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IDEMPOTENT AND DISTRIBUTIVE GROUP
RELATED GROUPOIDS, II

In a former paper [E4] we were concerned with the basic properties of cer-
tain idempotent and distributive resp. merely idempotent groupoids (R,e)
(SGRID- resp. SGRI-groupoids), the binary operation of which is influ-
enced by the structure of an abelian group (G,+): We assume R to be a
subset of G with 0 € R, and e being given by

zey=o0(z)+7(y) (z,y€R)

where 0,7 : R — G are mappings. Group related groupoids are of a certain
interest for topological purposes, SGRID-groupoids turned out to form
groupoid modes ([E4], (2.1)) and are linked with the point of view presented
in ([JK], (3.3.9)) (see introduction of [E4]).

Throughout this second half of a series of papers on group related group-
oids we use without any further explanation the notation, notions, and con-
ventions of the first part [E4].

In chapter 1 we turn to homomorphisms of SGRI-groupoids and, as
a characterization for homomorphisms between canonically monoid split-
ting SGRID-groupoids, we find a kind of natural decomposition of the
given homomorphism into a monoid homomorphism and a homomorphism
of quotients of the SGRI D-groupoids under consideration.

As a guiding line for chapter 2 we use a result in ([E2],(2.17)), where
it is shown for group related (2-)symmetric groupoids that the equivalence
relation £ coming from successive left translation coincides with the one
induced by a certain subgroup of the underlying group, which is closely
related to the given (2-)symmetric groupoid. After some general consider-
ations concerning £ on a SGRID-groupoid R, we develop necessary and
sufficient conditions for the coincidence of £ with the equivalence relation
given by a subgroup of the underlying group, which is assigned to R in a
way analogous to the (2-)symmetric case.
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In the final chapter we deal with the transfer of algebraic identities and
the property of being a SGRID-groupoid from a groupoid (R,x) to its
derived groupoids, i.e. to groupoids with the same underlying set and a
binary operation, which is made up of iterated applications of x and the
trivial binary operations on R. In particular, we turn our attention to the
k-symmetry law and describe SG RI D-groupoids satisfying this identity.

For describing mappings or homomorphisms of SG RI-groupoids, de-
pending on the situation we sometimes only need their counterparts re-
stricted in domain, or range, or domain and range, respectively (see also
text after ([E4],(1.5))). Since what is meant always comes clear from the
context, and since we don’t want to exaggerate with precision in notation,
which would make a mess of the formulation of some results, for a mapping
and corresponding restrictions we use the same symbol.

1. Homomorphisms of $GRI D-groupoids

Now we discuss some aspects concerning homomorphisms between idem-
potent group related groupoids. Any such groupoids (R',e) and (S’,¢) and a
homomorphism 7 : R’ — &' being given, applying ([E4],(1.5)) we first find a
strictly group related copy R of R' and an isomorphism ¢ : (R,e) — (R',e),
and again by ([E4],(1.5)) (via the translation d_,q.) in the underlying
group of §') a strictly group related copy S of &' and an isomorphism
7:(8',0) > (S,9) such that (3o no1)(0) = 0. Hence we can restrict our-
selves to the consideration of homomorphisms between SG RI-groupoids
preserving the neutral elements of the respective underlying groups. We call
such homomorphisms distinguished.

In addition and parallel to the convention after ([E4],(1.5)) concerning
SGRI-groupoids written by (R,e), we note that throughout this chapter,
for a SG RI-groupoid written by (S, ¢), the pair of describing mappings will
be denoted by (¢, ), and its underlying group by H.

1.1. Proposition. Let (R,e), (S,e) be SGRI-groupoids , A : R —» S a
mapping such that A\(0) = 0. The following are equivalent:

(1) A is a distinguished groupoid homomorphism,

(2) A€ Pa.l'tR_T'R.L(R,H), Aoo = C o /\,

(3) A € Partgr g+ (R, H), AoT =10

Proof. (1) = (2),(3). For r,s € R, XA being a groupoid homomorphism
is equivalent to

Ao (r) + 7(s)) = C(A(r)) + F(A(s)).
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If we put by turns s := 0 resp. r := 0, we get A(o(r))= ((A(7)), A(7(s)) =
J(A(8)), hence Aoo = (oA and Aot = Jo . Therefore A € Partgr g1(R, H).
(2) = (3). For r € R we conclude

Aa(r)) = ((A(r)) = Aa(r)) + A(r(r)) = A(7(r)) = ((A(r))
= Ma(r) + 7(r)) = A(r(r)) = Mr) = 9(A(r)),
= A(r) = M7(r)) = A(r) = 9(A(r));

consequently, Ao7 =dJo A,
(3) = (1). For r, s € R we calculate

A o 8) = Mo(r) + 7(s))
= Mo(r)) + A(7(s)), since A € Partgr g1(R, H),
= Mo(r)) + 9(A(s)), since AoT =10 ],
= Mo(r)) + A(r(r)) = A(7(r)) + 9(A(s))
= Ma(r) + 7(r)) = I(A(r)) + 9(A(s)),
since A € Partgr g1(S,H)and AoT =490 ),
= A(r) = F(A(r)) + I(A(s)) = A(r) & A(s). »

Now we are in a situation to present a second example of an SGRID-
groupoid which is not isomorphic to a subreduct of an affine space (cf. text
before ([E4],(2.3))).

1.2. EXAMPLE. We denote by Z* the direct sum of infinitely many copies
of Z; and for v € Nby t, : Z*° — Z* we mean the v-th shift operator given
by the assignment

(zl.)l_gL(oo — (xl,)USL<OO'

One can see immediately that both t, and 1 — t, are group epimorphisms,
where 1 stands for the identity map of Z°°. According to example ([E4],
(2.3),(a)), by t, we get a binary operation e, on Z*°, which makes (Z*,e,)
a SGRID-groupoid. Furthermore, we can consider Z* in a canonical way
as K-module for rings K € {Z,Z*}. Fora € K let t, : Z® — Z° be
the homomorphism defined by component wise multiplication r — ar. Also
according to ([E4],(2.3),(a)), we equip Z* with the binary operation e,
coming from ¢,.

Now we show that for any choice of v and a, the groupoid (Z*°,e,) is
never isomorphic to a subalgebra of (Z*°,e,). Assume the contrary and let
k:(Z®,e,) > (Z*,9,) be a distinguished (cf. text before (1.1)) algebra
monomorphism. Applying (1.1) we find k € Partzge 70 (Z%°,Z%) is even a
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group monomorphism, the diagrams

t,l 11, -, 1 ll—t.

k k

commute, and k(Z*) is not trivial. Since both t, and 1 — ¢, are onto, we
get k(Z°) = t,(k(Z*)) = (1 - to)(k(Z*)), which contradicts non-triviality
of k(Z*°) and the fact that each element of Z has a unique decomposition
in prime numbers.

Now we prepare for a characterization of homomorphisms between
canonically monoid splitting SG RI D-groupoids. To this end we introduce
two mappings on quotients by monoids.

1.3. DEFINITION. Let (R, o) be a canonically monoid splitting SGRID-
groupoid. Denote by oy : R/R{ — Rl /o(R%) the mapping given by z +
Ri - o(z) + o(RY).

oy is well defined, since for z,z’ € R and z + ’R,i =z + 'Ri there is
n € R{ such that z —z' = n. By 0 € Partg z4(R,G) we get o(z) =
o(z' + z —2') = o(z') + o(z — 2'), consequently

o(z - z') = a(z) - a(z') = a(n) € o(R3).
Again by partiality of o follows that ¢|R{ is a monoid homomorphism and
therefore, o(R<{) is a subgroup of Ri. From the above, o(z) + ¢(R3) =
o(z') + o(Ry).
1.4. DEFINITION. Let A, B be submonoids of abelian groups, a : A — A,

B :B— B,k: A— Bbe monoid homomorphisms such that koa = Sok. By
k* : A/a(Av) — B/B(By) we denote the mapping given by the assignment

a+ a(Avy) — k(a) + B(Bv).

k* is well defined: Since Ay < A implies a(Ay) < Ay, and for a,a’ € A
satisfying a + a(Av) = a' + a(Ay) equivalently holds a — a’ € a(Ay), there
exists u € Ay such that a — a’ = a(u), and

Ka) - k(a") = k(a — o) = K(a(u)) = A(k(w)).
But k(u) € By, for u € A implies k(u) € B and —u € A yields —k(u) =
k(—u) € B, thus k(a) - k(a') € B(Bv), where 3(By) < By, and we conclude
k(a)+ B(Bvy) = k(a') + B(Bv). The next result shows that homomorphisms

between canonically monoid splitting SG RI D-groupoids are made up in a
natural way of two components, a monoid homomorphism and a groupoid
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homomorphism of respective quotients of the considered SG RI D-groupoids.
Moreover, the properties of groupoid homomorphisms shown in (1.1), i.e.
partiality and commutativity with describing mappings, are transferred to
these components in an analogous way.

1.5. THEOREM. Let (R,e), (S,o) be SGRID-groupoids and let R be
canonically monoid splitting. The following are equivalent.

(1) There ezists a distinguished homomorphism A : (R,e) — (S, ).

(2) There is a canonically monoid splitting SGRID-groupoid T C S,
a monoid homomorphism | : RY — T}! commuting with o and (, and a
homomorphism A : (R/Ri,u) — (T/T},u), satisfying for A,B € R/R{,
m,n € 'Ri
(i) -+ A+ m=B+n= A(A)+I(m) = A(B) + I(n),
(ii) I"(oy(AuB)) = G(A(A)wA(B)).

(3) There is a canonically monoid splitting SGRID-groupoid T C §,
a monoid homomorphism | : RY — T.1 commuting with o and {, and a
mapping A : R/RL — T/TL satisfying for A,B € R/RE, m,n € RE
(1) A+m=B+n=>A(A)+1(m)=A(B) +(n),
(ii) *(ay(A4)) = G(A(A)).

Proof. (1) = (2). By (1.1), A € Partg z(R, H), hence ARy is a
monoid homomorphism, and A commutes with ¢ and (.

Put 7 := A(R). Clearly, (7, e) is a SGRI D-groupoid, and 7T is canoni-
cally monoid splitting, since 7+ = A(R*) implies

Tr= kT = | RARY) = ,\( U kR*) = A(Ry),
keN keN keN

and consequently,
T+Tr=MR)+ AR =AR+RECAMR)=T.

Moreover, for t € 7, u € T, and r € R, n € R{ such that A(r) = ¢,
A(n) = u we calculate by commutativity of A with ¢ and ¢ and partiality of
the mappings under consideration

((t +u) = ((A(r) + A(n)) = ((A(r + n))
= Ao(r +n)) = A(a(r)) + A(a(n))
= ((A(r) + C(A(n)) = ¢(t) + ((u).

Let I : RE — T, be the restriction of A in both domain and range. Ob-
viously, ! is a monoid homomorphism commuting with o and (. Now we
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define A : R/RL — T/T? assigning z + RE — A(z) + T,1. The mapping
A is well defined by partiality of A and definition of 7. A satisfies (i), since
for z,z2' € R, m,n € 'R,J; such that z +'RJ; +m = :v'+72i + n we get
the desired implication applying A on both sides of the equation above. A
satisfies (i), since for a,b € R and A :=a+ R{, B := b+ R we calculate

I*(0y(AsB)) = I*(0(a e b) + o(Ry)) = A(o(a e b)) + ((T7")
= ({(Ma e b))+ {(T7) = G(M(a) ¢ M(b) + T1)
= (((M(a) + T) o (A(b) + T1)) = G(A(A)=A(B)).
Finally, by calculations similar to the above one can show that A is a
groupoid homomorphism.
(2) = (3). By idempotency of s, (3),(ii) follows from (2),(ii).
(3) = (1). Parallel to the proof of ([E4],(3.1)), we take an index set J
with 0 € J and a subset {z;| j € J} of R with xo := 0 satisfying
VAeR/RsIjeJ z;+ Ry 2 A4,
Vikedj#k:z; +Rinz, +RE =0.
Now we define a groupoid homomorphism A. Put A(zg) := 0, and for
0#j € J let w} € T such that A(z; + Ry) = w} + T;-. By virtue of (ii),
C(wh) + ¢(T7) = G(w) + T3) = G(A(zj + R;))
= I"(oy(z; + R})) = I*(o(z;) + o(RE N =R;))
= o(2;)) +(TE);
hence there exists p € T4 such that [(a(z;)) = {(w!) + {(p). Put M(z;) :=
w; := w} + p; consequently A(o(z;)) = ((A(z;)), and for € R and m,n €
R with z; + m = z + n we define
Az) := Mz;) + U(m) ~ I(n).

A is well defined, since for z,z; € R and m,n,m/,n’' € R satisfying z; +
m = z+n,z;+m' = z+n' we deduce calculating in G that m+n' = m'+n,
which implies I(m) — I(n) = I(m') — I(n"), for | is a monoid homomorphism.
Therefore A(z;) + I(m) — I(n) and A(z;) + I(m') — {(n') coincide. Obviously
by definition, A and ! are the same on R{. A(z) € T, since for z,z; € R
and m,n € Ri such that z;+m =z +nwegetz; +RE+m =z+ R +n,
and by (i), A(z; + Ri) + {(m) = A(z + R) + I(n), from which we deduce

wi+ T +i(m) ~I(n) = Az +R}) S T,
consequently, A(z) = A(z;) + I(m) - l(n) € T. A € Partg s (R, H), since



Idempotent and distributive group related groupoids, IT 297
for z,z; € R, m,n,mg € ’Ri and z; + m + mo = T + n 4+ mo we calculate
Az + mg) = Mz;) + A(m + mg) — A(n) = A(z) + A(my).

Finally we show that A commutes with ¢ and (. For z € R, m,n € 'Rt
and z + » = z; + m we deduce using the definition of A as well as { €

PartT,T:.(T, H),loo = (oland Mo(z;)) = ((A(z;)),

¢(A(2)) = ¢(A(z;)) + C(I(m)) - ((I(n))
= AMo(z;)) + l{o(m)) - l(a(n))
= l(o(z;)) + I(a(m)) — l(o(n))
= l(o(z;)} + o(m) — o(n)), forlis a monoid homomorphism,
=l(o(z; + m —n)), for o € Partg z1(R,G),
= Mo(z)). ]

In particular cases, monomorphisms between canonically monoid split-
ting SG RI D—-groupoids can be characterized using describing mappings of
the respective quotient structure. Using the notation 7y for the mapping 7x
from ([E4],(1.18)) with A := R{ we can state

1.6. THEOREM. Let (R,e), (S,8) be SGRID-groupoids, let (R,e) be
canonically monoid splitting and 0(R%) = Ri. The following are equivalent:

(1) There ezxists a distinguished monomorphism X : (R, e) — (S, ).

(2) There is a canonically monoid splitting SGRID-groupoid T C S
such that ((T}) = T4, a monoid monomorphism 1 : RE — TL, which
commutes with T and ¥, and a homomorphism A : (R/Ri,u) — (T/Tt,u)
such that for A,B € R/RY, m,n € R holds

(i) A+m=B+n < A(A)+1(m)= A(B) +(n),
(ii) A(my(AuB)) = 9(A(A)uA(B)).

(3) There is a canonically monoid splitting SGRID—-groupoid T C S
such that {(T}) = T3, a monoid monomorphism | : RE — T.L, which
commutes with v and 9, and a mapping A : 'R,/R"; — T/T2 such that for
A,B € R/R{, myn € Ry holds
(1) A+m=B+n < A(A)+ (m) = A(B) +(n),

(ii) A(1y(A)) = 9y(A(A4)).

Proof. By an argumentation similar to that in the proof of (1.5). m
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2. Canonical relations on SGRID-groupoids

In this chapter we are mainly concerned with the relation £ on SGRID-
groupoids (R, ¢) given by successively applying left translations. One gets
corresponding results for the respective relation arising from successive right
translations by dualizing, i.e. considering £ on the opposite groupoid (R, s)
(cf. ([E4],(1.2))). In order to simplify notation for paranthetical expressions
we introduce

CoNVENTION. For a groupoid (R, *), a natural k and a;,...ax € R we
agree to write

Qpx...%kay = ag*x(ag_1 *(...x(az xay)...))
and call such terms bracket free.

2.1. DEFINITION /REMARK. Let (R, %) be a groupoid, and for k € Ny let
£; € R X R the relation defined by

(a,b) € L : <= T ay,...a, ER:b=arx...xa; xa,

and £:= keN, Lk- Clearly, £ is reflexive and transitive, but not necessarily
an equivalence relation.
The next result generalizes part of ([R],(2.3)).

2.2. PROPOSITION. For a groupoid (R, %) satisfying the idempotency law,
Ly, is reflezive and £ C Li4y for allk € Ng. If (R, %) even forms a groupoid
mode, all relations & € {£} U {£k] k € No} are congruences with

Rz xy] = Rlz]*x Kly] Vz,yeR.

As a consequence, R, R/f as well as K[z] (z € R) with the respective
canonically given binary operations are groupoid modes.

Proof. The statements concerning idempotency are obvious. In order
to show the property of being a congruence we first note that for a merely
entropic groupoid (R, %), £ € N and ay,...a¢, B1,...08: € R always holds

(agx...xa1)x(Bex...%xPB1) = (g *Be)*... % (a1 *Pr).

As an instance, we now turn to the relation £. “C” For z € £[z % y], let
m € No, dy,...d,, € R such that z = d,,, x...xdy xz xy. [dempotency yields

2= (dp *dp) *x...x(dy xdy) *x (z xy),

hence z € £[z] x £[y] by the above remark. “2” Let m,n € Ng, m < n, and
z,9,2',y, a1,...am, b1,...b, € R such that

' =apk...xa1 %z, Y =byx...xb*xy.
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By idempotency of (R,*) we get 2’ = @,, x...%a; *ZT*...xZ *xz, hence

n—-m

2 = ¢p %x...x¢; xz with ¢;,...¢, € R appropriate. Now the formula

above shows (z xy,z’' xy') € £. The remaining assertions are immediate
consequences of & being congruences. =

For a SGRI D-groupoid (R, e), the relations & € {£}U{L«| k € No} are
SGRID-groupoids with underlying group G X G and describing map 7 x 7,
and £[z] (z € R) is isomorphic to a SGRID-groupoid via translation (cf.

([E4],(1.3), (1.6),(a))).

Now we develop a product formula, which among others is useful for the
investigation of £ in particular cases.

2.3. PROPOSITION. Let (R,e) be a SGRID-groupoid. Then we have the
formula

VkeNVa;,...ap €R:
k-1

age...oa; = (Z N ak—is1) — Ti(ak—i+1)) + 75 1(ay).

t=1
In particular, for a,b € R and £ € N holds

aes...eqeb=a—r'a)+ ).
¢

Proof. The proof is done inductively. Clearly the equation holds for
k = 1. For the inductive step we calculate, since T is a homomorphism with
respect to e,

k41 00k ®...00a1 = ag1 — T(ak1) + 7(ak) o ... 0 7(a;)
k

o 2k+1 = T(ak41) + (¢_2 T N akt1-i1) — Ti(ak+1—i+l)) +7%(ay)
ko |
= (E TN akg1)—it1) — T'(a(k+1)-;+1)) + 7¥(ay). a

i=1
2.4. LEMMA. For a SGRID-groupoid (R,e) and z,y € R holds

k-1
(z,9) €L &> TkeNo:y-rHx) € ) r(RY),
=0



300 N. Endres

where we put 571 7i(RL) := 0 for k = 0. In particular,
k-1
gzl = |J (r"(z) + Zr‘(nl)) VzeR.
k€Ng =0
Proof. Since for a SGRI D-groupoid, ¢ and 7 commute by ([E4},(2.1)),
we deduce using (2.3) for k € No, z,y, a1,...ax € R

k
Yy =age...ea10z < y= (ZIi_l(ak-eﬂ) - T(Ti-l(ak~i+1)2) +75(z).
i=1 g
e‘rl—l(R.L)

=

For subsequent parts of this paper we remember that by ([E4],(2.5),(a)),

SGRID-groupoids (R,e) with RT = R are canonically monoid splitting
and satisfy 7(R+) = RL.

2.5. PROPOSITION. For a SGRID-groupoid (R, ) we have the inclusions
(z,y€R)

(i) Llz o y] C £]y),
(ii) (£[z]) € £[r(2)] € £[z],
(ii) o(£[z]) € Llo(z)].

In addition, if (R,e) satisfies RT = R, the first inclusion of (ii) becomes
equality and (m € R})

(iv) L] C = + R,
(v) £[m] C Ri, in particular, £[0] = RJ;,
(vi) £z +m] € £le] + £[m].

(2.2) and (v) imply that R is a union of an increasing sequence of
SGRI D-subgroupoids, namely (£4[0])xen,-

Proof. The inclusions are shown mainly using the representation of
classes of £ from (2.4).

k-1
(i) Sreyl= |J (FHzop)+ Y r(RY)

k€No i=0

k-1
= Tk F 01'" .,.i 1
Ean U@ (y)+§ (RY))

k€No

k-1
= J @) + o) + 1 r(RY)

k€No
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k
U @+ (RY)

keNo i=0

k-1
U ) + -7 (RY) = £y).

k€ENy =0

k-1
(ii) r(2lz)) = (| (r*(=) + Z T™(R1)))

k€Ng

N

N

k-1
= U @) + L r(RY)

k€Ng i1=0
k-1
= U @) + 3 rH(RY),
k€N, i=0
since 7 € Partg g1 (R,G),

k-1
U * @) + Y r(RY)),
t=0

k€Ng

IN

since 77t (RL) C r9(R1), j € Ny,
Llr(z)] = £[0 o 2] (% £lz].

If RT = R, parallel to the calculations above by ([E4],(2.5),(a)) we conclude
7(£[z]) = £[r(2)).

(iii) is shown in analogy to (ii).

(iv) For z € R and j € Ny obviously z — r7(z) € jR* resp. ri(z) €
z + j(—R?1). Therefore we conclude

Liz]= |J (*F) +kRY € | (z + k(-R*) + kR*Y)
k€ENg k€No
=z+ |J*R+E-RY))Ca+ |J R+ | K(-RY)
k€Ny . k€E€Ng k€N
=2+ R+ (-RE)=z+ Ry .

(v) is obvious; (vi) is proved similarly to the above. u

To a certain extent, (R/£,e) reminds of a SGRI D-groupoid, although
in general there is no canonically given underlying group, nor there is a
describing mapping. For the following interpretation, cf. (1.1).
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2.6. Remark. In the situation of (2.5), let denote the canonical projec-
tion R — R/£L by gg. Then the inclusions (ii),(iii),(vi) of (2.5) become

7(ge(2)) € ge(r(2)),
o(g¢(z)) € ge(o(2)),
a¢(z + m) C qe(z) + ge(m).
Roughly speaking, the groupoid homomorphism g¢ behaves similar to a
homomorphism between SGRI D-groupoids.

In ([E2],(2.17)) it was shown for group related (2-)symmetric groupoids
that the relations £ and

M := Rz,
(cf. ([E4],(1.9)) for the definition) coincide. The coincidence of classes of both

relations has far-reaching consequences for the SGRID-groupoids under
consideration.

2.7. THEOREM. Let (R,¢) be a SGRID-groupoid with RT = R and
suppose
VeeR IyeR:Mz]= Ly

Then Ry is a group, and £ C I (where the latter is implied independently
by both the condition for the classes of MM and £, and 'Ri being a group).

‘Proof. For z € R, let y € R such that M[z] = £[y]. Using (2.5) we
conclude

M{r ()] = 7(M{z]) = 7(£[y]) = L[r(¥)),

as well as

Mz} < Mr(2)]

W)

£[y) Llr (v

whence M[z] = M[r(z)]. Thus for all z € R holds z ~ 7(z) € RL N(-RY),
therefore R C —Ry, and R{ turns out to be a group. Now (2.5),(iv)
yields £[z] C M(z] for all z € R (or independently from R being a group,
z € M[z] = L£[y] implies £[z] C (£ o £)[y] = L[y] = M[z] by transitivity of
L) =

As a consequence we get

2.8. LEMMA. Let (R, o) be a SGRID-groupoid with RT = R and £ = M.
Then (R/L, ¢) is a right zero band.
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The notion of a right zero band can be found in ([RS1],p. 28) et al. . In
zero bands, the binary operation is given by projection onto the first resp.
second factor.

Proof. Since £ = M, by (2.7) R} is a group, i.e. RE = R1, and
£[z] = 2+ R+ (2 € R). Hence we get for z,y € R by (2.2) and (2.5)(i)

£lz] o Ly] = L[z e y] = L[y]. .

For the rest of this paper, among others we investigate a certain class of
SGRI D-groupoids which covers k-symmetric SG RI D-groupoids (see [E3)
and chapter 3 of this paper).

2.9. PROPOSITION /DEFINITION. For a SGRID-groupoid (R,e) we as-
sume T satisfying

(K) VzeRIkeN:rh(z)==z.
SGRID-groupoids R with condition (K) have the properties

(1) (R, o) is left cancellative.

(2) For any a,b € R being given, the equation a ¢ z = b has a unique
solution.

(3) Every term in R can be represented in bracket free notation.

Proof. Throughout the whole proof, for a,b € R let a, be naturals
such that according to (K), 7%(a) = a, 7°(b) = b, and let ¥ € N be a
common multiple of a and g.

(1) For z € R we conclude using (2.3)

zea=zeb=>ze...0z0a=z0...0z0b
S et N e’

>z-1(z)+7(a)=2-17(z)+ 77(d)
=a=0>".

(2) Put z:=gae...0aeb. By (2.3) we deduce
y-1
aege...eaeb=0a~71"(a)+77(b)=0b,
v-1
hence z is a solution. Uniqueness now follows by (1).

(3) Let ¢ € R. It is sufficient to show that (aec)eb can be written without
brackets. Since go...0a b = b, and e is left distributive by ([E4],(2.1)),

~
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we conclude

(aec)eb=(aec)e(ae...0aeb)=aeceas...0q0b. L]
v -1
As a kind of converse of (2.7) we prove
2.10. ProPOSITION. Let (R,e) be a SGRID-groupoid satisfying condi-
tion (K) and RT = R. Then R is a group, and the relations 9 and £

coincide. In particular, if R is finite, R is always a union of cosets by a
subgroup of the underlying group.

Proof. In case that r satisfies condition (K), we show —R1 C R{,
hence R{ is a group. To this end, let z € R, k € N such that 7%(z) = =,
and put p:= z — 7(z). Then we get

-p=T1(z)—-z=1(z)— ‘rk(:c)

k-1 k-1 k
=1(z) = Y @)+ ) (z) - (=) = Y_(r*(z) - 7¥(z)) € B3
£=2 =2 £=2
ERL
Now let y € M[z] = 2 + Uyey, (R, ice. ¥y = 2+ m1 +...+ my, with j € Ny,
my,...m; € RL appropriate. We can find 4 € N such that gk > j and
conclude

y—z=y-7%z) e jR* C (uk)R*,

thus y € £[z] by (2.4) and since 7(R*) = R*. Applying the last part of
(2.7) completes the proof. m

2.11. PROPOSITION. Let (R, ) be a SGRID-groupoid with RT = R, let
R{& be a group, and assume the ezistence of £ € N such that 'R,i = (R,
Then £ = 9.

Proof. Since R{ is a group, for z € R by (2.4) and 7(R1) = Rt we
conclude
Llz] = U H(@) +kR* = T4 (z)+IR = TY(2)+RE =2+ RL =M[z). =
keN

3. Derived groupoids and k—symmetry

For a given groupoid (R, ), by a derived groupoid we understand R
equipped with a binary operation formed by compositions of x and the
canonical projections from R X R to R, to be more precise

3.1. DEFINITION. Let (R, ) be a groupoid.
(a) Denote by ) the minimal subset of R®*® such that
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(i) the canonical projections 7; onto the i-th factor (i = 1, 2) are elements
of Q,
(i v,weR=>vrwe

(b) Moreover, let ¥ := {¢; : R x R - R} £ € N}, where we define
inductively

Y1(z,9) i= 2 xy, Yep1(2,y) 1= % e(z,y).

By definition, ¥ C ). We call (2 the set of derived binary operations on R.
For the binary operation on R given by w € 2 we shall sometimes write x,,.
Furthermore, w € § can be represented merely using 71, 7, and *. If m is
the minimal number of occurences of x over all such representations for w,
we call m + 1 the length of w.

2 is the clone of terms of the groupoid (R,*).—

For the concepts used in the following, cf. the introductory part of [RS1].
The subsequent result was already shown in ([RS2], p. 249), coming from a
slightly different viewpoint. We shall give a direct proof.

3.2. THEOREM. If (R,x) is an idempotent resp. entropic groupoid, then
(R, ) is an idempotent resp. entropic algebra.

Proof. The assertion concerning idempotency is obvious. In order to
prove the entropicity part we introduce

Q, = {w € Q|length of w<n} (n€N)

and show inductively that (R,,) is an entropic algebra for all n € N, in
other words,

Vowe Q.Y a,b,c,d € R:v(w(a,b),w(ed)) = w(v(a,c),vb,d)).

For @ = {m,m2} and Q; = {m, 7, %, %} one verifies immediately that
(R,$%), (i = 1,2) is an entropic algebra.

Now let a,b € R and write p(a,b) := a xb. For the inductive step from
nton+1let v,w € Npqq and vy, v2, wy, ws € Q, such that

v(a,b) = p(v1(a,b),v2(a,b)),w(a,b) = p(wi(a,b), ws(a,b)).
With another ¢,d € R we calculate using entropicity of u

v(w(a" b)’ w(cv d)) = :u'(vl(u(wl(a’ b)? w2(a’ b))’ p’(wl(c’ d)’ w2(c’ d)))7

V2 (/‘('wl(a» b), w2(a7 b))’ ”(wl (C’ d)v w2(cv d))))

I&:Dﬂ(ﬂ(vl(wl(aa b)’ wl(c’ d))’ vl(w'l(a’ b)’ w2(c’ d)))’

w(v2(wi(a, b), wi(c, d)), vo(w2(a, b), wa(c, d))))
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lNzDﬂ(,u'(wl(”l (aa c), vl(ba d))? w2(vl(a’ c)? vl(b’ d))),

w(wi(v2(e, ), v2(bv d)), w2(v2(a, c), v2(d, d))))
= l‘(/"(wl(vl(a’ c)v G (b7 d))v wl(v2(a7 c)7 v2(b’ d)))?

P’(w2(vl(a’ c)’ vl(b’ d))’ w2(v2(a” C)’ vZ(bv d))))

lr:J—:Du(wl (“(vl(a’ c)? 02(‘1’ c))v /"(”I(b’ d)v ”2(67 d)))v

wz(l‘(”l (aa C)a vZ(a’ c))’ l‘(vl (b7 d)? ”2(bv d))))
= w(v(a,c),v(b,d)). ]

If we denote by *,, the binary operation on R? induced by *,, (w € Q)
in a canonical manner, for an entropic groupoid (R, *) and another v € Q,
(3.2) means that

V(@ *y by € *yy d) = v((a,c) *y (b,d)) = v(a,c) xy, v(b, d),

or in other words, v : (R?,%,) — (R, %) is a homomorphism.
The second half of the subsequent theorem to a certain extent generalizes

([E4],(1.4)).

3.3. THEOREM. For a SGRID-groupoid (R,e) and w € Q, the groupoid
(R,e4) is a SGRID-groupoid with underlying group G and describing map
given by z — w(z,0), or in other words (z,y € R)

(i) w(z,y) = w(z,0) + w(0,y);

and as a consequence,

(ii) w(z,y) + w(y,z) =z +y.

With another v € ) we get general balancedness, i.e.

(iii) v(z,y) = w(z,y) <= v(y,z) = w(y,z),
which yields for n € N

TO...0Z0Yy=Yy < Yo...0yexr =1,
n n
To...0Z0 Y= <= Yyeo...0yer =1y

n n

Proof. (i) By induction. For the canonical projections the statement is
immediate. Now let w be a binary operation of length > 2 and w = w, e wy,
where w; € Q, (i = 1,2). With z,y € R we calculate using ([E4],(2.1))
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w(z,y) = wi(z,y) e w2(z,y)
= o(wi(z,y)) + 7(w2(z,v))
= wi(o(z),0(y)) + w2(r(z),7(v))
= wi(0(2),0(0)) + wr(0(0), 0(3)) + wa(r(2),7(0)) + wa(r(0), 7(¥))

= o(wi(z,0)) + T(w2(z,0)) + o(w1(0,y)) + 7(w2(0,y))
= wl(zs 0) i ‘UJQ(:B, 0) + w1 (0, y) 1 w2(0, y)
= w(z,0) + w(0,y).
(i) w(z,y)+ w(y,z) = w(z,0) + w(0,z) + w(y,0) + w(0, y)
| (—_) w(z,z) + w(y,y) =z +y by idempotency.
1
(iii) By (ii) we deduce
w(:z:, y) - v(:z:, y) = v(yvz) - ‘lD(y,I),
from which we conclude the desired equivalence. w

We add the note that on a SGRI D-groupoid (R, o), two elements v, w €
 define a congruence relation on R by
By = {(z,9) € R x R| v(z,y) = w(z,y)}.

These relations will be considered in a later paper in combination with
uniform structures on SGRI D-groupoids [E5].— The next result generalizes
([E2],(2.17)) and ([E1], Prop. 6).

3.4. THEOREM. Let (R,e) be a SGRID-groupoid, k € N. The following
are equivalent

(1) Tk = idR,
(2) Vz,ycR:ze...0z0y=1y (k-symmetry).
k

k-symmetric SG RI D-groupoids are canonically monoid splitting and RL =
Ry = Ri. The relations M and £ coincide, and (R/L, ) is a right zero
band.

Proof. The equivalence of (1) and (2) follows by (2.3) and 7(0) = 0.
Since 7* = idg implies RT = R, and condition (K) is a consequence of
the k-symmetry law, we get that (R,e) is canonically monoid splitting by
([E4],(2.5)), conclude R = R1 = R+ and £ = 9N by (2.10), and the last
assertion by (2.8). m
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By a simple calculation one shows immediately

3.5. PROPOSITION. If (R,%) is a groupoid satisfying the k-symmetric
law, then (R,xy,) satisfies the afm—symmetric law. »

(3.5) together with (3.3) and (2.3) implies

3.6. ProposITION. If (R,e) is a k-symmetric SGRID-groupoid, then
(Ry0y,)isa -gm"k—'ly—symmetric SG RI D-groupoid with describing map 7¢. u

(E1)
(E2]
(E3]
(E4]

(ES)
K]

[R]
[RS1]

[RS2]
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