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Preliminaries 
The present treatise forms the first half of a series of papers on groupoids, 

the binary operation of which is strongly influenced by the structure of 
an abelian group. The concept of group relatedness (1.1) has already been 
considered with respect to symmetric groupoids [El]. The methods used 
there will by applied below to a more general situation, where the symmetry 
law and by parts also (left) distributivity is dropped. 

Group related (symmetric) groupoids turned out to be of high value 
for the description of homotopy sets [5P x S ' ;S n ] , p,q,n £ N (where Sm 

denotes the m-dimensional sphere for a natural m), which themselves are 
non group related symmetric groupoids with the binary operation induced 
by point reflection (cf. [E1],[E2]) on spheres. 

Further examples of group related groupoids have been treated in ([S], 
chapter 3) and ([SS], chapter 3), where the binary operation is named a lin-
ear multiplication. Their significance is shown e.g. in ([SS],(3.9)), where the 
authors prove that for a locally compact connected abelian group, each mul-
tiplication (i.e. continuous binary operation) preserving the neutral element 
0 is homotopic rel {(0,0)} to a linear multiplication. 

After some inevitable trivial observations in the beginning, in chapter 
1 we are mainly concerned with group related groupoids merely satisfying 
the idempotency law. It is a consequence of an analysis of the situation 
given in [El] that in particular groupoids, which contain a whole monoid, 
are suitable objects for investigation. (This standpoint comes clear the more 
in the middle of chapter 2, where parallels of [El] and our present subjects 
of interest are pointed out.) The philosophy above is closely related to the 
notion of partial homomorphisms on subsets of abelian groups, which prove 
to be a useful tool throughout the whole paper; and both together lead 
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to the concept of a monoid splitting group related idempotent groupoid. 
For such groupoids we can form quotients and extended groupoids, which 
inherit algebraic identities as well as group relatedness ((1.18),(1.19) and 
also (2.2)). 

In chapter 2, to idempotency we add one sided distributivity and get 
plenty of equivalent conditions (2.1), among others entropicity. Therefore, 
group related idempotent distributive groupoids in particular are groupoid 
modes [RS], i.e. groupoids with an idempotent and entropic binary oper-
ation. In (2.3),(c), as an answer to a question posed by A. Romanowska, 
we provide an example of a group related groupoid mode not being isomor-
phic to a subreduct of an affine space. The respective variety of algebras 
is of central interest in ([RS], section 2.5). Moreover, (2.1) forms a certain 
contrast to ([JK], (3.3.9)), where it is shown that each idempotent entropic 
groupoid is related (in a sense analogous to (1.1)) to a commutative semi-
group with a pair ( / , g) of semigroup automorphisms as describing mappings 
and f(x) + g(x) = x, where x denotes an element of the semigroup.- In the 
second part of the chapter we point out circumstances, under which group 
related idempotent distributive groupoids are monoid splitting in a canoni-
cal sense and discuss several aspects around this property. 

The last chapter is dedicated to the description of the structure of canon-
ically monoid splitting group related idempotent distributive groupoids from 
various points of view. 

Notation and terminology. Different from common usage, for a groupoid 
(TZ,*), a subset R C 1Z X TZ is called a congruence, if R is a subgroupoid of 
( f t ,* )x(7e ,*) . 

By the symbol o< we denote the property of being a submonoid. 
In order to simplify notation, we sometimes omit operation symbols and 

denote algebras only by their underlying sets. For instance, we speak of an 
abelian group G instead of writing (G, +). 

1. Idempotent groupoids 

1.1. DEFINITION. Let (G, + )be an abelian group, TZ C G and • : 11x11 -»• 
TZ a binary operation. The groupoid (7£, •) is called a groupoid related to 
G, or simply group related without specifying the respective group, if there 
is a pair (tr, r ) of mappings from TZ to G such that 

V x,y e1l:x • y = a(x) + r(y). 

We call a and r mappings describing the binary operation •, and (G, +) an 
underlying group of (TZ, •). 
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The following point of view plays a role later in chapter 2 and in a 
subsequent paper [E3]. 

1.2. R e m a r k . For a groupoid (TZ, •) we define • : TZ X TZ —> TZ assigning 
(a, b) b»a, and call (71, •) the dual or opposite groupoid. If (TZ, •) is group 
related with a pair (a, r ) of describing mappings, then (TZ,i) is also group 
related with the pair (A, f ) of describing mappings, where A — T,T = A. 

Throughout this paper, for an abelian group (G, +) and h € G, by 
dh : G —• G we denote translation by h. By means of translations we can 
show that without loss of generality, for group related groupoids TZ we can 
always assume 0 € TZ, where 0 denotes the neutral element of its respective 
underlying abelian group, as well as some properties for the pair of describing 
mappings. This is shown by 

1.3. PROPOSITION. Let (TZ,*) be related to (G, +) with a pair (<r,r) of 
describing mappings. 

(a) Fix g 6 G and put TZ' := TZ+g. By means of the bijection d'_g : TZ' —• 
TZ (where d'_g denotes the restriction of d-g in both domain and range) we 
get a binary operation •' on TZ' assigning 

(x,y)»d'Z\(d'_g(x).d'_g(y)). 

Clearly, d'_g is an isomorphism between the groupoids (TZ,•) and (TZ',»'), 
and (TZ', •') is related to (G, +). 

(b) For any g 6 G, the pair (dg o a, o r ) describes • as well. If 
0 G TZ, there is a describing pair (<T\,T\) (resp. ( ¿ ^ i ^ ) ) such that <Ti(0) = 0, 
ri(7Z) C TZ (or r2(0) = 0, a2(TZ) C TZ, respectively). 

P r o o f , (a) We get describing maps for by 

<T' : TZ* —• G, I H a(x — g) + g, r' : TZ' —• G, x >-y T(X — g). 

(b) The statement concerning (dg o a, o r ) is obvious. Now let 0 £ TZ, 
put h := and <J\ := o a, ri := dh o r . Then crj(O) = 0, and 
TI(X) = (7\(0) + r i (z ) = 0 • x for x G TZ, hence T\(TZ) C TZ. In a similar way 
we prove the existence of 02 and T2. • 

1.4. PROPOSITION. Let (TZ,•) be related to (G, +) with describing map-
pings a, T : TZ —* G. The following are equivalent: 

(1) V x £ TZ : x • x = x (idempotency). 
(2) cr = id'* - r , 

where id^ denotes the canonical injection from TZ to G. (1) or (2) implies 

(3) V x,y 6 TZ : x • y + y • x = x + y, 
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and from (3) follows balancedness, i.e. 

(B) V x,y € TZ : x • y = y <=>• y • x = x. 

Moreover, if G has no elements of order 2, (1), (2) and (3) are equivalent. 

P r o o f . Assuming that there is no element of order 2 in G, starting from 
(3) we obtain 2(x - r(x) - <r(x)) = 0, hence (2) holds. All other statements 
can be proved by simple calculations similar to the above. • 

Because of (1.4), instead of a pair (<r, r ) , one mapping is enough in order 
to describe an idempotent group related groupoid (TZ, •). In this situation 
we prefer to call r the describing map of (TZ, •). Using the symbol A with 
respect to a given idempotent group related groupoid (TZ, •), in the sequel 
we always mean the mapping defined by id'Ä —r. 

1.5. P R O P O S I T I O N / D E F I N I T I O N . Let (1l',»') be an idempotent groupoid 
which is related to (G, +). Then there is a group related idempotent groupoid 
(72-, •), isomorphic to (TZ', •'), with a unique map T describing • such that 

and T(TZ) C TZ as well as A(TZ) C TZ, ct(0) = 0 as a consequence. Group 
related idempotent groupoids (TZ, •) with describing map r satisfying (•) are 
called strictly group related idempotent groupoids (or SGRI-groupoids for 
short) with underlying group (G, +). 

P r o o f . As in (1.3),(a), via translation by —g (g € TZ') we get a groupoid 
(TZ,•) with 0 € TZ, which is isomorphic to (TZ',*'). Applying (1.3),(b) we 
find a describing map r for • satisfying r(0) = 0, hence <r(0) = 0 by (1.4). 
Moreover, r (x) = 0 • x resp. CR(x) = x • 0 for x € TZ yield T(TZ) C TZ and 
o(TZ) C TZ. 

Now let T' : TZ —• G be another describing map with r '(0) = 0. By 
x - T(X) + r(y) = x - T'(X) + r'(y) (x,y E TZ) and r(0) = 0 = r ' (0) we 
conclude r = r ' . • 

Because of (1.5), the mappings A, T belonging to a 5GriZ/-groupoid (TZ, •) 
can as well be interpreted as mappings with range TZ. This point of view 
will play a role in later parts of the paper, whenever compositions with 
these mappings are considered. In order to avoid cumbersome formulation, 
we agree to the following 

C O N V E N T I O N . Troughout the whole paper, if not specified otherwise, 
whenever a 5Gii7-groupoid is written by (TZ, •), we always denote the re-
spective underlying group by (G, +) and its describing map by r . 

The property of being a 5Gi?/~groupoid is transferred to subgroupoids 
and products in a canonical manner. 

0 6 TZ,T(0) = 0 , 
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1.6. R e m a r k , (a) Let (7Z,*) be a SGflJ-groupoid, 0 6 S C K, and 
(<S, •) a subgroupoid. Then (<S, •) is a 5G.R/-groupoid (with G as underlying 
group and r | 5 as describing map). 

(b) Given an index set I and i € I , let (7£ t,» t) be a SG-RJ-groupoid 
with underlying group G t and describing map r t . Then I i s a SGRI-
groupoid with underlying group f l t g / and describing map given by the 
assignment 

Yl Tlt - J ] G t , ( r t ) , e / ~ ( r , ( r , ) ) , € / . 
t6/ 

The transfer to quotients is discussed later in (1.18). 
1.7. R e m a r k . Let (TZ, •) be a 5Gi£ J-groupoid, and denote by Z(Tt) := 

{x € Tt\ V y G Ti : x»y = yx} the centre of 11. The following are equivalent: 

(a) (H, •) is commutative. 
(b) Z(H) ± 0. 
( c ) V i e K : 2 r(x) = x. 

In particular, commutative SG/¿/-groupoids consist only of elements which 
can be halved in the underlying group. 

P r o o f , (a) => (b) is obvious. 
(b) =>• (c). Since Z(1t) ^ 0, there is x e U such that for all y £ K holds 

i - r (x) + r(y) = y - r(y) + r(x); 

so for y := 0 we get 2T(X) = x. Inserting this into the above equation yields 
(c). 

(c) (a). By calculating 

x • y = x - T ( X ) + R(y) = T ( X ) + R(y) = y - r(y) + r (x) = y • x. m 

It can easily be seen that commutative SGi2/-groupoids come under the 
concept discussed later in (2.1). 

1.8. DEFINITION. Let (G ,+ ) be an abelian group, B C G, write 0 - 5 : = 0 , 
and m • B := B + (m - 1 )5 for m e N. Using N0 := N U {0} we denote, by 

By := n • B the submonoid of G generated by B, 
n€N0 

Bx '•= By + (—By) the subgroup of G generated by B resp. By, 
BY := By H (—By) the maximal subgroup contained in By. 
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1.9 . PROPOSITION/DEFINITION. For an abelian group (G,+), let B,AC 
G. We put 

RB- = {(*> y) e A x A\ y - x e B}, 

R&x): = { y z A \ ( * , y ) £ R B } € A), 
A/B: = {R£[X]\ x 6 A}. 

If(B,+) is a submonoid of(G,+), the relation Rg is a reflexive and tran-
sitive relation on A. If B forms a group, Rg is an equivalence relation. For 
a monoid B and A + B C A we have Rg[x\ = x + B for x 6 -A, and get a 
bijective map c : A/B —• A/By by the assignment I + B H I + By, or in 
other words, x -f B = y + B x + By = y + Br for all x,y € A. If A is 
also a monoid, the relation Rg is a congruence w.r.t. +, and A/B carries 
the monoid structure which is canonically given by A/By. 

Proo f . Let B be a monoid. Then A^ C R^, since 0 € B, and for 
(x,y), (3/, z) € Rg there is m,n 6 B such that y — x = m, z — y = n, 
consequently, z — x = m + n € B, thus (z, x) € Rg, and Rg is shown to be 
transitive. For a group B, reflexivity of Rg is a consequence of —(y — x) 6 
B <i=>- x — y G B. The inclusion Rg[x] C x + B always holds. Assuming 
A + B C A we get x + B C A + B C A for x € A, hence x + B C R%[x]. 
For x, x' 6 A we have 

x + B = x' + B 3 m,m' £ B : x = x' + m,x' = x + m,' 
x - x',x' - x e B 

«=>• X - x ' e By, 

which shows that c is well defined and injective; the surjectivity of c is 
immediate. For a monoid A and (x, y), (x', y') € Rg, clearly x+x' , y+y' € A 
and y — x + y' — x' € B; hence (x + x',y+y') € Rg, which shows that Rg is a 
congruence. Finally, the binary operation on A/B, given by the assignment 

(x + B, y + B) » (x + y) + B 

coincides with the one defined by c -1(c(x -f B) + c(y + B)). • 

The following assertions are proved straightforward. 

1.10 . PROPOSITION/DEFINITION. Let (G,+),(H,+) be abelian groups, 
i / i , 5 C C C G such that A + B C C. A mapping tp:C H is called a 
partial homomorphism with respect to A and B, if 

V a € Ay b e B :<p(a + b) = <p(a) + <p(b). 

The set Parti4)B(C, H) of partial homomorphisms from C to H w.r.t. A 
and B forms an abelian group with component wise defined addition and 
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the constant map to 0 € H as neutral element. If G = H, then id^ — 
<p € P a r t a , b ( C , G ) for <p 6 P a r t ^ t s ( C , G ) , where id^ denotes the canonical 
injection from C to G. m 

1.11. PROPOSITION. LetG be an abelian group and A, B C G. IfA+B C 
A, then A + By C A; and 0 6 A implies By C A. 

P r o o f . Trivially A + 0 C A, and inductively one can show A + nB C A 
for all n e N: 

A + (n + 1 ) 5 = A + B + nB C A + nB C A. 
IND 

Therefore, A + UneN0 nB = A + By C A. m 

1.12. R e m a r k . Let G,H be abelian groups, <D ^ A, B C C C G, 0 € 
A U B, A + B C C and <p e Part , ! < B (C ,H) . Then y>(0) = 0. 

P r o o f . If 0 6 A, for b € B we conclude 

<p(b) = <p(0 + b) = y>(0) + <p{b) => y>(0) = 0. • 

1.13. PROPOSITION. For abelian groups G,H, let 0 ^ A,B C C c G, 
A + B C A and (p e P a r t a , b ( C , H ) . If 0 e A, then tp e P a r t a , b „ ( C , H ) , 
and <p\By is a monoid homomorphism. 

P r o o f . Let a € A, 0 ^ b € By, i.e. there exists k € N with b = 
6 i + ... + &*, {h,...bk G B). 

<p(a + bi + ... + bk-i +bk) y * ' 
eA+ByCA 

= cp(a + 6i + ... + bk-i) + <p{bk) since <p € P a r t ^ ^ C , G), 

= ¥>(«) + + • • • + <f(h) IND 

= Ma) + <p(bx + b2) + ... + <p(bk) 

= ¥>(«) + V>(&i + • • • + bk). IND 
For a = 0 the above calculation shows that <p\By is a monoid homomor-
phism. • 

1.14. R e m a r k . For abelian groups G,H,let Q ^ B C A C G, 0 e A. 
Then the following are equivalent: 

(i) A + By C A, <p e Par t A i B y (A, H). 
(ii) A + B C A, <p G PartAlB(i4, # ) • 

P r o o f , (ii) =>• (i) is implied by (1.11) and (1.13), and (i) => (ii) is 
obvious. • 
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1.15. PROPOSITION. Let (£,+),(#,+) be abelian groups, 0 € A C G, 
a n d B o< G be a submonoid such that A + B C A. For Ax := A + Bx holds 
the inclusion AX + BXCAX and x+Bdy+B ± 0 <=>• x + + 
/ o r all x,y £ A . Moreover, (p £ P a r t ^ ^ - A , # ) /ias a unique extension 
<px£-PzrtA.tBx(Ax,H). 

P r o o f . Clearly, + J3>. C and the equivalence follows by an easy 
calculation. As for the extension of <p, let x £ Ax, x = r + a — b, t £ A, 
a,b € B, and put 

<Px(x) := <p(r) + <p(a) - <p(b). 

In order to show that (px is well defined, let s £ A, a',b' £ B and x = 
r + a-b = s + a' -b'. Then 

r + a + b' = s + a' + b => 
<p(r + a + b') = <p(s + a' + 6) =» 

<p(r) + <p(a) + <p(b') = <p(s) + <p(a') + <p(b) =• 

<p(r) + <p(a) - <p(b) = <p(s) + <p(a') - <p(b') = <fx(x). 

<Px € Partj4A)BA(./lA,Gi), since for x £ Ax, h £ Bx and r £ A, a,a',b,b' £ B 
with x = r + a — b and h = a' — b' we get 

<px(x + h) = <px(r + ( a + a') ~(b + b')) = cp(r) + y>(a + a ' ) - <p(b + b') 

= + <f(a) ~ <P(b) + f ( a ' ) - <f(b') = <px(x) + cpx(h). 

Now let ^ G PartxA,BA(-4A>Gr)? i>\A = (p. In particular, i/>\Bx is a group 
homomorphism, and for x £ Ax, a,b £ B, r £ A such that x = r + a — 6 we 
get 

V>(r + a — b) — ip(r) -f ijj(a - b) = V>(»\) + V'(a) - V'CO 

-<fi(r) + <p(a) - <p(b) = <px(z). m 

1.16. DEFINITION. For a SGiZZ-groupoid (TZ, •) we agree to write 

TZJ := T(TZ), TZl := a(TZ). 

Obviously, TZ = KT + TZX. 
1.17. DEFINITION/REMARK. Let (TZ, •) be a SG&Z-groupoid and M o< 

G. The groupoid (TZ, •) is said to be Af-splitting, or monoid splitting with 
respect to Af, if 

TZ + A f C K , T £ ?&Ttn^(Tl,G). 

Clearly, if (TZ, •) is A/"—splitting, r\M is a monoid homomorphism (cf. (1.13)). 
(TZ, •) is called canonically monoid splitting, if it is monoid splitting with 
respect to TZyJ 

t Since no ambiguity can arise, we write "Ry instead of "*")>-. 
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1 . 1 8 . THEOREM. Let (7Z, •) be a SGRI-groupoid which is Ai-splitting for 
Ai o< G. Then we have the formula 

V r,s € ft V p,q e Ai : (r + p) • (s + q) = r • s + p* q. 

If (Ai, •) is a subgroupoid (thus a SGRI-groupoid by virtue of (1.6)), then 
•) is an idempotent subgroupoid for all x £ TZ, the relation is a 

congruence w.r.t. by the assignment 

n / A T x K/Af 3(x+Ai,y + Ai)»x»y + Ai € IZ/Ai 

we get a binary operation • on TZ/Ai, and the canonical projection 

qtfiH^ 11/Ai, x * R%[x) = x + Ai, 

is a homomorphism w.r.t. • and m. The groupoid (IZ/Ai,m) is a SGRI-
groupoid with underlying group G/Ai, and describing map given by 

r^ : TZ/Ai G/Ai, r + Ai * r(r)+Ai. 

P r o o f . For p, q € Ai, r, s 6 1Z we calculate 

(r + p) • (5 + q) = r + p - r ( r + p) + T(S + q) 

= r + p- r ( r ) - r(p) + T(S) + r(q) for r <= PartnYAF(1Z,G), 

= r - r ( r ) + T(S) + p - r(p) + r(q) 

= r»s + p»q. 

By this formula we conclude for x, y £ TZ and a subgroupoid (Ai, •) 

x • y + Ai = x • y + Ai • Ai = (x + Ai) • (y + Ai), 

hence (Rtf[x], •) is a subgroupoid, is a congruence, and trivially, qjj is a 
homomorphism; thus (7Z/Ai,* ) is idempotent, since (1Z, •) is an idempotent 
groupoid. The mapping T/J- is well defined, since for x,x' £1Z we get 

x + Ai = x' + Ai ^ x + Aiy = x' + Air 

=>T(x+Aiy) = T(x'+Aiy) 

=»r(x) + r(Air) = r(x') + r(Air), since r £ Par t * ,^ ( f t ,G) , 

=»T(X) + Aiy = T(X') + Aiy, since R(Aiy) < Aiy, 

r(x) + Ai = r(x') + Ai. 

r(0) = 0 implies Ttf(Ai) = Ai, and Ttf describes •, since 
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(x + AO • (y + M) = x • y + Ai 
= X- r(x) + r(y) + Af 
= (x + Af) + ( - r ( x ) + Af) + (r(y) + Af) 
= (x + Af) - Tjf(X + Af) + Tj\[{y + Af), 

by (1.9), for G/Af inherits the group structure from G/Afy. m 

1 .19 . P R O P O S I T I O N / D E F I N I T I O N . Let ( f t ,*) be a SGRI-groupoid which 
is Af-splitting for AT o< G, and suppose t(M) O< Af. For TZX := ft + Afx, 
denote by Tx the extension of T given by (1.15). Then (1ZX,»X) with 

• x : ftA X ftA ftA, (r, s)~r- rx(r) + rx(s), 

is a SGRI-groupoid (with G as underlying group and describing map r x ) 
which is Afx-splitting, and rx(Afx) < Afx. We call ( f t A , *x) the extended 
groupoid of (ft, •) by Af. 

P r o o f . ftx • Tlx C Kx, since for r,s e ft, a,a',b,b' e Af and x := 
r + a — b, y := s + a' — b' holds 

x»xy = r + a-b-(r(r) + r(a) - r(b)) + r(s) + r(a') - r(b') 
= r - r(r) + r(s) + a + r(b) + r(a') - (b + r(o) + r(b')). 

^ N W M ^ ^ ^ ^ M P ^ H ^ ^ 

en €A/" €JV 
By r x (0) = r(0) = 0 follows that ( f t \ » A ) is a SGRI-groupoid. (1.15) 
implies that ( f t x , is Afx-splitting, and rx(Afx) < Aix is a consequence 
of r(Af) o< Af and tx being a group homomorphism (cf.(1.17)). • 

2. Idempotent and distributive groupoids 
For groupoid modes [RS] it is immediate that idempotency and entrop-

icity imply both left and right distributivity. On the other hand, idempotent 
and even from both sides distributive groupoids are not necessarily entropic. 
In case of SGRI-groupoids, entropicity turfls out to be equivalent to left 
and right distributivity. 

2 . 1 . T H E O R E M / D E F I N I T I O N . For a SGRI-groupoid (FT,*) the following 
are equivalent: 

(LD) V x, y, z 6 ft : (x • y) • (x • z) = x • (y • z) (left distributivity), 
(RD) V x, y, z € ft : (x • z) • (y • z) = (x • y) • z (right distributivity), 
(E) V w, x, y, z € ft : (x • y) • (w • z) = (x • w) • (y • z) (entropicity), 
(Part') a € Par t^r ^x ( f t , ( ? ) , 
( P a r t ) T € P a r t ^ T ^ F T . G O , 
(Horn') V x, y € ft : o(x • y) = cr(x) • o(y), 
(Horn) V x, y G ft : r(x • y) = r(x) • r(y), 
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where (Horn) can also be expressed by the formula 

V x, y € Te : r ( x - r ( x ) + r(y)) = r ( x ) - T2{X) + r2(y). 

If one of the above conditions is satisfied, 1Z is flexible, i.e. 

(F) V x,y G U : (x • y) * x = x • (y • x), 

and for all x € 11 holds CT(T(X)) = r(<7(x)), or equivalently, r ( x ) - r 2 ( x ) = 
r ( x - r ( x ) ) . We call a SGRI-groupoid (11, •), satisfying one of the equivalent 
conditions above, a strictly group related idempotent distributive groupoid (or 
SGRID-groupoid for short). 

P r o o f . (Horn) =>• (E). By calculation, making use of the formula below 
(Horn). 

(E) => (RD). Put w - z in (E) . Then 

(x • y) • z = (x • y) • (z • z) = (x • z) • (y • z). 

(RD) (Horn). From right distributivity we get the equation (x,y,z G 

K) 

r(y - r(y) + r(Z)) = R(y) - r ( x - r ( x ) + r(y)) + r ( x - r ( x ) - f T(Z)), 

which yields for x : = 0 

r(y • z) = R(y) - r2(y) + T2(Z) = R(y) • T(Z). 

(LD) (Horn) is shown by calculations similar to the above. 
(Horn) (Part). (Horn) implies 

V x, y G U : r (x - r ( x ) + r(y)) - T(X - r (x ) ) + r2(y), 

thus r € Part^T ^ ( I t ^ G ) . 
(Part) (Part') . Let r £ 11, m e H1. Then 

a(r(r) + m) = r ( r ) + m — r ( r ( r ) + m) 

= ?•(»•) + m — T2(T) — R(m), since r G Partei- i 7 î . l(7£, G) 

= r ( r ) — r 2 ( r ) + m — r ( m ) 

- <r(r(r)) + <r(m). 

(Part ') =J> (Hom'). First we note that for a G Part7iT )TCi.(7e,G') and r € TZ 
holds 

a ( r ) = <r(r — o(r) + <7(r)) = cr(r — <r(r)) + a2(r), 
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hence r(<r(r)) = <r(r) - tr2(r) = a(r - c ( r ) ) = <r(r(r)), and by partiality of 
a and commutativity of a and r we calculate for r, s € TZ 

a(r • a) = cr(cr(r) + r(s)) = <r2(r) + <r(r(s)) = <r2(r) + r(er(.s)) = <j(t) • o(s). 

(Horn') =>• (Horn). First note that (Horn') is equivalent to the formula 

V x, y € U : r(x - r (x) + r(y)) = r (x - r(x)) + r(y) - r(y - r(y)). 

This yields for a; := 0 

V y e Tl: r(y - r(y)) = r(y) - r2(y), 

consequently, 

T(X - R(x) + R(y)) = r ( x ) - r 2 ( x ) + R2(y). 

(F) follows, since by (RD) we get (x • y) • x = (x • x) • (y • x) = x • (y • x). • 

Some authors prefer to call (E) medial law and (F) diassociativity. How-
ever, we note that in our situation, the notion of diassociativity is com-
pletely different from the one used with respect to loops, where diassocia-
tivity means that any subloop generated by two elements is associative, i.e. 
a group (cf. [B], p.87). 

2.2. R e m a r k , (a) Canonically monoid splitting 5Gi?/-groupoids are 
SGRID-groupoids. 

(b) If in the situation of (1.18), (7Z, •) is a SGRID-groupoid, then also 
(lZ/Af,m ) is a SGRID-groupoid. Moreover, (A/*, -f, •) is an entropic algebra 
([RS],(127)). 

(c) If in the situation of (1.19), (TZ, •) is a 5Gi?/D-groupoid, then also 
the extended groupoid (1ZX,»X) is a SGRID-groupoid. 

P r o o f , (b) Since qx is a homomorphism, (!Z/Af,m) is distributive. 
(N , + , • ) is entropic by the formula in (1.18), by commutativity of + and 
entropicity of (jV, •). 

(c) By calculation, using (Horn) and the definition of r A . • 

Examples of 5C7.ft/D-groupoids can be found among affine spaces, which 
have been widely considered in ([RS], p.3, p.39ff). For the reader's conve-
nience we discuss these examples anew below in (2.3),(b). Preparing for this, 
for a module W over a ring L with unit and r € L, by tr : W —» W we 
agree to denote the mapping given by w r • w. Strictly speaking, in the 
following we sometimes consider only suitable restrictions of mappings tr 

(cf. (1.3)). 
All subreducts of affine spaces are isomorphic by translation to sub-

groupoids of SGRID-groupoids, but not necessarily vice versa, at least not 
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in a canonical manner. We shall illustrate this by one of the following ex-
amples and in a subsequent paper ([E3],(1.2)). 

2.3 . EXAMPLE, (a) Let G be an abelian group, H < G, h : G G a 
homomorphism such that h(H) < H. Then H, equipped with the binary 
operation 

(x,y) x - h(x) + h(y) 

forms a SGRID-gTonpoid. In particular, any group homomorphism induces 
on G the structure of a SGii/D-groupoid. 

(b) Let I be a ring with unit, W an ¿-module and V a submodule of 
W. For any r € L, on V we get the structure of an SG72/Z)-groupoid with 
the binary operation * r given by 

(x, j/) »-»• x - t r ( x ) + t r ( y ) = (1 - r)x + ry. 

Moreover, if L 6 {R,C, H}, and r € [0,1], each convex subset C of L with 
0 € C becomes a 5Gi?/Z)-groupoid by « r . 

(c) Let £ be a ring with unit, W an ¿-module and g \W -+W a linear 
map, g ^ idvv, having a fixed point xo / 0, and denote by • the binary 
operation on W given by 

(x,y)^> x - g { x ) + g(y) 

(cf. Ex. (a)). For a field K and a A'-vector space V, for r G K we consider 
on V the binary operation * r given by tr (cf. Ex. (b)). Then for all r £ K, 
there is no algebra monomorphism from (W, •) to (V, * r). In particular for 
a field L, the SGi?/.D-groupoid (W, •) is not isomorphic to a subreduct of 
an afline subspace of any vector space. 

P r o o f , (a) Idempotency is obvious. Since h is a group homomorphism, 
condition (Horn) of (2.1) is satisfied. 

(b) Similar to the proof of (a), using the fact that tr is a group homo-
morphism on {W, +). 

(c) For an algebra homomorphism k : (W, •) —• (V, * r) and x,y € W we 
get 

k(x - g(x) + g(y)) = (1 - r)k(x) + rk(y), 

and p(0) = 0 implies 

k(x - ff(x)) = (1 - r)k(x) + rfc(0). 

For the fixed point 0 ^ xo of g we conclude 

k(0) = (1 - r)k(xo) + rJfc(O), i.e. 
( l - r ) ( * ( x o ) - * ( 0 ) ) = 0. 
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In case r / 1 we get k(xo) = Ar(0), since V is a vector space, hence 
injectivity fails. For r = 1, the binary operation is trivial, but • is not, 
since g / idw; consequently there are x,y € W such that x • y ^ y, but 
k(y) = k(x) • k(y) = k(x • y), which again shows that k is not injective. • 

As was already mentioned in the preliminaries, in our investigations we 
orient ourselves from [El], where group related symmetric groupoids have 
been discussed. Such groupoids in particular are S G RI D-groupoids, which 
different from the general case (see (2.6)), are canonically monoid splitting 
with TZy = TZy, and TZr = TZ, because r for symmetric groupoids is even 
bijective. Since by means of these conditions, in generalization of the meth-
ods applied in [El], we can get far-reaching results for 5Gi2/D-groupoids, 
we now study circumstances of their validity for our situation. 

According to (1.6), underlying groups in the next proposition are all the 
same, and describing maps are given by restrictions of r . 

2 . 4 . PROPOSITION. For a SGRID-groupoid (TZ,•), also (TZ1,*) is a 
SGRID-groupoid. In addition, if 1ZT + TZy Ç TZ and r\TZy is a monoid 
homomorphism, then (TZy, •) and (TZy, •) are S G RID-groupoids as well, 
and TZy is a left ideal in TZ w.r.t. • , i.e. TZ • TZy Ç TZ 

P r o o f . The first assertion follows by (2.1),(Horn') and (1.6). Now let 
1ZT + TZy Ç 1Z, and r\TZy be a monoid homomorphism. r(TZ^) Ç 
implies T ( T Z Ç T Z £ , thus 1Z • TZ^ C T Z 1 + T ( T Z Ç TZ^ and trivially, 
TZ£ • TZy Q fcy- Hence 1Z£ is a left ideal as well as a SGRID-groupoid. 
From r (1Zy) Ç TZy and r\TZy being a monoid homomorphism we conclude 
T ( T Z $ ) Ç T Z $ , therefore 

TZ$ • TZ$ Ç <j(TZ$) + T(TZÇTZy - T(K$) + r ( f t ^ ) Ç 3TZ$ Ç 

which shows that TZy is a S G RI D-groupoid. m 

Corresponding results for 1ZT, TZy and TZy instead of TZL, TZy and TZy 
can be obtained by dualizing applying (1.2). 

2 . 5 . PROPOSITION. Let (TZ,») be a SGRI-groupoid. 
(a) The following are equivalent: 
(1) (f t ,*) is a SGRID-groupoid, and 1ZT = TZ. 
(2) TZ is canonically monoid splitting, and r(72.x) = TZL. 
(b) If T Z T = T Z , then T Z + T Z 1 Ç T Z and consequently, T Z + T Z ^ C T Z , and 

the following are equivalent: 
(1) (TZ,») is a SGRID-groupoid, 
( 2 ) r 6 P a r t R i R x ( K , G ) , 
(3) a e P a r t ^ ( T Z , G ) , 
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(4) there is Af o< G such that 1Z is M-splitting, and ft1 C A f , 
(5) there is No < G such that 11 + N C ft, a G P a r t t t ) A r ( f t , G), and 

ft1 C Af. 

If one of the equivalent conditions of ( a ) resp. (6) is satisfied, r ( f t x ) = ft£. 

P r o o f , (a) , (1) => (2) . By (2.1) we conclude r ( f t x ) = r(<r(ft)) = 
<x(ftT) = a(ft) = II1. Trivially, ft + ftx C ft, and (2.1) implies r G 
PartTj 7jj.(7J, G). Thus by (1.14), ft is canonically monoid splitting. 

(2) => (1) . For r G ft, by definition r - r ( r ) = : m G ft1. r ( f t x ) = ft1 

yields m' such that r ( m ' ) = m, and r € Par t^ ^x (1Z, G) gives r = r ( r ) + 
r ( m ' ) = r ( r + m'). By (2.2) ,(a) , ( f t , * ) is a SGRID-groupoid. 

(b) cf. (a) , (2.1), (1.14) and (1.10). 

The last assertion can be easily seen using (a) ,(2) . • 

Now we turn to a necessary condition for canonically monoid splitting 
SGRID-gToupo\ds, namely ft1 C ft. Among the following examples there 
are 5Gii/.D-groupoids with ft£ % 1Z and consequently, ftx / ft£. In 
particular, these examples are not canonically monoid splitting. 

2.6. E x a m p l e . Let k g N, k > 2, put C := {kz\ z G Z } , ft : = £ u ( l + £ ) C 
Z, and define r : ft Z by r h-» kr. Clearly r ( 0 ) = 0, and ftT C C C ft. 
Assigning (a, 6) a - r ( a ) + r ( 6 ) we get a binary operation • on ft, since 
for a,¡3 G Z, f , 6 G { 0 , 1 } and a : = 7 + A:a, 6 : = £ + k(3 we calculate 

a - r(a) + r(b) = 7 + ka - k(-y + kot) + + Jfc/3) 

= 7 + k(a - 7 - ka + 6 + k/3) G ft. 

Obviously, the binary operation is idempotent, and • is even left distributive, 
since 

r(a • b) = k(a - ka + kb) = ka - k2a + k2b = r ( a ) • r (6) . 

Hence, ( f t , « ) is a 5Gi2/£>-groupoid. For k = 2 we have ft = Z, <r(r) = — r; 
consequently, ft1 = ft£ = ft1 = ft. For k > 2 we get 

ftx = cr(ft) = <t(£ U (1 + £ ) ) = <r(£) U a ( l + C) 

= { ( 1 - k)kz\ z G Z } U { (1 - fc)(l + zeZ) 

= { (1 - k)kz\ z G Z } U {1 + k(z - 1 - kz)\ z G Z } , 

which shows ft£ £ ft: For z G Z and m : = 1 + A;(z-1 - kz) G ftx, obviously 
2m £ ft. 

For the following we remember that for 5GiZ/£>-groupoids, ftT = ft 
implies r ( f t x ) = ft1, hence (2.7) covers the situation given in (2.5) ,(a) . 
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2 .7 . PROPOSITION. Let (TZ,•) be a SGRID-groupoid and T(Hl) = TZ1. 
Then TZ1 C TZ. 

P r o o f . ( 2 . 1 ) implies that r € P a r t R T - R x ( 7 ^ , G ) . Trivially always holds 
r m + 1 ( 7 e ) C r m ( f t ) , and r ^ - 1 - ) = TZL implies r " 1 ^ - 1 - ) = TZL (m € N 0 ) . 
First we show inductively rk € P a r t K T i 7 ? i ( 7 ^ , G ) for fc € N . For the induc-
tive step from fc to k + 1, let s 6 TZJ and m € TZ1. Then 

r*"1"1^ + m) = T(rk(s + m)) 

= r ( r f c ( * ) + r * ( m ) ) 

IND V V ' K " 

= Tk+1{s) + rk+1(m), 
since r € P a r t ^ r > T C x ( 7 e , G ) , T k ( s ) € and r * ( m ) € ft1. 

Now by induction as well, we show TZ = rk(TZ) + kTZ1 (k E N0). For 
k = 0,1 the assertion is immediate (cf. (1.16)), and the inductive step looks 
like follows: 

N = T
K{K) + = TK(NT + TZL) + M 1 

IND V ' V 7 

= Tk+1(1l) + Tk(nx) + kTZ1, since rk € PartRT i7Zi.(7J,G)), 

= Tk+\n) + {k + 1 )TZL, since rk(TZx) = TZL. 

Consequently, TZ^ = Ufcen0
 k l Z ± ^ n - m 

3. Characterization of some idempotent and distributive group-
oids 

Now we prove a theorem for canonically monoid splitting SGRID-
groupoids, which illuminates their structure from various standpoints: (2) 
and (3) take into account that on 7Z + Af under consideration we have a 
partial order < on the set of classes by means of inclusion. Proceeding from 
item to item we shall see that for the description of such SGRID-groupoids 
we can forget about much of both algebraic and order structure. Finally in 
(4), we come to an almost set theoretic statement. 

To avoid possible misunderstandings, we note that group relatedness of 
course refers to the group G given in the prerequisites of the respective 
statements (cf. convention in chapter 1). 

3.1. THEOREM. For an abelian group (G, +) and a subset TZ C G with 
0 € TZ the following are equivalent: 

(1) There is a binary operation • : TZ x TZ —• TZ, such that (TZ, •) is a 
canonically monoid splitting SGRID-groupoid. 

(2) There is a submonoid Af of G with TZ + Af C TZ, a monoid ho-
momorphism t : Af —• G such that t(Af) C Af and u — t(u) € Af for all 
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u G Ai, an idempotent binary operation m on TZ/Af and a homomorphism 
0 : (1Z/Ai,m ) -* (TZ/Ai,m ), such that for A,B 6 7Z/Ai, m, n G Ai 

(i) AmB < 0 ( A ) - 0 ( f l ) , 
(ii) A + m = B + n => 0(A) + t(m) = 0 ( 5 ) + t(n). 
(3) There is a submonoid Ai of G with TZ + Ai C TZ, a monoid homomor-

phism t : Ai —• G such that t(Ai) C Ai and u — t(u) G Af for all u G Ai, as 
well as a mapping 0 : 71/Ai —• H/Af satisfying for A,B G TZ/Ai, m,n € Ai 

(i) A < Q(A), 
(ii) A + m = B + n=> 0(A) + t(m) = 0 (B) + t(n). 
(4) There is a submonoid Ai of G and a monoid homomorphism t :Af —• 

G such that t(Ai) C Ai and u — t(u) G Ai for all u G Ai, a family (xi)i€ / of 
elements ofTZ such that x0 = 0 and Xj — x* £ Aix := Ai + (—Ai) for j ji k, 
j, k G I, subsets Ki C Aix and elements ft- € H (i € I ) with to = 0, such 
that 

(1) V t G / : Xi + Ki +AiDU + tx(Ki), 
(ii) V t G / Vfct G Ki -.Xi-U + k,- tx(kt) € Ai, 
(m)K = \JieIxi + Ki+Ai, 

where tx '.Aix -* G denotes the extension oft given by (1.19). 
P r o o f . (1) =» (2). Ai := TZy and t := r\lZy satisfy the conditions 

required, and by (1.18), (11/Af,* ) is a 5Gi2/-groupoid with describing map 
TV : r+Ai >-* r(r)+Ai. Since (lZ/Ai,m ) is even distributive by (2.2),(b), the 
restriction 0 of r/j to the range is a groupoid homomorphism by (2.1). From 
x — T(X) £ Ai for all x € TZ we conclude x + Ai C T(X) + Ai, consequently 

AmB < Q(A»B) = Q(A)mQ(B), 

thus (2),(i) holds.- As for (2),(ii), we calculate for r,s €1Z, m,n € Ai 

r + Ai + m = s + Ai + n 
=> r ( r + Ai + M ) = T(S + Ai + n) 

=» r(r) + r(m) + r(M) = r(s) + r (n) + r(Ai) 
by partiality of r ; and since r(Ai) + Ai = Ai and by definition of 0 , t we get 

0 ( r + Ai) + t(m) = Q(s + Ai) + t(n). 

(2) ^ (3). Since • is idempotent, we get for A G TZ/Ai 

A = AmA < 0 ( A ) - 0 ( A ) = 0(A). 

(3) =>• (4). Consider 7Zx := IZ+Aix and take a family ( x , ) , e j of elements 
of TZ satisfying 1ZK = Ui € /X» + Mx (where we put xo = 0) and x, — x j ft 
Aix for I, j G I, i ^ j. For i G I, let (yi^) t£j(.) be a complete family of 
representatives of the relation R1^ on Hi := {y G TZ\ y + Ai C a;, + A/a }, and 



288 N. Endres 

set Ki := {yt
(,) - x, | i £ J(i)}. Now obviously, (4),(iii) holds. Define t0 := 0, 

choose U £ TZ for any t £ J N {0} such that 0(x< + Af) - U + Af. Then for 
i £ I , kt £ Ki and m t , n t £ Af with = rot — nt we have 

X, + kt + Af + nt = X{ + Af + mt, 

consequently by (ii) 

0(x< + kt + Af) + i (n t ) = tii+ AT + f (m t) , 

hence by (i) 

Xi + kt + Af < Q(xi + kt + Af) = U + i(mt) - t(nt) + Af = U + tx(kt) + Af, 

which shows (4),(i). 0 (x , + kL + Af) € TZ/Af implies U + tx(k,) £ TZ, thus 
by construction of Ki, there exists kK £ Ki such that 

U + tx(kt) + AT = xi + kK + Af, 

from which we conclude (4),(ii). 
(4) => (1). By (iii), TZ + Af C TZ. tx is a group homomorphism and 

tx(Afx) < Afx• We define r :TZ —• G, assigning 

Xi + k{ + u ti + tx(ki + u), Xi £ TZ, ki £ Ki, u £ Af. 

The mapping r is well defined, since for x £ TZ there is exactly one i € I such 
that x € Xi+Aixt a n d for k, k' € Ki and u, u' £ Af with x = x, + k+u = x,-f 
k'+u' we have k+u = k'+u', and consequently = ti+tx(k'+u'). 

The assignment ( x , y ) x — r (x) + r(y) defines a binary operation on 
TZ. To show this, let i,j £ I , ki £ 7v,, kj £ Kj, u,v £ JV, and x := x, + fct -(-u, 
y := xj + kj + v. Then 

x - r (x) + r(y) = xt- + fcj + u - ti - tx(ki + u) + tj + tx{kj + v) 
= x{ - t j + k j - txjkj) + u - + tj + tx(kj) +tx(y) 

et f by (ii) by (i),(iii) G-V 

£ TZ + Af c TZ. 

<o = 0 implies r(0) = 0, and since the binary operation is idempotent, TZ 
proves to be a 5(j.ft/-groupoid. The mapping r is in Partft,.v(7£,6r), since 
for v £ Af, x = Xi + /:, + « £ TZ we have 

r(xt- + v) = r(xi + ki + u + j j ) = ti + tx(ki + u + v) 

= U + tx(ki + u) + tx(v) = r (x t ) + r(w). 
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Furthermore, with x as above we get 

x - T(X) = XI + ki + u - U - tx(ki) - tx(u) 
= Xi - ti + ki - tx(ki) + u - tx(u) e Af, 

€A/" by (ii) £Af 

consequently, ft1 C Af, and 7l+Af C 11, r € P a r t ^ x i ^ , G) yield TZ+1ZX C 
7Z ,T£ Part7 j 7 j x ( T A p p l y i n g (1.14) completes the proof. • 

In case of Af = Afx and a family (xj)ie/ with XQ = 0 being given, (3.1),(4) 
means that by any choice of a family (fi)te/ such that to = 0 and Xj—t,- € Afx 

(i € I) on 1Z := Uie/®«' + w e 6 e t a SGRID-groupoid. 
In general, (4),(i) and (ii) imply that 

V i e I: Xi + Ki + Af = ti + tx(Ki) + Af, 

but not vice versa. By the following example we show that condition (4),(i) 
of (3.1) can not be replaced by 

V i € I V kt € Ki : x{ + kt + Af 9 t{ + tx(kt). 

3.2. E X A M P L E . Fix a €]0,1[, let G := R2 be equipped with the usual 
vector addition, Af := RQ X t : Af Af be given by u au. Obviously, 
t(Af) C Af and u - t(u) = (1 - a)u € Af for all u £ Af. With the notation 
from (1.19), Afx = R x {0} and tx : Afx Afx is given by k ^ ak. 

Now let R 9 (3 < 0, x\ := (e-i,£2) with £\,£2 € R, £2 0> a n d put 
«1 := (ei + (1 " a)0,E2), Kx :=]/?, 0] x {0}, and K0 := {0} x {0}. Clearly 
conditions (4),(i) and (4),(ii) of (3.1) are satisfied for i = 0; so it remains to 
check them for i = 1: 

Condition (4),(i) holds, since 

L M m a - a ) / ? ] 
]M + K£ m ( l - a ) / ? ] <=> 

£l+]/3,0] + R+ Dei + ( l - a ) / J + a]/?,0], 

which implies x\ + K\ + Af D ti + tx(K 1). (On the other hand, we have 
/3 < a/3, which is equivalent to £\ + (1 - a)j3 + \afi & £1 + + RQ » thus 
for k := /?/2 we get h + tx(k) £ xx + k + Af.) Condition (4),(ii) for i = 1 is 
a consequence of 

]0, - ( 1 - a)/?] C R+ < = > £ ! - ( £ ! + ( 1 - a)/?) + (1 - a)]/?,0] C R+. 
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