o r 
A,Be TZ/Hy, m,ne 1ly holds 

( i ) A + m = fl + n < ^ = > A ( > 4 ) + l(m) = A(B) + l(n), 

( i i ) A ( T M ) = M M * ) ) -

P r o o f . B y a n a r g u m e n t a t i o n s i m i l a r t o t h a t in t h e p r o o f o f ( 1 . 5 ) . • 
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2. Canonical relations on SGRID—groupoids 
In this chapter we are mainly concerned with the relation £ on SGRID-

groupoids (H, •) given by successively applying left translations. One gets 
corresponding results for the respective relation arising from successive right 
translations by dualizing, i.e. considering £ on the opposite groupoid (H, •) 
(cf. ([E4],(1.2))). In order to simplify notation for paranthetical expressions 
we introduce 

CONVENTION. For a groupoid (72.,•), a natural k and ox, . . .a* e ft- we 
agree to write 

ak*...*ai := ak * (afc_x * ( . . .*(a2 • ax ) . . . ) ) 

and call such terms bracket free. 

2.1. D E F I N I T I O N / R E M A R K . Let (11,*) be a groupoid, and for k € N 0 let 
Suk C H x H the relation defined by 

(a, b) G £/t : 3 ax , . . . a* G 1Z : b = *... * ax • a, 

and £ := UfeeN0 Clearly, £ is reflexive and transitive, but not necessarily 
an equivalence relation. 

The next result generalizes part of ([R],(2.3)). 

2 . 2 . PROPOSITION. For a groupoid, (1Z,*) satisfying the idempotency law, 
£jt is reflexive and C £ f c + 1 for all k € N0. If (11,*) even forms a groupoid 
mode, all relations A € {£} U {£*| k 6 No} are congruences with 

• y] = £[x] • % ] V x, ye 11. 

As a consequence, 1Z/8. as well as £[a;] (x € It) with the respective 
canonically given binary operations are groupoid modes. 

P r o o f . The statements concerning idempotency are obvious. In order 
to show the property of being a congruence we first note that for a merely 
entropic groupoid (%,*), I € N and a 1 ? . . . a / , .. .0e £ 1Z always holds 

(at*...*ai)*(f3t*---*Pi) = (ae*Pe)*---*(oti*Pi)-

As an instance, we now turn to the relation £. "C" For z 6 £[x*y] , let 
m € No, d\,.. ,dm € 1Z such that z — dm*.. .*dx*x*y. Idempotency yields 

z = (dm*dm)*...*(di*di)*(x*y), 

hence z € £[z] * £[j/] by the above remark. "D" Let m, n 6 No, TO < n, and 
x,y,x',yf, a1,...am, bi,...bn eH such that 

x' = am *.. ,*ai *x, y' = bn*...*b1*y. 
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By idempotency of (1Z, * ) we get x' = am* ...*a i • x* • x, hence 
n — m 

x' = c„ • . . . * Cx • x with c i , . . . c n G appropriate. Now the formula 
above shows (x • y, x' • y') G £ . The remaining assertions are immediate 
consequences of X being congruences. • 

For a SG-R/D-groupoid ( f t , •), the relations X € { £ } U { £ * | k G N 0 } are 
5GiZ/D-groupoids with underlying group G xG and describing map r x r , 
and £[x] (x G ft) is isomorphic to a 5Gi?/i?-groupoid via translation (cf. 
([E4],(1.3), (1.6),(a))). 

Now we develop a product formula, which among others is useful for the 
investigation of £ in particular cases. 

2.3 . PROPOSITION. Let ( f t , • ) be a SGRID-groupoid. Then we have the 
formula 

V Jfc G N V a i , . . . a f c G ft : 
k-i 

ak • . . . • ai = ( 7-'_1(afc-i+i) - ^(«fc-i+i)) + 
¿—l 

In particular, for a, b G ft and I G N /ioWs 

a» . . . » a »b = a — r ' ( a ) + Tl(b). 

P r o o f . The proof is done inductively. Clearly the equation holds for 
k = 1. For the inductive step we calculate, since r is a homomorphism with 
respect to 

flfc+i • ak • . . . • ai = ak+i - r(ak+1) + r(ak) • . . . • r(ai) 
k 

t = 2 

k 

= ( E r , _ 1 ( f l ( * + i ) - + i ) - ^ ( « ( i k + D - i + i ) ) + • 
1 = 1 

2.4 . LEMMA. For a SGRID-groupoid (7£,•) and x,y eH holds 

k-l 
(x,y) G £ «<=• a i e N o i y - r ^ e ^ r ^ 1 ) , 

t = 0 
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where we put T*(TIL) := 0 for k = 0. In particular, 
k-1 

k€ No «'=0 

P r o o f . Since for a 5G.ft/.D-groupoid, <x and r commute by ([E4],(2.1)), 
we deduce using (2.3) for k € No, x, y, a\,...ak € H 

k 
y - ak»...»ai»x <=$> y = ( V ] r , - 1 ( a f c _ t + i ) - r(r , - 1(ajfc_,+ i))) + rfc(x). 

• 
For subsequent parts of this paper we remember that by ([E4],(2.5),(a)), 

SGRID-groupoids (1Z, •) with 1ZT = 71 are canonically monoid splitting 
and satisfy T(TIL) = II1-. 

2 . 5 . P R O P O S I T I O N . For a SGRID-groupoid (1Z,*) we have the inclusions 

(i) £[* • 1/] C £fo], 
(ii) r(£[x]) C £[r(x)] C £[z], 
(iii) *(£[*]) C £[<r(x)]. 
In addition, if (H, •) satisfies 1ZT = 11, the first inclusion of (ii) becomes 
equality and (m € liy) 

(iv) £[x] C X + n i , 

(v) £[m] C l l y , in particular, £[0] = 
(vi) £[x + m] C £[x] + £[m]. 

(2.2) and (v) imply that 1Zy is a union of an increasing sequence of 
SCxiZ/D-subgroupoids, namely (£jt[0])jt€No-

P r o o f . The inclusions are shown mainly using the representation of 
classes of £ from (2.4). 

(i) £[».»]= U^'^+E^ 1 ) ) 
fceNo «=° 

k-1 
I J ( r f c (x) . r / c (y) + y " r i ( ^ x ) ) 

= U ( ^ c » ) + + I > W ) 
jteNo »=o 
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s u ^ w + E ' W ) 

ite N0 t=o 

fc€N0 «=0 
(ii) r(£[a:]) = r ( U ( r f c ( x ) + x i r ^ ) ) ) fceNo t=o 

= U r(r f c(x) + J V ( 7 ^ ) ) 
fc€N0 «=0 

keNo «=0 
since r € Part^j 

c LK^w + E^1)), 
fc€N0 «=0 

since T^{TIl) C r ^ f t 1 ) , j G N0, 
= £[r(x)] = £[0 • x] C £[x]. 

0) 

If 72-t = 1Z, parallel to the calculations above by ([E4],(2.5),(a)) we conclude 
r(£[x]) = £[r(x)]. 

(iii) is shown in analogy to (ii). 
(iv) For i £ K and j 6 No obviously x — r J (x) 6 jTZ^ resp. r J (x ) G 

a; + j(—TZ±). Therefore we conclude 

£ [ x ] = ( J (Tk(x) + k7Z±)C ( J ( x + k(-TZx) + kU1) 
fceN0 fc£N0 

= x + ( J + k i - n 1 ) ) c x + ( J + U ¿ ( - f t 1 ) 
fceNo fceNo fc€No 

(v) is obvious; (vi) is proved similarly to the above. • 

To a certain extent, (7£/£,•) reminds of a 5GiZ/£)-groupoid, although 
in general there is no canonically given underlying group, nor there is a 
describing mapping. For the following interpretation, cf. (1.1). 
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2 . 6 . R e m a r k . In the situation of ( 2 . 5 ) , let denote the canonical projec-
tion TZ —• TZ/2 by q£. Then the inclusions (ii),(iii),(vi) of (2.5) become 

<r{<lz(x)) Q iiM*)), 
q&(x + m) C q£(x) + qz(m). 

Roughly speaking, the groupoid homomorphism qz behaves similar to a 
homomorphism between 5G.ft/.D-groupoids. 

In ( [ E 2 ] , ( 2 . 1 7 ) ) it was shown for group related (2-)symmetric groupoids 
that the relations £ and 

m := x 

(cf. ( [ E 4 ] , ( 1 . 9 ) ) for the definition) coincide. The coincidence of classes of both 
relations has far-reaching consequences for the SGRID-groupoids under 
consideration. 

2 . 7 . T H E O R E M . Let (TZ, •) be a SGRID-groupoid with TZJ = TZ and 
suppose 

VxeTZByeTZ: EW[i] = £[»]. 

Then TZy is a group, and £ C QJt (where the latter is implied independently 
by both the condition for the classes o/QJT and £, and TZy being a group). 

" P r o o f . For x e TZ, let y £ TZ such that 9tt[x] = £[y]. Using (2.5) we 
conclude 

OT[r(x)] = r($m[x]) = r(£[y)) = £[r(y)], 

as well as 
m[x] c m[r(x)] 

£[y] D £[r(y)], 

whence Wl[x] = 0tt[r(x)]. Thus for all x € TZ holds x - r(x) 6 TZy fl (-TZ 
therefore TZy C —TZy, and TZy turns out to be a group. Now (2.5),(iv) 
yields £[x] C 9Jt[x] for all x € TZ (or independently from TZy being a group, 
x € 27t[x] = £[j/] implies £[x] C (£ o £)[y] = £[y] = £OT[x] by transitivity of 
£). . 

As a consequence we get 

2 . 8 . L E M M A . Let (TZ, • ) be a SGRID-groupoid with TZr = TZ and £ = 9tt. 
Then (TZ/2,, •) is a right zero band. 
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The notion of a right zero band can be found in ([RSI],p. 28) et al. . In 
zero bands, the binary operation is given by projection onto the first resp. 
second factor. 

P r o o f . Since £ = OTT, by (2.7) ft£ is a group, i.e. ft£ = fti, and 
£[z] = z + Ili (z G ft). Hence we get for x,y € ft by (2.2) and (2.5)(i) 

For the rest of this paper, among others we investigate a certain class of 
SGRID-groupoids which covers ¿-symmetric SGRID-groupoids (see [E3] 
and chapter 3 of this paper). 

2 .9 . PROPOSITION/DEFINITION. For a SGRID-groupoid (FT,*) we as-
sume t satisfying 

SGRID-groupoids ft with condition (K) have the properties 

(1) (f t ,*) is left cancellative. 
(2) For any a,b € ft being given, the equation a • x = b has a unique 

solution. 
(3) Every term in 1Z can be represented in bracket free notation. 

P r o o f . Throughout the whole proof, for a,b £ ft let a,/? be naturals 
such that according to (K), ra(a) = a, r0(b) = 6, and let 7 € N be a 
common multiple of a and ¡3. 

(1) For x € ft we conclude using (2.3) 

a = b. 

(2) Put x := a * . . . « a • b. By (2.3) we deduce 
-y-l 

a • ¡n.,,>q • b = a — r ^ a ) + r'7(b) = b, 
1-1 

hence x is a solution. Uniqueness now follows by (1). 
(3) Let c 6 ft. It is sufficient to show that (a*c)*6 can be written without 

brackets. Since a * . . . * a • 6 = 6, and • is left distributive by ([E4],(2.1)), 

£[x] .£[y] = £ [ « . y ] = £[y]. 

(K) V ® € f t 3 * € N : rk(x) = x. 

=> ® - r 7 (x) + r » = x - r 7 (x) + 7-t(b) 

7 
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we conclude 

(a • c) • b = (a • c) • (a • . „ • a • 6) = a • c • a • . . . • a • 6. • 

As a kind of converse of (2.7) we prove 
2 . 1 0 . PROPOSITION. Let (TZ, • ) 6e a SGRID-groupoid satisfying condi-

tion ( K ) and TZr = TZ. Then TZ1 is a group, and the relations 9JT and £ 
coincide. In particular, if TZ is finite, i s always a union of cosets by a 
subgroup of the underlying group. 

P r o o f . In case that r satisfies condition (K), we show — TZ1 C TZ1, 
hence TZy is a group. To this end, let x 6 TZ, k 6 N such that Tk(x) = x, 
and put p := x — r(x). Then we get 

—p = r(x) - x = r(x) — r k ( x ) 

= T(X) - £ r l ( x ) + £ re(x) - r k ( x ) = ¿ ( r ' - ^ - r V ) ) € TZ 
t—2 t=2 1=1 Z,, 

Now let y € = x + U<rgN0 > i-e- V = x + m i + • • • + mh w i t h i ^ N0, 
m i , . . . m j G ft"1" appropriate. We can find // € N such that fik > j and 
conclude 

y - x = y - T»k(x) e jTZ1 C 

thus j/ € £[a;] by (2.4) and since T(TZ*~) = TZ1. Applying the last part of 
(2.7) completes the proof. • 

2 . 1 1 . PROPOSITION. Let (TZ,•) be a SGRID-groupoid with TZJ = TZ, let 
TZ]i: be a group, and assume the existence of I £ N such that TZ£ = ¿TZ1. 
Then £ = 3JT. 

P r o o f . Since TZ1 is a group, for x € TZ by (2.4) and r(TZ1) = TZ1 we 
conclude 

£ [ x ] = | J Tk(x) + kU1 = T \ X ) + £TZ1 = re(x) + TZ1 = x + TZ1 = Wl[x]. M 
keN 

3. Derived groupoids and k—symmetry 
For a given groupoid (TZ,*), by a derived groupoid we understand TZ 

equipped with a binary operation formed by compositions of • and the 
canonical projections from TZ x TZ to TZ, to be more precise 

3.1 . DEFINITION . Let (TZ,*) be a groupoid. 

(a) Denote by il the minimal subset of TZKxK such that 
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(i) the canonical projections 7Tj onto the I'-th factor (i = 1 , 2 ) are elements 
of ft, 

(ii) v,w £ il => v + w e f t . 

(b) Moreover, let ^ := {ipe \ TZ X TZ ^ TZ\ I £ N}, where we define 
inductively 

i>i(x,y) :=x*y, ipe+i(x,y) := x • i>e(x, y). 

By definition, ^ C ft. We call ft the set of derived binary operations on TZ. 
For the binary operation on TZ given by a; € ft we shall sometimes write 
Furthermore, a; € ft can be represented merely using irj, n2 and *. If m is 
the minimal number of occurences of • over all such representations for a;, 
we call m + 1 the length of 

ft is the clone of terms of the groupoid (R,*) . -
For the concepts used in the following, cf. the introductory part of [RSI]. 

The subsequent result was already shown in ([RS2], p. 249), coming from a 
slightly different viewpoint. We shall give a direct proof. 

3.2. T H E O R E M . If(TZ,*) is an idempotent resp. entropic groupoid, then 
(TZ, ft) is an idempotent resp. entropic algebra. 

P r o o f . The assertion concerning idempotency is obvious. In order to 
prove the entropicity part we introduce 

ft„ := {w £ ft| length of u < n} (n £ N) 

and show inductively that (TZ,Sln) is an entropic algebra for all n £ N, in 
other words, 

V v, w £ ftnV a, b,c,d £ TZ : v(w(a, 6), w(c, d)) = w(v(a, c), v(i>, d)). 

For ftx = { t t i , ^ } a n d ft2 = {? r i , 7 r2 , •} one verifies immediately that 
(TZ, ft,), (i = 1,2) is an entropic algebra. 

Now let a, b £ TZ and write n(a, b) := a* b. For the inductive step from 
n to n + 1 let v, w £ ftn+i and v\, v2, w\, w2 £ ftn such that 

v(a,b) = n(vi(a,b),v2(a,b)),w(a,b) = /z(wi(a, b), w2(a, b)). 

With another c, d £ TZ we calculate using entropicity of /z 

v(w(a,b),w(c,d)) = n(vi(n(wi(a,b),w2(a,b)),fi(w1(c,d),w2(c,d))), 

^(/¿(wiK b), w2(a, b)),fi(w\(c, d), w2(c, d)))) 

t = M m W ^ i K *>), wi(c, d)), v\(w2(a, b), w2(c, d))), 
IND 

/x(v2(wi(a, b), w^c, d)), v2(w2(a, b), w2(c, d)))) 
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c) , Vi(b, d)), w 2 ( v i ( a , c ) , ^ ( 6 , d ) ) ) , 

fi(w\(v2(a, c), v2(b, d)), 102(03(0, c), v2(&, d)))) 

= / ¿ ( / i ( w i ( v i ( a , c) , t>i(6, d ) ) , ti>i(i>2(a, c ) , v2(&, d ) ) ) , 

/¿( ir2( i>i(a, c ) , v i ( 6 , d ) ) , w 2(t> 2(a, c ) , v2(b, d)))) 

M ^ i M M 0 . c ) ' u 2( a > <0, »2(6, d ) ) ) , IND 
w2(n(v 1 (a, c), v2(a, c)), ^(w, (6, d), v2(b, d)))) 

= u;( t ; (a ,c ) , v ( 6 , d ) ) . • 

If w e d e n o t e by *„, t h e b inary o p e r a t i o n o n 7Z2 induced by * w (w £ il) 
in a canonica l m a n n e r , for an entropic groupo id (71,*) and another v € il, 
( 3 . 2 ) m e a n s t h a t 

v(a *w b, c*wd) = v((a, c) *„, (b, d)) = v(a, c) *w v(b, d), 

or in o ther words , v : (1Z2,*W) —• (TZ,*W) is a h o m o m o r p h i s m . 

T h e second hal f of t h e subsequent t h e o r e m t o a certain e x t e n t general izes 
( [E4] , (1 .4 ) ) . 

3.3. THEOREM. For a S GRID -groupoid (II,») and w £ il, the groupoid 
(11, *w) is a S GRID -groupoid with underlying group G and describing map 
given by x 1-+ u;(x,0), or in other words (x,y £ 1Z) 

( i ) w(x, y) — w(x, 0) + u)(0, y)\ 

and as a consequence, 

(i i) w(x, y) + w(y, x) = x + y. 

With another v 6 ii we get general balancedness, i.e. 

(iii) v(x,y) = w(x,y) v(y,x) = w(y,x), 

which yields for n £ N 

P r o o f , ( i ) B y i n d u c t i o n . For t h e canonica l project ions t h e s t a t e m e n t is 
i m m e d i a t e . N o w let tu b e a b inary opera t ion of l eng th > 2 and w = w\ • w2, 
where Wi £ i l , (i = 1 , 2 ) . W i t h x,y £ K we ca lcu la te us ing ( [E4] , (2 .1 ) ) 
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w(x, y) = Wi(x, y) • w2(x, y) 

= a(wx(x,y)) + r(w2(x,y)) 

= wi(<r(x),<T(y)) + itf2(r(x),r(y)) 

=:«»!(*(*), <r(0)) + u>i(<t(0), tr(y)) + tr2(r(x),r(0)) + ti;2(r(0), r(y)) 
IND 

= *(»!(*, 0)) + r(w2(x, 0)) + a(tui(0, y)) + r(w2( 0, y)) 

= wi(x, 0) • w2(x, 0) + u>i(0, y) • w2(0, y) 

= w(x, 0) + u;(0,2/). 
(ii) w(x, y) + w(y, x) = w(x, 0) + u>(0, x) + w(y, 0) + w(0, y) 

(0 

= w(x,x) + w(y,y) = x + y by idempotency. 
(») 

(iii) By (ii) we deduce 

w(x, y) - v(x, y) = v{y, x) - w{y, x), 

from which we conclude the desired equivalence. • 

We add the note that on a 5Gi2/Z)-groupoid (1Z, •), two elements v, w 6 
ii define a congruence relation on 1Z by 

:= {(*, y) e TZ x 1Z\ v(x, y) = w(x, y)}. 

These relations will be considered in a later paper in combination with 
uniform structures on ¿"GiZ/Z)-groupoids [E5].- The next result generalizes 
([E2],(2.17)) and ([El], Prop. 6). 

3.4 . THEOREM. Let (TZ, •) be a SGRID-groupoid, k € N . The following 
are equivalent 

(1) r k = id*, 
(2) V x , y € 7 £ : x » . ^ . « x » y = y ( ¡ ¡ - s y m m e t r y ) . 

k 

k-symmetric SGRID-groupoids are canonically monoid splitting andTZy = 
Tly = T Z j T h e relations 93T and £ coincide, and (1Z/2,, •) is a right zero 
band. 

P r o o f . The equivalence of (1) and (2) follows by (2.3) and r(0) = 0. 
Since rk = id* implies 1ZT = TZ, and condition (K) is a consequence of 
the fc-symmetry law, we get that (TZ, •) is canonically monoid splitting by 
([E4],(2.5)), conclude = TZ{ = TZ$ and £ = SOT by (2.10), and the last 
assertion by (2.8). • 
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B y a s imple ca lculat ion one shows i m m e d i a t e l y 

3 . 5 . P R O P O S I T I O N . If (71,*) is a groupoid satisfying the k-symmetric 
law, then ( 7 s a t i s f i e s the gcd*k ^ -symmetric law. m 

(3 .5 ) toge ther w i t h (3 .3 ) and (2 .3 ) impl ies 

3 . 6 . P R O P O S I T I O N . If (1Z, •) IS a k-symmetric S G RID-groupoid, then 
(7Z, is a gcd*k q -symmetric S G RID-groupoid with describing map t 1 . • 
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