

Norbert Endres

IDEMPOTENT AND DISTRIBUTIVE GROUP
RELATED GROUPOIDS, II

In a former paper [E4] we were concerned with the basic properties of certain idempotent and distributive resp. merely idempotent groupoids (\mathcal{R}, \bullet) (*SGRID*- resp. *SGRI*-groupoids), the binary operation of which is influenced by the structure of an abelian group $(G, +)$: We assume \mathcal{R} to be a subset of G with $0 \in \mathcal{R}$, and \bullet being given by

$$x \bullet y = \sigma(x) + \tau(y) \quad (x, y \in \mathcal{R})$$

where $\sigma, \tau : \mathcal{R} \rightarrow G$ are mappings. Group related groupoids are of a certain interest for topological purposes, *SGRID*-groupoids turned out to form groupoid modes ([E4], (2.1)) and are linked with the point of view presented in ([JK], (3.3.9)) (see introduction of [E4]).

Throughout this second half of a series of papers on group related groupoids we use without any further explanation the notation, notions, and conventions of the first part [E4].

In chapter 1 we turn to homomorphisms of *SGRI*-groupoids and, as a characterization for homomorphisms between canonically monoid splitting *SGRID*-groupoids, we find a kind of natural decomposition of the given homomorphism into a monoid homomorphism and a homomorphism of quotients of the *SGRID*-groupoids under consideration.

As a guiding line for chapter 2 we use a result in ([E2], (2.17)), where it is shown for group related (2-)symmetric groupoids that the equivalence relation \mathfrak{L} coming from successive left translation coincides with the one induced by a certain subgroup of the underlying group, which is closely related to the given (2-)symmetric groupoid. After some general considerations concerning \mathfrak{L} on a *SGRID*-groupoid \mathcal{R} , we develop necessary and sufficient conditions for the coincidence of \mathfrak{L} with the equivalence relation given by a subgroup of the underlying group, which is assigned to \mathcal{R} in a way analogous to the (2-)symmetric case.

In the final chapter we deal with the transfer of algebraic identities and the property of being a *SGRID*-groupoid from a groupoid (\mathcal{R}, \star) to its derived groupoids, i.e. to groupoids with the same underlying set and a binary operation, which is made up of iterated applications of \star and the trivial binary operations on \mathcal{R} . In particular, we turn our attention to the k -symmetry law and describe *SGRID*-groupoids satisfying this identity.

For describing mappings or homomorphisms of *SGRI*-groupoids, depending on the situation we sometimes only need their counterparts restricted in domain, or range, or domain and range, respectively (see also text after ([E4],(1.5))). Since what is meant always comes clear from the context, and since we don't want to exaggerate with precision in notation, which would make a mess of the formulation of some results, for a mapping and corresponding restrictions we use the same symbol.

1. Homomorphisms of *SGRID*-groupoids

Now we discuss some aspects concerning homomorphisms between idempotent group related groupoids. Any such groupoids (\mathcal{R}', \bullet) and (\mathcal{S}', \bullet) and a homomorphism $\eta : \mathcal{R}' \rightarrow \mathcal{S}'$ being given, applying ([E4],(1.5)) we first find a strictly group related copy \mathcal{R} of \mathcal{R}' and an isomorphism $\iota : (\mathcal{R}, \bullet) \rightarrow (\mathcal{R}', \bullet)$, and again by ([E4],(1.5)) (via the translation $d_{-\eta \circ \iota(0)}$ in the underlying group of \mathcal{S}') a strictly group related copy \mathcal{S} of \mathcal{S}' and an isomorphism $\jmath : (\mathcal{S}', \bullet) \rightarrow (\mathcal{S}, \bullet)$ such that $(\jmath \circ \eta \circ \iota)(0) = 0$. Hence we can restrict ourselves to the consideration of homomorphisms between *SGRI*-groupoids preserving the neutral elements of the respective underlying groups. We call such homomorphisms distinguished.

In addition and parallel to the convention after ([E4],(1.5)) concerning *SGRI*-groupoids written by (\mathcal{R}, \bullet) , we note that throughout this chapter, for a *SGRI*-groupoid written by (\mathcal{S}, \bullet) , the pair of describing mappings will be denoted by (ζ, ϑ) , and its underlying group by H .

1.1. Proposition. *Let (\mathcal{R}, \bullet) , (\mathcal{S}, \bullet) be *SGRI*-groupoids, $\lambda : \mathcal{R} \rightarrow \mathcal{S}$ a mapping such that $\lambda(0) = 0$. The following are equivalent:*

- (1) λ is a distinguished groupoid homomorphism,
- (2) $\lambda \in \text{Part}_{\mathcal{R}^\tau, \mathcal{R}^\perp}(\mathcal{R}, H)$, $\lambda \circ \sigma = \zeta \circ \lambda$,
- (3) $\lambda \in \text{Part}_{\mathcal{R}^\tau, \mathcal{R}^\perp}(\mathcal{R}, H)$, $\lambda \circ \tau = \vartheta \circ \lambda$.

Proof. (1) \Rightarrow (2),(3). For $r, s \in \mathcal{R}$, λ being a groupoid homomorphism is equivalent to

$$\lambda(\sigma(r) + \tau(s)) = \zeta(\lambda(r)) + \vartheta(\lambda(s)).$$

If we put by turns $s := 0$ resp. $r := 0$, we get $\lambda(\sigma(r)) = \zeta(\lambda(r))$, $\lambda(\tau(s)) = \vartheta(\lambda(s))$, hence $\lambda \circ \sigma = \zeta \circ \lambda$ and $\lambda \circ \tau = \vartheta \circ \lambda$. Therefore $\lambda \in \text{Part}_{\mathcal{R}^\top, \mathcal{R}^\perp}(\mathcal{R}, H)$.

(2) \Rightarrow (3). For $r \in \mathcal{R}$ we conclude

$$\begin{aligned}\lambda(\sigma(r)) = \zeta(\lambda(r)) &\Rightarrow \lambda(\sigma(r)) + \lambda(\tau(r)) - \lambda(\tau(r)) = \zeta(\lambda(r)) \\ &\Rightarrow \lambda(\sigma(r) + \tau(r)) - \lambda(\tau(r)) = \lambda(r) - \vartheta(\lambda(r)), \\ &\Rightarrow \lambda(r) - \lambda(\tau(r)) = \lambda(r) - \vartheta(\lambda(r));\end{aligned}$$

consequently, $\lambda \circ \tau = \vartheta \circ \lambda$.

(3) \Rightarrow (1). For $r, s \in \mathcal{R}$ we calculate

$$\begin{aligned}\lambda(r \bullet s) &= \lambda(\sigma(r) + \tau(s)) \\ &= \lambda(\sigma(r)) + \lambda(\tau(s)), \quad \text{since } \lambda \in \text{Part}_{\mathcal{R}^\top, \mathcal{R}^\perp}(\mathcal{R}, H), \\ &= \lambda(\sigma(r)) + \vartheta(\lambda(s)), \quad \text{since } \lambda \circ \tau = \vartheta \circ \lambda, \\ &= \lambda(\sigma(r)) + \lambda(\tau(r)) - \lambda(\tau(r)) + \vartheta(\lambda(s)) \\ &= \lambda(\sigma(r) + \tau(r)) - \vartheta(\lambda(r)) + \vartheta(\lambda(s)),\end{aligned}$$

since $\lambda \in \text{Part}_{\mathcal{R}^\top, \mathcal{R}^\perp}(\mathcal{S}, H)$ and $\lambda \circ \tau = \vartheta \circ \lambda$,

$$= \lambda(r) - \vartheta(\lambda(r)) + \vartheta(\lambda(s)) = \lambda(r) \bullet \lambda(s).$$

■

Now we are in a situation to present a second example of an *SGRID*-groupoid which is not isomorphic to a subreduct of an affine space (cf. text before ([E4],(2.3))).

1.2. EXAMPLE. We denote by \mathbb{Z}^∞ the direct sum of infinitely many copies of \mathbb{Z} ; and for $\nu \in \mathbb{N}$ by $t_\nu : \mathbb{Z}^\infty \rightarrow \mathbb{Z}^\infty$ we mean the ν -th shift operator given by the assignment

$$(x_i)_{1 \leq i < \infty} \mapsto (x_i)_{\nu \leq i < \infty}.$$

One can see immediately that both t_ν and $1 - t_\nu$ are group epimorphisms, where 1 stands for the identity map of \mathbb{Z}^∞ . According to example ([E4], (2.3),(a)), by t_ν we get a binary operation \bullet_ν on \mathbb{Z}^∞ , which makes $(\mathbb{Z}^\infty, \bullet_\nu)$ a *SGRID*-groupoid. Furthermore, we can consider \mathbb{Z}^∞ in a canonical way as K -module for rings $K \in \{\mathbb{Z}, \mathbb{Z}^\infty\}$. For $a \in K$ let $t_a : \mathbb{Z}^\infty \rightarrow \mathbb{Z}^\infty$ be the homomorphism defined by component wise multiplication $x \mapsto ax$. Also according to ([E4],(2.3),(a)), we equip \mathbb{Z}^∞ with the binary operation \bullet_a coming from t_a .

Now we show that for any choice of ν and a , the groupoid $(\mathbb{Z}^\infty, \bullet_\nu)$ is never isomorphic to a subalgebra of $(\mathbb{Z}^\infty, \bullet_a)$. Assume the contrary and let $k : (\mathbb{Z}^\infty, \bullet_\nu) \rightarrow (\mathbb{Z}^\infty, \bullet_a)$ be a distinguished (cf. text before (1.1)) algebra monomorphism. Applying (1.1) we find $k \in \text{Part}_{\mathbb{Z}^\infty, \mathbb{Z}^\infty}(\mathbb{Z}^\infty, \mathbb{Z}^\infty)$ is even a

group monomorphism, the diagrams

$$\begin{array}{ccc}
 \mathbf{Z}^\infty & \xrightarrow{k} & \mathbf{Z}^\infty \\
 t_\nu \downarrow & & \downarrow t_\alpha \\
 \mathbf{Z}^\infty & \xrightarrow{k} & \mathbf{Z}^\infty
 \end{array}
 \quad
 \begin{array}{ccc}
 \mathbf{Z}^\infty & \xrightarrow{k} & \mathbf{Z}^\infty \\
 1-t_\nu \downarrow & & \downarrow 1-t_\alpha \\
 \mathbf{Z}^\infty & \xrightarrow{k} & \mathbf{Z}^\infty
 \end{array}$$

commute, and $k(\mathbf{Z}^\infty)$ is not trivial. Since both t_ν and $1 - t_\nu$ are onto, we get $k(\mathbf{Z}^\infty) = t_\alpha(k(\mathbf{Z}^\infty)) = (1 - t_\alpha)(k(\mathbf{Z}^\infty))$, which contradicts non-triviality of $k(\mathbf{Z}^\infty)$ and the fact that each element of \mathbf{Z} has a unique decomposition in prime numbers.

Now we prepare for a characterization of homomorphisms between canonically monoid splitting *SGRID*-groupoids. To this end we introduce two mappings on quotients by monoids.

1.3. DEFINITION. Let (\mathcal{R}, \bullet) be a canonically monoid splitting *SGRID*-groupoid. Denote by $\sigma_1 : \mathcal{R}/\mathcal{R}_Y^\perp \rightarrow \mathcal{R}_Y^\perp/\sigma(\mathcal{R}_Y^\perp)$ the mapping given by $x + \mathcal{R}_Y^\perp \mapsto \sigma(x) + \sigma(\mathcal{R}_Y^\perp)$.

σ_1 is well defined, since for $x, x' \in \mathcal{R}$ and $x + \mathcal{R}_Y^\perp = x' + \mathcal{R}_Y^\perp$ there is $n \in \mathcal{R}_Y^\perp$ such that $x - x' = n$. By $\sigma \in \text{Part}_{\mathcal{R}, \mathcal{R}_Y^\perp}(\mathcal{R}, G)$ we get $\sigma(x) = \sigma(x' + x - x') = \sigma(x') + \sigma(x - x')$, consequently

$$\sigma(x - x') = \sigma(x) - \sigma(x') = \sigma(n) \in \sigma(\mathcal{R}_Y^\perp).$$

Again by partiality of σ follows that $\sigma|_{\mathcal{R}_Y^\perp}$ is a monoid homomorphism and therefore, $\sigma(\mathcal{R}_Y^\perp)$ is a subgroup of \mathcal{R}_Y^\perp . From the above, $\sigma(x) + \sigma(\mathcal{R}_Y^\perp) = \sigma(x') + \sigma(\mathcal{R}_Y^\perp)$.

1.4. DEFINITION. Let \mathcal{A}, \mathcal{B} be submonoids of abelian groups, $\alpha : \mathcal{A} \rightarrow \mathcal{A}$, $\beta : \mathcal{B} \rightarrow \mathcal{B}$, $k : \mathcal{A} \rightarrow \mathcal{B}$ be monoid homomorphisms such that $k \circ \alpha = \beta \circ k$. By $k^* : \mathcal{A}/\alpha(\mathcal{A}_Y) \rightarrow \mathcal{B}/\beta(\mathcal{B}_Y)$ we denote the mapping given by the assignment

$$a + \alpha(\mathcal{A}_Y) \mapsto k(a) + \beta(\mathcal{B}_Y).$$

k^* is well defined: Since $\mathcal{A}_Y < \mathcal{A}$ implies $\alpha(\mathcal{A}_Y) < \mathcal{A}_Y$, and for $a, a' \in \mathcal{A}$ satisfying $a + \alpha(\mathcal{A}_Y) = a' + \alpha(\mathcal{A}_Y)$ equivalently holds $a - a' \in \alpha(\mathcal{A}_Y)$, there exists $u \in \mathcal{A}_Y$ such that $a - a' = \alpha(u)$, and

$$k(a) - k(a') = k(a - a') = k(\alpha(u)) = \beta(k(u)).$$

But $k(u) \in \mathcal{B}_Y$, for $u \in \mathcal{A}$ implies $k(u) \in \mathcal{B}$ and $-u \in \mathcal{A}$ yields $-k(u) = k(-u) \in \mathcal{B}$, thus $k(a) - k(a') \in \beta(\mathcal{B}_Y)$, where $\beta(\mathcal{B}_Y) < \mathcal{B}_Y$, and we conclude $k(a) + \beta(\mathcal{B}_Y) = k(a') + \beta(\mathcal{B}_Y)$. The next result shows that homomorphisms between canonically monoid splitting *SGRID*-groupoids are made up in a natural way of two components, a monoid homomorphism and a groupoid

homomorphism of respective quotients of the considered *SGRID*-groupoids. Moreover, the properties of groupoid homomorphisms shown in (1.1), i.e. partiality and commutativity with describing mappings, are transferred to these components in an analogous way.

1.5. **THEOREM.** *Let (\mathcal{R}, \bullet) , (\mathcal{S}, \bullet) be *SGRID*-groupoids and let \mathcal{R} be canonically monoid splitting. The following are equivalent.*

(1) *There exists a distinguished homomorphism $\lambda : (\mathcal{R}, \bullet) \rightarrow (\mathcal{S}, \bullet)$.*

(2) *There is a canonically monoid splitting *SGRID*-groupoid $\mathcal{T} \subseteq \mathcal{S}$, a monoid homomorphism $l : \mathcal{R}_\succ^\perp \rightarrow \mathcal{T}_\succ^\perp$ commuting with σ and ζ , and a homomorphism $\Lambda : (\mathcal{R}/\mathcal{R}_\succ^\perp, \blacksquare) \rightarrow (\mathcal{T}/\mathcal{T}_\succ^\perp, \blacksquare)$, satisfying for $A, B \in \mathcal{R}/\mathcal{R}_\succ^\perp$, $m, n \in \mathcal{R}_\succ^\perp$*

$$(i) \quad A + m = B + n \Rightarrow \Lambda(A) + l(m) = \Lambda(B) + l(n),$$

$$(ii) \quad l^*(\sigma_\natural(A \blacksquare B)) = \zeta_\natural(\Lambda(A) \blacksquare \Lambda(B)).$$

(3) *There is a canonically monoid splitting *SGRID*-groupoid $\mathcal{T} \subseteq \mathcal{S}$, a monoid homomorphism $l : \mathcal{R}_\succ^\perp \rightarrow \mathcal{T}_\succ^\perp$ commuting with σ and ζ , and a mapping $\Lambda : \mathcal{R}/\mathcal{R}_\succ^\perp \rightarrow \mathcal{T}/\mathcal{T}_\succ^\perp$ satisfying for $A, B \in \mathcal{R}/\mathcal{R}_\succ^\perp$, $m, n \in \mathcal{R}_\succ^\perp$*

$$(i) \quad A + m = B + n \Rightarrow \Lambda(A) + l(m) = \Lambda(B) + l(n),$$

$$(ii) \quad l^*(\sigma_\natural(A)) = \zeta_\natural(\Lambda(A)).$$

Proof. (1) \Rightarrow (2). By (1.1), $\lambda \in \text{Part}_{\mathcal{R}, \mathcal{R}_\succ^\perp}(\mathcal{R}, H)$, hence $\lambda|_{\mathcal{R}_\succ^\perp}$ is a monoid homomorphism, and λ commutes with σ and ζ .

Put $\mathcal{T} := \lambda(\mathcal{R})$. Clearly, (\mathcal{T}, \bullet) is a *SGRID*-groupoid, and \mathcal{T} is canonically monoid splitting, since $\mathcal{T}^\perp = \lambda(\mathcal{R}^\perp)$ implies

$$\mathcal{T}_\succ^\perp = \bigcup_{k \in \mathbb{N}} k\mathcal{T}^\perp = \bigcup_{k \in \mathbb{N}} k\lambda(\mathcal{R}^\perp) = \lambda\left(\bigcup_{k \in \mathbb{N}} k\mathcal{R}^\perp\right) = \lambda(\mathcal{R}_\succ^\perp),$$

and consequently,

$$\mathcal{T} + \mathcal{T}_\succ^\perp = \lambda(\mathcal{R}) + \lambda(\mathcal{R}_\succ^\perp) = \lambda(\mathcal{R} + \mathcal{R}_\succ^\perp) \subseteq \lambda(\mathcal{R}) = \mathcal{T}.$$

Moreover, for $t \in \mathcal{T}$, $u \in \mathcal{T}_\succ^\perp$ and $r \in \mathcal{R}$, $n \in \mathcal{R}_\succ^\perp$ such that $\lambda(r) = t$, $\lambda(n) = u$ we calculate by commutativity of λ with σ and ζ and partiality of the mappings under consideration

$$\begin{aligned} \zeta(t + u) &= \zeta(\lambda(r) + \lambda(n)) = \zeta(\lambda(r + n)) \\ &= \lambda(\sigma(r + n)) = \lambda(\sigma(r)) + \lambda(\sigma(n)) \\ &= \zeta(\lambda(r)) + \zeta(\lambda(n)) = \zeta(t) + \zeta(u). \end{aligned}$$

Let $l : \mathcal{R}_\succ^\perp \rightarrow \mathcal{T}_\succ^\perp$ be the restriction of λ in both domain and range. Obviously, l is a monoid homomorphism commuting with σ and ζ . Now we

define $\Lambda : \mathcal{R}/\mathcal{R}_\succ^\perp \rightarrow \mathcal{T}/\mathcal{T}_\succ^\perp$ assigning $x + \mathcal{R}_\succ^\perp \mapsto \lambda(x) + \mathcal{T}_\succ^\perp$. The mapping Λ is well defined by partiality of λ and definition of \mathcal{T} . Λ satisfies (i), since for $x, x' \in \mathcal{R}$, $m, n \in \mathcal{R}_\succ^\perp$ such that $x + \mathcal{R}_\succ^\perp + m = x' + \mathcal{R}_\succ^\perp + n$ we get the desired implication applying λ on both sides of the equation above. Λ satisfies (ii), since for $a, b \in \mathcal{R}$ and $A := a + \mathcal{R}_\succ^\perp$, $B := b + \mathcal{R}_\succ^\perp$ we calculate

$$\begin{aligned} l^*(\sigma_b(A \bullet B)) &= l^*(\sigma(a \bullet b) + \sigma(\mathcal{R}_\succ^\perp)) = \lambda(\sigma(a \bullet b)) + \zeta(\mathcal{T}_\succ^\perp) \\ &= \zeta(\lambda(a \bullet b)) + \zeta(\mathcal{T}_\succ^\perp) = \zeta_b(\lambda(a) \bullet \lambda(b) + \mathcal{T}_\succ^\perp) \\ &= \zeta_b((\lambda(a) + \mathcal{T}_\succ^\perp) \bullet (\lambda(b) + \mathcal{T}_\succ^\perp)) = \zeta_b(\Lambda(A) \bullet \Lambda(B)). \end{aligned}$$

Finally, by calculations similar to the above one can show that Λ is a groupoid homomorphism.

(2) \Rightarrow (3). By idempotency of \bullet , (3),(ii) follows from (2),(ii).

(3) \Rightarrow (1). Parallel to the proof of ([E4],(3.1)), we take an index set J with $0 \in J$ and a subset $\{x_j \mid j \in J\}$ of \mathcal{R} with $x_0 := 0$ satisfying

$$\begin{aligned} \forall A \in \mathcal{R}/\mathcal{R}_\succ^\perp \exists j \in J : x_j + \mathcal{R}_\lambda^\perp \supseteq A, \\ \forall j, k \in J, j \neq k : x_j + \mathcal{R}_\lambda^\perp \cap x_k + \mathcal{R}_\lambda^\perp = \emptyset. \end{aligned}$$

Now we define a groupoid homomorphism λ . Put $\lambda(x_0) := 0$, and for $0 \neq j \in J$ let $w'_j \in \mathcal{T}$ such that $\Lambda(x_j + \mathcal{R}_\succ^\perp) = w'_j + \mathcal{T}_\succ^\perp$. By virtue of (ii),

$$\begin{aligned} \zeta(w'_j) + \zeta(\mathcal{T}_\succ^\perp) &= \zeta_b(w'_j + \mathcal{T}_\succ^\perp) = \zeta_b(\Lambda(x_j + \mathcal{R}_\succ^\perp)) \\ &= l^*(\sigma_b(x_j + \mathcal{R}_\succ^\perp)) = l^*(\sigma(x_j) + \sigma(\mathcal{R}_\succ^\perp \cap -\mathcal{R}_\succ^\perp)) \\ &= l(\sigma(x_j)) + \zeta(\mathcal{T}_\succ^\perp); \end{aligned}$$

hence there exists $p \in \mathcal{T}_\succ^\perp$ such that $l(\sigma(x_j)) = \zeta(w'_j) + \zeta(p)$. Put $\lambda(x_j) := w_j := w'_j + p$; consequently $\lambda(\sigma(x_j)) = \zeta(\lambda(x_j))$, and for $x \in \mathcal{R}$ and $m, n \in \mathcal{R}_\succ^\perp$ with $x_j + m = x + n$ we define

$$\lambda(x) := \lambda(x_j) + l(m) - l(n).$$

λ is well defined, since for $x, x_j \in \mathcal{R}$ and $m, n, m', n' \in \mathcal{R}_\succ^\perp$ satisfying $x_j + m = x + n$, $x_j + m' = x + n'$ we deduce calculating in G that $m + n' = m' + n$, which implies $l(m) - l(n) = l(m') - l(n')$, for l is a monoid homomorphism. Therefore $\lambda(x_j) + l(m) - l(n)$ and $\lambda(x_j) + l(m') - l(n')$ coincide. Obviously by definition, λ and l are the same on \mathcal{R}_\succ^\perp . $\lambda(x) \in \mathcal{T}$, since for $x, x_j \in \mathcal{R}$ and $m, n \in \mathcal{R}_\succ^\perp$ such that $x_j + m = x + n$ we get $x_j + \mathcal{R}_\succ^\perp + m = x + \mathcal{R}_\succ^\perp + n$, and by (i), $\Lambda(x_j + \mathcal{R}_\succ^\perp) + l(m) = \Lambda(x + \mathcal{R}_\succ^\perp) + l(n)$, from which we deduce

$$w'_j + \mathcal{T}_\succ^\perp + l(m) - l(n) = \Lambda(x + \mathcal{R}_\succ^\perp) \subseteq \mathcal{T},$$

consequently, $\lambda(x) = \lambda(x_j) + l(m) - l(n) \in \mathcal{T}$. $\lambda \in \text{Part}_{\mathcal{R}, \mathcal{R}_\succ^\perp}(\mathcal{R}, H)$, since

for $x, x_j \in \mathcal{R}$, $m, n, m_0 \in \mathcal{R}_\succ^\perp$ and $x_j + m + m_0 = x + n + m_0 = x + n + m_0$ we calculate

$$\lambda(x + m_0) = \lambda(x_j) + \lambda(m + m_0) - \lambda(n) = \lambda(x) + \lambda(m_0).$$

Finally we show that λ commutes with σ and ζ . For $x \in \mathcal{R}$, $m, n \in \mathcal{R}_\succ^\perp$ and $x + n = x_j + m$ we deduce using the definition of λ as well as $\zeta \in \text{Part}_{\mathcal{T}, \mathcal{T}^\perp}(T, H)$, $l \circ \sigma = \zeta \circ l$ and $\lambda(\sigma(x_j)) = \zeta(\lambda(x_j))$,

$$\begin{aligned} \zeta(\lambda(x)) &= \zeta(\lambda(x_j)) + \zeta(l(m)) - \zeta(l(n)) \\ &= \lambda(\sigma(x_j)) + l(\sigma(m)) - l(\sigma(n)) \\ &= l(\sigma(x_j)) + l(\sigma(m)) - l(\sigma(n)) \\ &= l(\sigma(x_j) + \sigma(m) - \sigma(n)), \quad \text{for } l \text{ is a monoid homomorphism,} \\ &= l(\sigma(x_j + m - n)), \quad \text{for } \sigma \in \text{Part}_{\mathcal{R}, \mathcal{R}_\succ^\perp}(\mathcal{R}, G), \\ &= \lambda(\sigma(x)). \end{aligned}$$

■

In particular cases, monomorphisms between canonically monoid splitting *SGRID*-groupoids can be characterized using describing mappings of the respective quotient structure. Using the notation τ_h for the mapping τ_N from ([E4],(1.18)) with $N := \mathcal{R}_\succ^\perp$ we can state

1.6. THEOREM. *Let (\mathcal{R}, \bullet) , (\mathcal{S}, \bullet) be *SGRID*-groupoids, let (\mathcal{R}, \bullet) be canonically monoid splitting and $\sigma(\mathcal{R}_\succ^\perp) = \mathcal{R}_\succ^\perp$. The following are equivalent:*

- (1) *There exists a distinguished monomorphism $\lambda : (\mathcal{R}, \bullet) \rightarrow (\mathcal{S}, \bullet)$.*
- (2) *There is a canonically monoid splitting *SGRID*-groupoid $T \subseteq \mathcal{S}$ such that $\zeta(T_\succ^\perp) = T_\succ^\perp$, a monoid monomorphism $l : \mathcal{R}_\succ^\perp \rightarrow T_\succ^\perp$, which commutes with τ and ϑ , and a homomorphism $\Lambda : (\mathcal{R}/\mathcal{R}_\succ^\perp, \blacksquare) \rightarrow (T/T_\succ^\perp, \blacksquare)$ such that for $A, B \in \mathcal{R}/\mathcal{R}_\succ^\perp$, $m, n \in \mathcal{R}_\succ^\perp$ holds*

- (i) $A + m = B + n \iff \Lambda(A) + l(m) = \Lambda(B) + l(n),$
- (ii) $\Lambda(\tau_h(A \bullet B)) = \vartheta_h(\Lambda(A) \bullet \Lambda(B)).$

- (3) *There is a canonically monoid splitting *SGRID*-groupoid $T \subseteq \mathcal{S}$ such that $\zeta(T_\succ^\perp) = T_\succ^\perp$, a monoid monomorphism $l : \mathcal{R}_\succ^\perp \rightarrow T_\succ^\perp$, which commutes with τ and ϑ , and a mapping $\Lambda : \mathcal{R}/\mathcal{R}_\succ^\perp \rightarrow T/T_\succ^\perp$ such that for $A, B \in \mathcal{R}/\mathcal{R}_\succ^\perp$, $m, n \in \mathcal{R}_\succ^\perp$ holds*

- (i) $A + m = B + n \iff \Lambda(A) + l(m) = \Lambda(B) + l(n),$
- (ii) $\Lambda(\tau_h(A)) = \vartheta_h(\Lambda(A)).$

Proof. By an argumentation similar to that in the proof of (1.5). ■

2. Canonical relations on *SGRID*-groupoids

In this chapter we are mainly concerned with the relation \mathcal{L} on *SGRID*-groupoids (\mathcal{R}, \star) given by successively applying left translations. One gets corresponding results for the respective relation arising from successive right translations by dualizing, i.e. considering \mathcal{L} on the opposite groupoid $(\mathcal{R}, \bar{\star})$ (cf. ([E4],(1.2))). In order to simplify notation for parenthetical expressions we introduce

CONVENTION. For a groupoid (\mathcal{R}, \star) , a natural k and $a_1, \dots, a_k \in \mathcal{R}$ we agree to write

$$a_k \star \dots \star a_1 := a_k \star (a_{k-1} \star (\dots \star (a_2 \star a_1) \dots))$$

and call such terms bracket free.

2.1. DEFINITION/REMARK. Let (\mathcal{R}, \star) be a groupoid, and for $k \in \mathbb{N}_0$ let $\mathcal{L}_k \subseteq \mathcal{R} \times \mathcal{R}$ the relation defined by

$$(a, b) \in \mathcal{L}_k : \iff \exists a_1, \dots, a_k \in \mathcal{R} : b = a_k \star \dots \star a_1 \star a,$$

and $\mathcal{L} := \bigcup_{k \in \mathbb{N}_0} \mathcal{L}_k$. Clearly, \mathcal{L} is reflexive and transitive, but not necessarily an equivalence relation.

The next result generalizes part of ([R],(2.3)).

2.2. PROPOSITION. For a groupoid (\mathcal{R}, \star) satisfying the idempotency law, \mathcal{L}_k is reflexive and $\mathcal{L}_k \subseteq \mathcal{L}_{k+1}$ for all $k \in \mathbb{N}_0$. If (\mathcal{R}, \star) even forms a groupoid mode, all relations $\mathcal{K} \in \{\mathcal{L}\} \cup \{\mathcal{L}_k \mid k \in \mathbb{N}_0\}$ are congruences with

$$\mathcal{K}[x \star y] = \mathcal{K}[x] \star \mathcal{K}[y] \quad \forall x, y \in \mathcal{R}.$$

As a consequence, \mathcal{K} , \mathcal{R}/\mathcal{K} as well as $\mathcal{K}[x]$ ($x \in \mathcal{R}$) with the respective canonically given binary operations are groupoid modes.

Proof. The statements concerning idempotency are obvious. In order to show the property of being a congruence we first note that for a merely entropic groupoid (\mathcal{R}, \star) , $\ell \in \mathbb{N}$ and $\alpha_1, \dots, \alpha_\ell, \beta_1, \dots, \beta_\ell \in \mathcal{R}$ always holds

$$(\alpha_\ell \star \dots \star \alpha_1) \star (\beta_\ell \star \dots \star \beta_1) = (\alpha_\ell \star \beta_\ell) \star \dots \star (\alpha_1 \star \beta_1).$$

As an instance, we now turn to the relation \mathcal{L} . “ \subseteq ” For $z \in \mathcal{L}[x \star y]$, let $m \in \mathbb{N}_0$, $d_1, \dots, d_m \in \mathcal{R}$ such that $z = d_m \star \dots \star d_1 \star x \star y$. Idempotency yields

$$z = (d_m \star d_m) \star \dots \star (d_1 \star d_1) \star (x \star y),$$

hence $z \in \mathcal{L}[x] \star \mathcal{L}[y]$ by the above remark. “ \supseteq ” Let $m, n \in \mathbb{N}_0$, $m \leq n$, and $x, y, x', y', a_1, \dots, a_m, b_1, \dots, b_n \in \mathcal{R}$ such that

$$x' = a_m \star \dots \star a_1 \star x, \quad y' = b_n \star \dots \star b_1 \star y.$$

By idempotency of (\mathcal{R}, \star) we get $x' = a_m \star \dots \star a_1 \star \underbrace{x \star \dots \star x}_{n-m} \star x$, hence

$x' = c_n \star \dots \star c_1 \star x$ with $c_1, \dots, c_n \in \mathcal{R}$ appropriate. Now the formula above shows $(x \star y, x' \star y') \in \mathfrak{L}$. The remaining assertions are immediate consequences of \mathfrak{K} being congruences. ■

For a *SGRID*-groupoid (\mathcal{R}, \bullet) , the relations $\mathfrak{K} \in \{\mathfrak{L}\} \cup \{\mathfrak{L}_k \mid k \in \mathbb{N}_0\}$ are *SGRID*-groupoids with underlying group $G \times G$ and describing map $\tau \times \tau$, and $\mathfrak{K}[x]$ ($x \in \mathcal{R}$) is isomorphic to a *SGRID*-groupoid via translation (cf. ([E4],(1.3), (1.6),(a))).

Now we develop a product formula, which among others is useful for the investigation of \mathfrak{L} in particular cases.

2.3. PROPOSITION. *Let (\mathcal{R}, \bullet) be a *SGRID*-groupoid. Then we have the formula*

$\forall k \in \mathbb{N} \forall a_1, \dots, a_k \in \mathcal{R} :$

$$a_k \bullet \dots \bullet a_1 = \left(\sum_{i=1}^{k-1} \tau^{i-1}(a_{k-i+1}) - \tau^i(a_{k-i+1}) \right) + \tau^{k-1}(a_1).$$

In particular, for $a, b \in \mathcal{R}$ and $\ell \in \mathbb{N}$ holds

$$\underbrace{a \bullet \dots \bullet a}_{\ell} \bullet b = a - \tau^{\ell}(a) + \tau^{\ell}(b).$$

Proof. The proof is done inductively. Clearly the equation holds for $k = 1$. For the inductive step we calculate, since τ is a homomorphism with respect to \bullet ,

$$\begin{aligned} a_{k+1} \bullet a_k \bullet \dots \bullet a_1 &= a_{k+1} - \tau(a_{k+1}) + \tau(a_k) \bullet \dots \bullet \tau(a_1) \\ &\stackrel{\text{IND}}{=} a_{k+1} - \tau(a_{k+1}) + \left(\sum_{i=2}^k \tau^{i-1}(a_{k+1-i+1}) - \tau^i(a_{k+1-i+1}) \right) + \tau^k(a_1) \\ &= \left(\sum_{i=1}^k \tau^{i-1}(a_{(k+1)-i+1}) - \tau^i(a_{(k+1)-i+1}) \right) + \tau^k(a_1). \end{aligned} \quad \blacksquare$$

2.4. LEMMA. *For a *SGRID*-groupoid (\mathcal{R}, \bullet) and $x, y \in \mathcal{R}$ holds*

$$(x, y) \in \mathfrak{L} \iff \exists k \in \mathbb{N}_0 : y - \tau^k(x) \in \sum_{i=0}^{k-1} \tau^i(\mathcal{R}^\perp),$$

where we put $\sum_{i=0}^{k-1} \tau^i(\mathcal{R}^\perp) := 0$ for $k = 0$. In particular,

$$\mathfrak{L}[x] = \bigcup_{k \in \mathbb{N}_0} \left(\tau^k(x) + \sum_{i=0}^{k-1} \tau^i(\mathcal{R}^\perp) \right) \quad \forall x \in \mathcal{R}.$$

Proof. Since for a *SGRID*-groupoid, σ and τ commute by ([E4],(2.1)), we deduce using (2.3) for $k \in \mathbb{N}_0$, $x, y, a_1, \dots, a_k \in \mathcal{R}$

$$y = a_k \bullet \dots \bullet a_1 \bullet x \iff y = \left(\sum_{i=1}^k \underbrace{\tau^{i-1}(a_{k-i+1}) - \tau(\tau^{i-1}(a_{k-i+1}))}_{\in \tau^{i-1}(\mathcal{R}^\perp)} \right) + \tau^k(x). \quad \blacksquare$$

For subsequent parts of this paper we remember that by ([E4],(2.5),(a)), *SGRID*-groupoids (\mathcal{R}, \bullet) with $\mathcal{R}^\top = \mathcal{R}$ are canonically monoid splitting and satisfy $\tau(\mathcal{R}^\perp) = \mathcal{R}^\perp$.

2.5. PROPOSITION. *For a *SGRID*-groupoid (\mathcal{R}, \bullet) we have the inclusions $(x, y \in \mathcal{R})$*

- (i) $\mathfrak{L}[x \bullet y] \subseteq \mathfrak{L}[y],$
- (ii) $\tau(\mathfrak{L}[x]) \subseteq \mathfrak{L}[\tau(x)] \subseteq \mathfrak{L}[x],$
- (iii) $\sigma(\mathfrak{L}[x]) \subseteq \mathfrak{L}[\sigma(x)].$

In addition, if (\mathcal{R}, \bullet) satisfies $\mathcal{R}^\top = \mathcal{R}$, the first inclusion of (ii) becomes equality and $(m \in \mathcal{R}_\succ^\perp)$

- (iv) $\mathfrak{L}[x] \subseteq x + \mathcal{R}_\succ^\perp,$
- (v) $\mathfrak{L}[m] \subseteq \mathcal{R}_\succ^\perp, \text{ in particular, } \mathfrak{L}[0] = \mathcal{R}_\succ^\perp,$
- (vi) $\mathfrak{L}[x + m] \subseteq \mathfrak{L}[x] + \mathfrak{L}[m].$

(2.2) and (v) imply that \mathcal{R}_\succ^\perp is a union of an increasing sequence of *SGRID*-subgroupoids, namely $(\mathfrak{L}_k[0])_{k \in \mathbb{N}_0}$.

Proof. The inclusions are shown mainly using the representation of classes of \mathfrak{L} from (2.4).

$$\begin{aligned} \text{(i)} \quad \mathfrak{L}[x \bullet y] &= \bigcup_{k \in \mathbb{N}_0} \left(\tau^k(x \bullet y) + \sum_{i=0}^{k-1} \tau^i(\mathcal{R}^\perp) \right) \\ &\stackrel{([E4],(2.1))}{=} \bigcup_{k \in \mathbb{N}_0} \left(\tau^k(x) \bullet \tau^k(y) + \sum_{i=0}^{k-1} \tau^i(\mathcal{R}^\perp) \right) \\ &= \bigcup_{k \in \mathbb{N}_0} \left(\tau^{k+1}(y) + \tau^k(\sigma(x)) + \sum_{i=0}^{k-1} \tau^i(\mathcal{R}^\perp) \right) \end{aligned}$$

$$\begin{aligned}
&\subseteq \bigcup_{k \in \mathbb{N}_0} (\tau^{k+1}(y) + \sum_{i=0}^k \tau^i(\mathcal{R}^\perp)) \\
&\subseteq \bigcup_{k \in \mathbb{N}_0} (\tau^k(y) + \sum_{i=0}^{k-1} \tau^i(\mathcal{R}^\perp)) = \mathfrak{L}[y]. \\
\text{(ii)} \quad \tau(\mathfrak{L}[x]) &= \tau\left(\bigcup_{k \in \mathbb{N}_0} (\tau^k(x) + \sum_{i=0}^{k-1} \tau^i(\mathcal{R}^\perp))\right) \\
&= \bigcup_{k \in \mathbb{N}_0} \tau(\tau^k(x) + \sum_{i=0}^{k-1} \tau^i(\mathcal{R}^\perp)) \\
&= \bigcup_{k \in \mathbb{N}_0} (\tau^{k+1}(x) + \sum_{i=0}^{k-1} \tau^{i+1}(\mathcal{R}^\perp)), \\
&\quad \text{since } \tau \in \text{Part}_{\mathcal{R}, \mathcal{R}_\lambda^\perp}(\mathcal{R}, G), \\
&\subseteq \bigcup_{k \in \mathbb{N}_0} (\tau^{k+1}(x) + \sum_{i=0}^{k-1} \tau^i(\mathcal{R}^\perp)), \\
&\quad \text{since } \tau^{j+1}(\mathcal{R}^\perp) \subseteq \tau^j(\mathcal{R}^\perp), j \in \mathbb{N}_0, \\
&= \mathfrak{L}[\tau(x)] = \mathfrak{L}[0 \bullet x] \stackrel{\text{(i)}}{\subseteq} \mathfrak{L}[x].
\end{aligned}$$

If $\mathcal{R}^\top = \mathcal{R}$, parallel to the calculations above by ([E4],(2.5),(a)) we conclude $\tau(\mathfrak{L}[x]) = \mathfrak{L}[\tau(x)]$.

(iii) is shown in analogy to (ii).

(iv) For $x \in \mathcal{R}$ and $j \in \mathbb{N}_0$ obviously $x - \tau^j(x) \in j\mathcal{R}^\perp$ resp. $\tau^j(x) \in x + j(-\mathcal{R}^\perp)$. Therefore we conclude

$$\begin{aligned}
\mathfrak{L}[x] &= \bigcup_{k \in \mathbb{N}_0} (\tau^k(x) + k\mathcal{R}^\perp) \subseteq \bigcup_{k \in \mathbb{N}_0} (x + k(-\mathcal{R}^\perp) + k\mathcal{R}^\perp) \\
&= x + \bigcup_{k \in \mathbb{N}_0} (k\mathcal{R}^\perp + k(-\mathcal{R}^\perp)) \subseteq x + \bigcup_{k \in \mathbb{N}_0} k\mathcal{R}^\perp + \bigcup_{k \in \mathbb{N}_0} k(-\mathcal{R}^\perp) \\
&= x + \mathcal{R}_\lambda^\perp + (-\mathcal{R}_\lambda^\perp) = x + \mathcal{R}_\lambda^\perp.
\end{aligned}$$

(v) is obvious; (vi) is proved similarly to the above. ■

To a certain extent, $(\mathcal{R}/\mathfrak{L}, \bullet)$ reminds of a *SGRID*-groupoid, although in general there is no canonically given underlying group, nor there is a describing mapping. For the following interpretation, cf. (1.1).

2.6. Remark. In the situation of (2.5), let denote the canonical projection $\mathcal{R} \rightarrow \mathcal{R}/\mathcal{L}$ by $q_{\mathcal{L}}$. Then the inclusions (ii),(iii),(vi) of (2.5) become

$$\begin{aligned}\tau(q_{\mathcal{L}}(x)) &\subseteq q_{\mathcal{L}}(\tau(x)), \\ \sigma(q_{\mathcal{L}}(x)) &\subseteq q_{\mathcal{L}}(\sigma(x)), \\ q_{\mathcal{L}}(x + m) &\subseteq q_{\mathcal{L}}(x) + q_{\mathcal{L}}(m).\end{aligned}$$

Roughly speaking, the groupoid homomorphism $q_{\mathcal{L}}$ behaves similar to a homomorphism between *SGRID*-groupoids.

In ([E2],(2.17)) it was shown for group related (2-)symmetric groupoids that the relations \mathcal{L} and

$$\mathfrak{M} := R_{\mathcal{R}^{\perp}}^{\mathcal{R}}$$

(cf. ([E4],(1.9)) for the definition) coincide. The coincidence of classes of both relations has far-reaching consequences for the *SGRID*-groupoids under consideration.

2.7. THEOREM. *Let (\mathcal{R}, \bullet) be a *SGRID*-groupoid with $\mathcal{R}^{\top} = \mathcal{R}$ and suppose*

$$\forall x \in \mathcal{R} \exists y \in \mathcal{R} : \mathfrak{M}[x] = \mathcal{L}[y].$$

Then $\mathcal{R}_{\succ}^{\perp}$ is a group, and $\mathcal{L} \subseteq \mathfrak{M}$ (where the latter is implied independently by both the condition for the classes of \mathfrak{M} and \mathcal{L} , and $\mathcal{R}_{\succ}^{\perp}$ being a group).

Proof. For $x \in \mathcal{R}$, let $y \in \mathcal{R}$ such that $\mathfrak{M}[x] = \mathcal{L}[y]$. Using (2.5) we conclude

$$\mathfrak{M}[\tau(x)] = \tau(\mathfrak{M}[x]) = \tau(\mathcal{L}[y]) = \mathcal{L}[\tau(y)],$$

as well as

$$\begin{array}{ccc} \mathfrak{M}[x] & \subseteq & \mathfrak{M}[\tau(x)] \\ \parallel & & \parallel \\ \mathcal{L}[y] & \supseteq & \mathcal{L}[\tau(y)], \end{array}$$

whence $\mathfrak{M}[x] = \mathfrak{M}[\tau(x)]$. Thus for all $x \in \mathcal{R}$ holds $x - \tau(x) \in \mathcal{R}_{\succ}^{\perp} \cap (-\mathcal{R}_{\succ}^{\perp})$, therefore $\mathcal{R}_{\succ}^{\perp} \subseteq -\mathcal{R}_{\succ}^{\perp}$, and $\mathcal{R}_{\succ}^{\perp}$ turns out to be a group. Now (2.5),(iv) yields $\mathcal{L}[x] \subseteq \mathfrak{M}[x]$ for all $x \in \mathcal{R}$ (or independently from $\mathcal{R}_{\succ}^{\perp}$ being a group, $x \in \mathfrak{M}[x] = \mathcal{L}[y]$ implies $\mathcal{L}[x] \subseteq (\mathcal{L} \circ \mathcal{L})[y] = \mathcal{L}[y] = \mathfrak{M}[x]$ by transitivity of \mathcal{L}). ■

As a consequence we get

2.8. LEMMA. *Let (\mathcal{R}, \bullet) be a *SGRID*-groupoid with $\mathcal{R}^{\top} = \mathcal{R}$ and $\mathcal{L} = \mathfrak{M}$. Then $(\mathcal{R}/\mathcal{L}, \bullet)$ is a right zero band.*

The notion of a right zero band can be found in ([RS1],p. 28) et al. . In zero bands, the binary operation is given by projection onto the first resp. second factor.

Proof. Since $\mathfrak{L} = \mathfrak{M}$, by (2.7) \mathcal{R}_\succ^\perp is a group, i.e. $\mathcal{R}_\succ^\perp = \mathcal{R}_\lambda^\perp$, and $\mathfrak{L}[z] = z + \mathcal{R}_\lambda^\perp$ ($z \in \mathcal{R}$). Hence we get for $x, y \in \mathcal{R}$ by (2.2) and (2.5)(i)

$$\mathfrak{L}[x] \bullet \mathfrak{L}[y] = \mathfrak{L}[x \bullet y] = \mathfrak{L}[y]. \quad \blacksquare$$

For the rest of this paper, among others we investigate a certain class of *SGRID*-groupoids which covers k -symmetric *SGRID*-groupoids (see [E3] and chapter 3 of this paper).

2.9. PROPOSITION/DEFINITION. *For a *SGRID*-groupoid (\mathcal{R}, \bullet) we assume τ satisfying*

$$(K) \quad \forall x \in \mathcal{R} \exists k \in \mathbb{N} : \tau^k(x) = x.$$

SGRID-groupoids \mathcal{R} with condition (K) have the properties

- (1) (\mathcal{R}, \bullet) is left cancellative.
- (2) For any $a, b \in \mathcal{R}$ being given, the equation $a \bullet x = b$ has a unique solution.
- (3) Every term in \mathcal{R} can be represented in bracket free notation.

Proof. Throughout the whole proof, for $a, b \in \mathcal{R}$ let α, β be naturals such that according to (K), $\tau^\alpha(a) = a$, $\tau^\beta(b) = b$, and let $\gamma \in \mathbb{N}$ be a common multiple of α and β .

- (1) For $x \in \mathcal{R}$ we conclude using (2.3)

$$\begin{aligned} x \bullet a = x \bullet b &\Rightarrow \underbrace{x \bullet \dots \bullet x}_{\gamma} \bullet a = \underbrace{x \bullet \dots \bullet x}_{\gamma} \bullet b \\ &\Rightarrow x - \tau^\gamma(x) + \tau^\gamma(a) = x - \tau^\gamma(x) + \tau^\gamma(b) \\ &\Rightarrow a = b. \end{aligned}$$

- (2) Put $x := \underbrace{a \bullet \dots \bullet a}_{\gamma-1} \bullet b$. By (2.3) we deduce

$$a \bullet \underbrace{a \bullet \dots \bullet a}_{\gamma-1} \bullet b = a - \tau^\gamma(a) + \tau^\gamma(b) = b,$$

hence x is a solution. Uniqueness now follows by (1).

- (3) Let $c \in \mathcal{R}$. It is sufficient to show that $(a \bullet c) \bullet b$ can be written without brackets. Since $\underbrace{a \bullet \dots \bullet a}_{\gamma} \bullet b = b$, and \bullet is left distributive by ([E4],(2.1)),

we conclude

$$(a \bullet c) \bullet b = (a \bullet c) \bullet (\underbrace{a \bullet \dots \bullet a}_{\gamma} \bullet b) = a \bullet c \bullet \underbrace{a \bullet \dots \bullet a}_{\gamma-1} \bullet b. \quad \blacksquare$$

As a kind of converse of (2.7) we prove

2.10. PROPOSITION. *Let (\mathcal{R}, \bullet) be a SGRID-groupoid satisfying condition (K) and $\mathcal{R}^T = \mathcal{R}$. Then \mathcal{R}_\succ^\perp is a group, and the relations \mathfrak{M} and \mathfrak{L} coincide. In particular, if \mathcal{R} is finite, \mathcal{R} is always a union of cosets by a subgroup of the underlying group.*

Proof. In case that τ satisfies condition (K), we show $-\mathcal{R}^\perp \subseteq \mathcal{R}_\succ^\perp$, hence \mathcal{R}_\succ^\perp is a group. To this end, let $x \in \mathcal{R}$, $k \in \mathbb{N}$ such that $\tau^k(x) = x$, and put $p := x - \tau(x)$. Then we get

$$\begin{aligned} -p &= \tau(x) - x = \tau(x) - \tau^k(x) \\ &= \tau(x) - \sum_{\ell=2}^{k-1} \tau^\ell(x) + \sum_{\ell=2}^{k-1} \tau^\ell(x) - \tau^k(x) = \sum_{\ell=2}^k (\underbrace{\tau^{\ell-1}(x) - \tau^\ell(x)}_{\in \mathcal{R}^\perp}) \in \mathcal{R}_\succ^\perp. \end{aligned}$$

Now let $y \in \mathfrak{M}[x] = x + \bigcup_{\ell \in \mathbb{N}_0} \ell \mathcal{R}^\perp$, i.e. $y = x + m_1 + \dots + m_j$, with $j \in \mathbb{N}_0$, $m_1, \dots, m_j \in \mathcal{R}^\perp$ appropriate. We can find $\mu \in \mathbb{N}$ such that $\mu k \geq j$ and conclude

$$y - x = y - \tau^{\mu k}(x) \in j \mathcal{R}^\perp \subseteq (\mu k) \mathcal{R}^\perp,$$

thus $y \in \mathfrak{L}[x]$ by (2.4) and since $\tau(\mathcal{R}^\perp) = \mathcal{R}^\perp$. Applying the last part of (2.7) completes the proof. \blacksquare

2.11. PROPOSITION. *Let (\mathcal{R}, \bullet) be a SGRID-groupoid with $\mathcal{R}^T = \mathcal{R}$, let \mathcal{R}_\succ^\perp be a group, and assume the existence of $\ell \in \mathbb{N}$ such that $\mathcal{R}_\succ^\perp = \ell \mathcal{R}^\perp$. Then $\mathfrak{L} = \mathfrak{M}$.*

Proof. Since \mathcal{R}_\succ^\perp is a group, for $x \in \mathcal{R}$ by (2.4) and $\tau(\mathcal{R}^\perp) = \mathcal{R}^\perp$ we conclude

$$\mathfrak{L}[x] = \bigcup_{k \in \mathbb{N}} \tau^k(x) + k \mathcal{R}^\perp = \tau^\ell(x) + \ell \mathcal{R}^\perp = \tau^\ell(x) + \mathcal{R}_\succ^\perp = x + \mathcal{R}_\succ^\perp = \mathfrak{M}[x]. \quad \blacksquare$$

3. Derived groupoids and k -symmetry

For a given groupoid (\mathcal{R}, \star) , by a derived groupoid we understand \mathcal{R} equipped with a binary operation formed by compositions of \star and the canonical projections from $\mathcal{R} \times \mathcal{R}$ to \mathcal{R} , to be more precise

3.1. DEFINITION. Let (\mathcal{R}, \star) be a groupoid.

(a) Denote by Ω the minimal subset of $\mathcal{R}^{\mathcal{R} \times \mathcal{R}}$ such that

(i) the canonical projections π_i onto the i -th factor ($i = 1, 2$) are elements of Ω ,

(ii) $v, w \in \Omega \Rightarrow v \star w \in \Omega$.

(b) Moreover, let $\Psi := \{\psi_\ell : \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R} \mid \ell \in \mathbb{N}\}$, where we define inductively

$$\psi_1(x, y) := x \star y, \quad \psi_{\ell+1}(x, y) := x \star \psi_\ell(x, y).$$

By definition, $\Psi \subseteq \Omega$. We call Ω the set of derived binary operations on \mathcal{R} . For the binary operation on \mathcal{R} given by $\omega \in \Omega$ we shall sometimes write \star_ω . Furthermore, $\omega \in \Omega$ can be represented merely using π_1, π_2 and \star . If m is the minimal number of occurrences of \star over all such representations for ω , we call $m + 1$ the length of ω .

Ω is the clone of terms of the groupoid (\mathcal{R}, \star) .—

For the concepts used in the following, cf. the introductory part of [RS1]. The subsequent result was already shown in ([RS2], p. 249), coming from a slightly different viewpoint. We shall give a direct proof.

3.2. THEOREM. *If (\mathcal{R}, \star) is an idempotent resp. entropic groupoid, then (\mathcal{R}, Ω) is an idempotent resp. entropic algebra.*

Proof. The assertion concerning idempotency is obvious. In order to prove the entropicity part we introduce

$$\Omega_n := \{\omega \in \Omega \mid \text{length of } \omega \leq n\} \quad (n \in \mathbb{N})$$

and show inductively that (\mathcal{R}, Ω_n) is an entropic algebra for all $n \in \mathbb{N}$, in other words,

$$\forall v, w \in \Omega_n \forall a, b, c, d \in \mathcal{R} : v(w(a, b), w(c, d)) = w(v(a, c), v(b, d)).$$

For $\Omega_1 = \{\pi_1, \pi_2\}$ and $\Omega_2 = \{\pi_1, \pi_2, \star, \bar{\star}\}$ one verifies immediately that (\mathcal{R}, Ω_i) , ($i = 1, 2$) is an entropic algebra.

Now let $a, b \in \mathcal{R}$ and write $\mu(a, b) := a \star b$. For the inductive step from n to $n + 1$ let $v, w \in \Omega_{n+1}$ and $v_1, v_2, w_1, w_2 \in \Omega_n$ such that

$$v(a, b) = \mu(v_1(a, b), v_2(a, b)), w(a, b) = \mu(w_1(a, b), w_2(a, b)).$$

With another $c, d \in \mathcal{R}$ we calculate using entropicity of μ

$$v(w(a, b), w(c, d)) = \mu(v_1(\mu(w_1(a, b), w_2(a, b)), \mu(w_1(c, d), w_2(c, d)))),$$

$$v_2(\mu(w_1(a, b), w_2(a, b)), \mu(w_1(c, d), w_2(c, d))))$$

$$\stackrel{\text{IND}}{=} \mu(\mu(v_1(w_1(a, b), w_1(c, d)), v_1(w_2(a, b), w_2(c, d)))),$$

$$\mu(v_2(w_1(a, b), w_1(c, d)), v_2(w_2(a, b), w_2(c, d))))$$

$$\begin{aligned}
& \stackrel{\text{IND}}{=} \mu(\mu(w_1(v_1(a, c), v_1(b, d)), w_2(v_1(a, c), v_1(b, d))), \\
& \quad \mu(w_1(v_2(a, c), v_2(b, d)), w_2(v_2(a, c), v_2(b, d)))) \\
& = \mu(\mu(w_1(v_1(a, c), v_1(b, d)), w_1(v_2(a, c), v_2(b, d))), \\
& \quad \mu(w_2(v_1(a, c), v_1(b, d)), w_2(v_2(a, c), v_2(b, d)))) \\
& \stackrel{\text{IND}}{=} \mu(w_1(\mu(v_1(a, c), v_2(a, c)), \mu(v_1(b, d), v_2(b, d))), \\
& \quad w_2(\mu(v_1(a, c), v_2(a, c)), \mu(v_1(b, d), v_2(b, d)))) \\
& = w(v(a, c), v(b, d)). \quad \blacksquare
\end{aligned}$$

If we denote by $*_w$ the binary operation on \mathcal{R}^2 induced by \star_w ($w \in \Omega$) in a canonical manner, for an entropic groupoid (\mathcal{R}, \star) and another $v \in \Omega$, (3.2) means that

$$v(a \star_w b, c \star_w d) = v((a, c) *_w (b, d)) = v(a, c) \star_w v(b, d),$$

or in other words, $v : (\mathcal{R}^2, *_w) \rightarrow (\mathcal{R}, \star_w)$ is a homomorphism.

The second half of the subsequent theorem to a certain extent generalizes ([E4],(1.4)).

3.3. THEOREM. *For a SGRID-groupoid (\mathcal{R}, \bullet) and $w \in \Omega$, the groupoid (\mathcal{R}, \bullet_w) is a SGRID-groupoid with underlying group G and describing map given by $x \mapsto w(x, 0)$, or in other words $(x, y \in \mathcal{R})$*

$$(i) \quad w(x, y) = w(x, 0) + w(0, y);$$

and as a consequence,

$$(ii) \quad w(x, y) + w(y, x) = x + y.$$

With another $v \in \Omega$ we get general balancedness, i.e.

$$(iii) \quad v(x, y) = w(x, y) \iff v(y, x) = w(y, x),$$

which yields for $n \in \mathbb{N}$

$$\begin{aligned}
& \underbrace{x \bullet \dots \bullet x}_n \bullet y = y \iff \underbrace{y \bullet \dots \bullet y}_n \bullet x = x, \\
& \underbrace{x \bullet \dots \bullet x}_n \bullet y = x \iff \underbrace{y \bullet \dots \bullet y}_n \bullet x = y.
\end{aligned}$$

Proof. (i) By induction. For the canonical projections the statement is immediate. Now let w be a binary operation of length ≥ 2 and $w = w_1 \bullet w_2$, where $w_i \in \Omega$, ($i = 1, 2$). With $x, y \in \mathcal{R}$ we calculate using ([E4],(2.1))

$$\begin{aligned}
w(x, y) &= w_1(x, y) \bullet w_2(x, y) \\
&= \sigma(w_1(x, y)) + \tau(w_2(x, y)) \\
&= w_1(\sigma(x), \sigma(y)) + w_2(\tau(x), \tau(y)) \\
&\stackrel{\text{IND}}{=} w_1(\sigma(x), \sigma(0)) + w_1(\sigma(0), \sigma(y)) + w_2(\tau(x), \tau(0)) + w_2(\tau(0), \tau(y)) \\
&= \sigma(w_1(x, 0)) + \tau(w_2(x, 0)) + \sigma(w_1(0, y)) + \tau(w_2(0, y)) \\
&= w_1(x, 0) \bullet w_2(x, 0) + w_1(0, y) \bullet w_2(0, y) \\
&= w(x, 0) + w(0, y). \\
\text{(ii)} \quad w(x, y) + w(y, x) &\stackrel{\text{(i)}}{=} w(x, 0) + w(0, x) + w(y, 0) + w(0, y) \\
&\stackrel{\text{(i)}}{=} w(x, x) + w(y, y) = x + y \quad \text{by idempotency.}
\end{aligned}$$

(iii) By (ii) we deduce

$$w(x, y) - v(x, y) = v(y, x) - w(y, x),$$

from which we conclude the desired equivalence. ■

We add the note that on a *SGRID*-groupoid (\mathcal{R}, \bullet) , two elements $v, w \in \Omega$ define a congruence relation on \mathcal{R} by

$$\mathfrak{G}_{v,w} := \{(x, y) \in \mathcal{R} \times \mathcal{R} \mid v(x, y) = w(x, y)\}.$$

These relations will be considered in a later paper in combination with uniform structures on *SGRID*-groupoids [E5].—The next result generalizes ([E2],(2.17)) and ([E1], Prop. 6).

3.4. THEOREM. *Let (\mathcal{R}, \bullet) be a *SGRID*-groupoid, $k \in \mathbb{N}$. The following are equivalent*

- (1) $\tau^k = \text{id}_{\mathcal{R}}$,
- (2) $\forall x, y \in \mathcal{R} : \underbrace{x \bullet \dots \bullet x}_{k} \bullet y = y \quad (k\text{-symmetry}).$

k-symmetric *SGRID*-groupoids are canonically monoid splitting and $\mathcal{R}_{\succ}^{\perp} = \mathcal{R}_{\forall}^{\perp} = \mathcal{R}_{\lambda}^{\perp}$. The relations \mathfrak{M} and \mathfrak{L} coincide, and $(\mathcal{R}/\mathfrak{L}, \bullet)$ is a right zero band.

Proof. The equivalence of (1) and (2) follows by (2.3) and $\tau(0) = 0$. Since $\tau^k = \text{id}_{\mathcal{R}}$ implies $\mathcal{R}^{\top} = \mathcal{R}$, and condition (K) is a consequence of the *k*-symmetry law, we get that (\mathcal{R}, \bullet) is canonically monoid splitting by ([E4],(2.5)), conclude $\mathcal{R}_{\succ}^{\perp} = \mathcal{R}_{\forall}^{\perp} = \mathcal{R}_{\lambda}^{\perp}$ and $\mathfrak{L} = \mathfrak{M}$ by (2.10), and the last assertion by (2.8). ■

By a simple calculation one shows immediately

3.5. PROPOSITION. *If (\mathcal{R}, \star) is a groupoid satisfying the k -symmetric law, then $(\mathcal{R}, \star_{\psi_\ell})$ satisfies the $\frac{k}{\gcd(k, \ell)}$ -symmetric law. ■*

(3.5) together with (3.3) and (2.3) implies

3.6. PROPOSITION. *If (\mathcal{R}, \bullet) is a k -symmetric SGRID-groupoid, then $(\mathcal{R}, \bullet_{\psi_\ell})$ is a $\frac{k}{\gcd(k, \ell)}$ -symmetric SGRID-groupoid with describing map τ^ℓ . ■*

References

- [E1] N. Endres, Group related symmetric groupoids, *Demonstratio Math.* 24, (1991), 63–74.
- [E2] N. Endres, Die algebraische Struktur der Homotopiemenge von Produktabbildungen auf Sphären, *Geom. Dedicata* 48, (1993), 267–294.
- [E3] N. Endres, Various applications of symmetric groupoids, *Demonstratio Math.* 27, (1994), 673–685.
- [E4] N. Endres, Idempotent and distributive group related groupoids I, *Demonstratio Math.* 29, (1996), 271–250.
- [E5] N. Endres, Uniform structures and algebraic structures, unpublished notes.
- [JK] J. Ježek, T. Kepka, Medial Groupoids, *Rozpravy Československé Akademie Věd* (1983).
- [R] B. Roszkowska, On representations of SIE-groupoids, submitted to Alg. Univ.
- [RS1] A. B. Romanowska, J.D.H. Smith, *Modal theory—An Algebraic Approach to Order, Geometry, and Convexity*, Heldermann, Berlin (1985).
- [RS2] A. B. Romanowska, J. D. H. Smith, Subalgebra systems of idempotent entropic algebras, *J. Algebra* 120, (1989), 247–262.

MATHEMATICAL DEPARTMENT
 UNIVERSITY OF MUNICH
 Theresienstr. 39
 D-80333 MUNICH, GERMANY

Received August 16, 1994.