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Preliminaries

The present treatise forms the first half of a series of papers on groupoids,
the binary operation of which is strongly influenced by the structure of
an abelian group. The concept of group relatedness (1.1) has already been
considered with respect to symmetric groupoids [E1]. The methods used
there will by applied below to a more general situation, where the symmetry
law and by parts also (left) distributivity is dropped.

Group related (symmetric) groupoids turned out to be of high value
for the description of homotopy sets [§? x §9;5"], p,q,n € N (where §™
denotes the m-dimensional sphere for a natural m), which themselves are
non group related symmetric groupoids with the binary operation induced
by point reflection (cf. {E1],[E2]) on spheres.

Further examples of group related groupoids have been treated in ([S],
chapter 3) and ([SS], chapter 3), where the binary operation is named a lin-
ear multiplication. Their significance is shown e.g. in ({SS],(3.9)), where the
authors prove that for a locally compact connected abelian group, each mul-
tiplication (i.e. continuous binary operation) preserving the neutral element
0 is homotopic rel {(0,0)} to a linear multiplication.

After some inevitable trivial observations in the beginning, in chapter
1 we are mainly concerned with group related groupoids merely satisfying
the idempotency law. It is a consequence of an analysis of the situation
given in [E1] that in particular groupoids, which contain a whole monoid,
are suitable objects for investigation. (This standpoint comes clear the more
in the middle of chapter 2, where parallels of [E1] and our present subjects
of interest are pointed out.) The philosophy above is closely related to the
notion of partial homomorphisms on subsets of abelian groups, which prove
to be a useful tool throughout the whole paper; and both together lead
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to the concept of a monoid splitting group related idempotent groupoid.
For such groupoids we can form quotients and extended groupoids, which
inherit algebraic identities as well as group relatedness ((1.18),(1.19) and
also (2.2)).

In chapter 2, to idempotency we add one sided distributivity and get
plenty of equivalent conditions (2.1), among others entropicity. Therefore,
group related idempotent distributive groupoids in pacticular are groupoid
modes [RS], i.e. groupoids with an idempotent and entropic binary oper-
ation. In (2.3),(c), as an answer to a question posed by A. Romanowska,
we provide an example of a group related groupoid mode not being isomor-
phic to a subreduct of an affine space. The respective variety of algebras
is of central interest in ([RS], section 2.5). Moreover, (2.1) forms a certain
contrast to ([JK], (3.3.9)), where it is shown that each idempotent entropic
groupoid is related (in a sense analogous to (1.1)) to a commutative semi-
group with a pair (f, g) of semigroup automorphisms as describing mappings
and f(z)+ g(z) = z, where z denotes an element of the semigroup.— In the
second part of the chapter we point out circumstances, under which group
related idempotent distributive groupoids are monoid splitting in a canoni-
cal sense and discuss several aspects around this property.

The last chapter is dedicated to the description of the structure of canon-
ically monoid splitting group related idempotent distributive groupoids from
various points of view.

Notation and terminology. Different from common usage, for a groupoid
(R,x), a subset R C R X R is called a congruence, if R is a subgroupoid of
(R, %) x (R, *).

By the symbol o< we denote the property of being a submonoid.

In order to simplify notation, we sometimes omit operation symbols and
denote algebras only by their underlying sets. For instance, we speak of an
abelian group G instead of writing (G, +).

1. Idempotent groupoids

1.1. DEFINITION. Let (G, +) be an abelian group, R C Gand ¢ : RXR —
R a binary operation. The groupoid (R,e) is called a groupoid related to
G, or simply group related without specifying the respective group, if there
is a pair (o, 7) of mappings from R to G such that

Vz,ye R:zey=o(z)+ 7(y)-

We call ¢ and 7 mappings describing the binary operation e, and (G,+) an
underlying group of (R, ).



Idempotent and distributive group related groupoids, I 273

The following point of view plays a role later in chapter 2 and in a
subsequent paper [E3].

1.2. Remark. For a groupoid (R, e) we define 8 : R x R — R assigning
(a,b) — bea, and call (R, ) the dual or opposite groupoid. If (R, e) is group
related with a pair (o, 7) of describing mappings, then (R,$) is also group
related with the pair (&, 7) of describing mappings, where & = 7,7 = 0.

Throughout this paper, for an abelian group (G,+) and h € G, by
dy : G —» G we denote translation by h. By means of translations we can
show that without loss of generality, for group related groupoids R we can
always assume 0 € R, where 0 denotes the neutral element of its respective
underlying abelian group, as well as some properties for the pair of describing
mappings. This is shown by

1.3. PROPOSITION. Let (R,e) be related to (G,+) with a pair (o,7) of
describing mappings.

(a) Fiz g € G and put R' := R+g. By means of the bijectiond_, : R' —
R (where d_ denotes the restriction of d_., in both domain and range) we
get a binary operation ¢' on R' assigning

(z,9) = d'25(d"4(z) 0 d_,(y)).

Clearly, d__, is an isomorphism between the groupoids (R,e) and (R',e'),
and (R', ¢') is related to (G, +).

(b) For any g € G, the pair (dy o 0,d_, o 7) describes o as well. If
0 € R, there is a describing pair (01, 7;) (resp. (02, 72)) such that 0,1(0) = 0,
T1(R) € R (or 12(0) = 0, 02(R) C R, respectively).

Proof. (a) We get describing maps for ¢’ by
o:R'-G, z—o(z-g)+g, T : R -G, z—r1(z-g).

(b) The statement concerning (d, 0 o,d_g o T) is obvious. Now let 0 € R,
put h := 0(0), and 0y := d_, 00, 71 := dy o 7. Then 0¢(0) = 0, and
11(z) = 01(0) + 1(z) = 0 e z for z € R, hence 7;(R) C R. In a similar way
we prove the existence of 03 and 5. =

1.4. PROPOSITION. Let (R, ) be related to (G, +) with describing map-
pings 0,7 : R — G. The following are equivalent:

(1)Vz € R:z ez =z (idempotency).
(2) o =idg -7,

where id%z denotes the canonical injection from R to G. (1) or (2) implies

B)Vz,yeR:zey+yoez=2z+y,
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and from (3) follows balancedness, i.e.
(B) Vz,yeR:zey=y < yezx =z.
Moreover, if G has no elements of order 2, (1), (2) and (3) are equivalent.

Proof. Assuming that there is no element of order 2 in G, starting from
(3) we obtain 2(z — 7(z) — o(z)) = 0, hence (2) holds. All other statements
can be proved by simple calculations similar to the above. ®

Because of (1.4), instead of a pair (o, 7), one mapping is enough in order
to describe an idempotent group related groupoid (R, e). In this situation
we prefer to call 7 the describing map of (R, e). Using the symbol o with
respect to a given idempotent group related groupoid (R,e), in the sequel
we always mean the mapping defined by id% —7.

1.5. ProprosITION /DEFINITION. Let (R',¢') be an idempotent groupoid
which is related to (G, +). Then there is a group related idempotent groupoid
(R, ), isomorphic to (R',¢’), with a unique map T describing o such that

(%) 0€R,r(0)=0,

and T(R) C R as well as o(R) C R, o(0) = 0 as a consequence. Group
related idempotent groupoids (R, ) with describing map T satisfying (x) are
called strictly group related idempotent groupoids (or SGRI-groupoids for
short) with underlying group (G, +).

Proof. As in (1.3),(a), via translation by —g (g € R’) we get a groupoid
(R,e) with 0 € R, which is isomorphic to (R', ). Applying (1.3),(b) we
find a describing map 7 for e satisfying 7(0) = 0, hence o(0) = 0 by (1.4).
Moreover, 7(z) = 0 o z resp. a(z) = z ¢ 0 for z € R yield 7(R) C R and
o(R)C R.

Now let 7/ : R — G be another describing map with 7/(0) = 0. By
z —71(z)+ T(y) =z-7(z)+ 7'(y) (z,y € 'R) and 7(0) = 0 = 7'(0) we
conclude r=71'. »

Because of (1.5), the mappings o, 7 belonging to a SGRI-groupoid (R, e)
can as well be interpreted as mappings with range R. This point of view
will play a role in later parts of the paper, whenever compositions with
these mappings are considered. In order to avoid cumbersome formulation,
we agree to the following

CoNVENTION. Troughout the whole paper, if not specified otherwise,
whenever a SG RI-groupoid is written by (R, e), we always denote the re-
spective underlying group by (G, +) and its describing map by 7.

The property of being a SG RI-groupoid is transferred to subgroupoids
and products in a canonical manner.
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1.6. Remark. (a) Let (R,e) be a SGRI-groupoid, 0 € § C R, and
(S, ¢) a subgroupoid. Then (S, o) is a SGRI—groupoid (with G as underlying
group and 7|S as describing map).

(b) Given an index set I and ¢ € I, let (R,,o,) be a SGRI-groupoid
with underlying group G, and describing map 7,. Then [], ., R, is a SGRI-
groupoid with underlying group [],.; G. and describing map given by the
assignment

HRL - HG” (r)ier = (1(r.))ier-

eI eI

The transfer to quotients is discussed later in (1.18).

1.7.Remark. Let (R,e) be a SGRI-groupoid, and denote by Z(R) :=
{z € R|Vy € R:zey = yez} the centre of R. The following are equivalent:

(a) (R, ) is commutative.
(b) Z(R) # 0.
(c)Vz eR:27(z) = =.

In particular, commutative SG RI-groupoids consist only of elements which
can be halved in the underlying group.

Proof. (a) = (b) is obvious.
(b) = (c). Since Z(R) # @, there is z € R such that for all y € R holds

z-71(z)+7(y) =y - 7(y) + 7(z);

so for y := 0 we get 27(z) = z. Inserting this into the above equation yields
(c)-

(c) = (a). By calculating
zey=z—-1(2)+r(y)=1@)+7{¥)=y-1{¥)+7(z)=yez. =

It can easily be seen that commutative SG RI-groupoids come under the
concept discussed later in (2.1).

1.8. DEFINITION. Let (G, +) be an abelian group, B C G, write 0-B := 0,
and m- B := B + (m — 1)B for m € N. Using Ny := NU {0} we denote by

B, := U n-B the submonoid of G generated by B,

n€Np
B, := B, + (—B,) the subgroup of G generated by B resp. B,
By := B, N(-B,) the mazimal subgroup contained in B, .
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1.9. PROPOSITION /DEFINITION. For an abelian group (G, +), let B, A C
G. We put

Rf:={(z,y) € Ax Aly-=z € B},
Rilz): = {y € A| (z,9) € R} (z € A),
A/B: = {Rg[z]| z € A}.

If (B, +) is a submonoid of (G, +), the relation R$ is a reflexive and tran-
sitive relation on A. If B forms a group, R§ is an equivalence relation. For
a monoid B and A+ B C A we have Rf[z] = 4+ B for z € A, and get a
bijective map c : A/B — A/By by the assignment z + B — z + By, or in
other words,z+ B=y+ B < z+ By =y+ By forallz,ye A. IfA is
also a monoid, the relation R4 is a congruence w.r.t. +, and A/B carries
the monotd structure which is canonically given by A/By.

Proof. Let B be a monoid. Then A4 C R4, since 0 € B, and for

(z,9),(y,2) € Rf thereis m,n € Bsuch that y—z = m, z—-y = n,
consequently, z — = = m + n € B, thus (z,z) € R$, and R4 is shown to be
transitive. For a group B, reflexivity of R4 is a consequence of —(y ~ z) €
B < z —y € B. The inclusion R4[z] C z + B always holds. Assuming
A+BCAwegetz+BC A+ B C Aforz € A, hence z+ B C Ri[z).
For z,z2' € A we have
t+B=2z'4+B < Imm'cB:z=z'+mz'=z+m

<= z-z',2'-z€B

—— 0 I’ € By,
which shows that ¢ is well defined and injective; the surjectivity of ¢ is
immediate. For a monoid A and (z,y),(z',y') € R§, clearly z+2',y+y' € A
and y—z+y' —z' € B; hence (z+z',y+y') € RS, which shows that R is a
congruence. Finally, the binary operation on A/ B, given by the assignment

(z+B,y+B)—~(z+y)+ B
coincides with the one defined by ¢™}(¢(z + B) + ¢(y + B)). =
The following assertions are proved straightforward.

1.10. ProrosITION /DEFINITION. Let (G,+),(H,+) be abelian groups,
0# A, BCCCG suchthat A+ BC C. A mapping ¢:C — H is called a
partial homomorphism with respect to A and B, if

Vae AVbe B:y(a+b)=¢p(a)+ ¢(b).

The set Part4 g(C,H) of partial homomorphisms from C to H w.r.t. A
and B forms an abelian group with component wise defined addition and
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the constant map to 0 € H as neutral element. If G = H, then id, —
@ € Party g(C,G) for ¢ € Party g(C,G), where id¢ denotes the canonical
injection from C to G. m

1.11. PROPOSITION. Let G be an abelian group and A, B C G. IfA+B C
A, then A+ B, C A; and 0 € A implies B, C A.

Proof. Trivially A+ 0 C A, and inductively one can show A+ nB C A
for all n € N:

A+(n+1)B=A+B+nB§A+nBN§ A.
IND

Therefore, A+ U ey, nB=A+ B CA.

1.12. Remark. Let G, H be abelian groups, ® # A, BC C C G,0 €
AUB, A+ B C C and ¢ € Part4 p(C, H). Then ¢(0) = 0.

Proof. If 0 € A, for b € B we conclude
o(b) = (0 + b) = (0) + ¢(b) = ¢(0) = 0. =

1.13. PROPOSITION. For abelian groups G, H, let § # A,B C C C G,
A+ B C A and ¢ € Party p(C,H). If 0 € A, then ¢ € Party g (C, H),
and |B,. is a monoid homomorphism.

Proof. Let ¢« € A, 0 # b € B,, i.e. there exists k € N with b =
by +...+ by, (bl,...bk € B).

@(a+by+ ...+ bx-1 +bx)

€A+B, CA
=@(a+by+ ...+ bk—1) + @(bk) since ¢ € Party g(C,G),

5 P(@) +9(01) + ..+ p(b)

B;—‘gv(a) + (b1 +b2) + ... + (i)

1N=D¢(a) + @by + ...+ b).
For a = 0 the above calculation shows that ¢|B, is a monoid homomor-
phism. =

1.14. Remark. For abelian groups G,H,let 0 # BC A C G, 0 € A.
Then the following are equivalent:

(l) A+ B, CA pe€ PartA'B* (A,H)

(ii) A+ BCAp€ PartA,B(A,H).

Proof. (ii) = (i) is implied by (1.11) and (1.13), and (i) = (ii) is
obvious. m
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1.15. ProPOSITION. Let (G,+),(H,+) be abelian groups, 0 € A C G,
and B o< G be a submonoid such that A+ B C A. For A* := A+ B, holds
the inclusion A* + B, C A* andz+BnNy+B#0 < z+ B, =y+ B,
Jor all z,y € A. Moreover, ¢ € Party p(A,H) has a unique ezxtension
@i € Partgs g, (A%, H).

Proof. Clearly, A* + B, C A*, and the equivalence follows by an easy
calculation. As for the extension of ¢, let z € A%,z =r+a—-0b,1 € A4,

a,b € B, and put
pa(z) = o(r) + ¢(a) — ¢(b).
In order to show that ¢, is well defined, let s € A, a’,b' € B and z =
r+a—-b=s+da -b. Then
r+a+bd =s+a +b=>
or+a+b)=p(s+a' +b)=
o(r) + @(a) + ¢(b) = (s) + ¢(a') + (b) =
@(r) + p(a) — o(b) = ¢(s) + p(a') — @(¥') = pu(z).
@i € Partya g, (A*,G),since forz € A*,h € B, andr € A, a,d',b,b' € B
withz=r+a—band h = a’ - b we get
pa(z+h)=pu(r+(ata)=(b+b))=o(r)+p(a+a’) - p(b+b)
| = ¢(r) + #(a) = ¢(b) + () — (8') = pa(2) + P (h).
Now let ¥ € Partas g, (A*,G), ¥|A = ¢. In particular, ¥|B, is a group
homomorphism, and for x € A*,a,b€ B,r € Asuchthat z =r+a—b we

get
P(r+a—b)=19y(r)+ P(a—b) = ¥(r) + ¥(a) — $(b)
= ¢(r) + ¢(a) — (b)) = pa(2)- .
1.16. DEFINITION. For a SG RI-groupoid (R, ¢) we agree to write
RT :=7(R), R’ :=a(R).
Obviously, R =RT + R*L.
1.17. DEFINITION /REMARK. Let (R, ¢) be a SG RI-groupoid and N o<
G. The groupoid (R,e) is said to be A'-splitting, or monoid splitting with
respect to NV, if
R+NCR, 1€Partgny(R,G).
Clearly, if (R, ¢) is N-splitting, 7|V is a monoid homomorphism (cf. (1.13)).
(R,e) is called canonically monoid splitting, if it is monoid splitting with
respect to 'Ri.'f

! Since no ambiguity can arise, we write 'R,J; instead of (RL)>.



Idempotent and distributive group related groupoids, T 279

1.18. THEOREM. Let (R, ) be a SGRI-groupoid which is N -splitting for
N o< G. Then we have the formula

Vr,s€ERVp,qeEN :(r+ple(s+g)=res+pegq.

If (N, o) is a subgroupoid (thus a SGRI-groupoid by virtue of (1.6)), then
(RR[z],¢) is an idempotent subgroupoid for all z € R, the relation R% is a
congruence w.r.t. ¢, by the assignment

RINXRINS(z+N,y+ N)—>zey+ N eR/N
we get a binary operation m on R/N, and the canonical projection
v :R->R/N, z R¥z]=z+ N,

is a homomorphism w.r.t. ¢ and u. The groupoid (R/N,u) is a SGRI-
groupoid with underlying group G/N, and describing map given by

TN :RIN -GN, 4+ Nw1(r)+N.
Proof. For p,q € N, r,s € R we calculate

(r+p)e(stg)=r+p-1(r+p)+7(s+g)
=r+p-1(r)—-1(p)+ 7(s) + 7(¢) for T € Partg »(R,G),
=r—1(r)+7(s)+p-7(p)+ 7(q)
=res+peg.

By this formula we conclude for z,y € R and a subgroupoid (N, e)
zey+ N=zey+ NeN=(z+N)e(y+N),

hence (R%[z], ¢) is a subgroupoid, RY: is a congruence, and trivially, gy is a
homomorphism; thus (R/AN,m ) is idempotent, since (R, o) is an idempotent
groupoid. The mapping 7o is well defined, since for z,z’' € R we get

t+N=z'4+ N < z+ N, =z + Ny
>1(z+Ny) =1(z' + Ny)

=>7(z)+ 7(NMy) = 1(z') + 7(Ny), since 7 € Partg (R, G),
=>7(z)+ Ny = 1(¢') + Ny, since 7(Ny) < My,
= 1(z)+ N =1(z") + N.

7(0) = 0 implies 7or(NV) = N, and 7 describes a, since
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(z+N)s(y+ N)=zey+ N

z—1(z)+1(y)+ N
=(z+N)+(-7(z) + N) + (r(¥) + N)
=(Z+N) vz +N)+ 7y + N),

by (1.9), for G/N inherits the group structure from G/Ny. =

1.19. PROPOSITION /DEFINITION. Let (R,e) be a SG RI-groupoid which
is N -splitting for N o< G, and suppose 7(N) o< N. For R* := R + N,
denote by T, the eztension of T given by (1.15). Then (R*,e,) with
ox i RYXRY = R™, (r,8) = 1= 7u(r) + 74 (8),

is a SGRI-groupoid (with G as underlying group and describing map 7,)
which is N, ~splitting, and 7, (N,) < Nx. We call (R*,e,) the extended
groupoid of (R,e) by N.
Proof. R* ¢ R* C R*, since for r,s € R, a,a',b,b' € M and z :=
r+a—->b,y:=s+a - b holds
zo,y=r+a—-b—(r(r)+ 7(a) = 7(d)) + 7(s) + (a’) — 7(¥")
=r—1(r)+7(s)+a+7(b)+ ‘r(a') —(b+7(a)+ r(b')).
€r Y %
By 1.(0) = 7(0) = 0 follows that (R*,e,) is a SGRI-groupoid. (1.15)
implies that (R*,e,) is N —splitting, and 7, (N, ) < N, is a consequence
of (V) o< N and 7, being a group homomorphism (cf.(1.17)). »

2. Idempotent and distributive groupoids

For groupoid modes [RS] it is immediate that idempotency and entrop-
icity imply both left and right distributivity. On the other hand, idempotent
and even from both sides distributive groupoids are not necessarily entropic.
In case of SGRI-groupoids, entropicity turns out to be equivalent to left
and right distributivity.

2.1. THEOREM /DEFINITION. For a SGRI-groupoid (R,e) the following
are equivalent:

(LD)V z,y,z€R:(zey)e(zez)==ze(yez) (left distributivity),
(RD)V z,y,z€ R:(z02)e(yez)=(z0y)ez (right distributivity),
(E)YVw,z,y,2€ R:(zey)e(wez)=(zow)e(yez) (entropicity),
(Part’) o € Partgr g1(R,G),

(Part) 7 € Partgr g+ (R, G),

(Hom')V z,y € R: o(z 0 y) = o(z) e o(y),

(Hom)Vz,y e R:1(z o y) = 7(z) o T(y),
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where (Hom) can also be ezpressed by the formula

Y2,y € R r(z - 7(s) + 7(y)) = 7(2) - () + 7(y).
If one of the above conditions is satisfied, R is flezible, i.e.
(F) Vz,yeR:(zey)ez =z e (yez),

and for all z € R holds o(7(z)) = 7(0(z)), or equivalently, T(z) — 7-2(1) =
T(z—71(z)). We call a SGRI-groupoid (R,s), satisfying one of the equivalent
conditions above, a strictly group related idempotent distributive groupoid (or
SGRID-groupoid for short).

Proof. (Hom) = (E). By calculation, making use of the formula below
(Hom).
(E) = (RD). Put w = z in (E). Then
(zoy)ez=(zoy)e(zez)=(z0z)e(ye2).
(RD) = (Hom). From right distributivity we get the equation (z,y,2 €
R)
m(y—7(¥) +7(2)) = 7(y) - 7(z — 7(2) + 7(y)) + 7(z - 7(2) + 7(2)),
which yields for z := 0
T(yez) = 7(y) - T’ (y) + 72(2) = 7(y) e 7(2).
(LD) <= (Hom) is shown by calculations similar to the above.
(Hom) = (Part). (Hom) implies
Vz,ye R:7(z —1(z)+ 7(y)) = 7(z — 7(z)) + (),
thus 7 € Partgr g1(R,G).
(Part) = (Part’). Let r € R, m € R*. Then
o(r(r)+m)=7(r)+ m—7(r(r) + m)
=7(r)+m~1%(r)— 7(m), since 7 € Partgr z+(R,G)
=7(r) = 7%(r) + m — 7(m)
= o(7t(r)) + o(m).

(Part’) = (Hom’). First we note that for o € Partgr g1(R,G)andr € R
holds

o(r)=o(r—o(r)+ o(r)) = o(r —o(r)) + 02(1'),
N e’

=7(r)
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hence r(o(r)) = o(r) ~ 0*(r) = a(r — a(r)) = o(r(r)), and by partiality of
o and commutativity of o and 7 we calculate for r,s € R

o(res) = o(a(r) + 7(s)) = o*(r) + o(r(s)) = o*(r) + 7(0(s)) = a(r) e 0 (s).
(Hom’) = (Hom). First note that (Hom’) is equivalent to the formula
Vaz,yeR:7(e - 7(z) + 7(y)) = 7(z — 7(2)) + 7(3) — 7(y - 7(¥))-
This yields for z := 0
- VyeR:r(y- () = 1(y) - (y),
consequently,
(2= 7(2) + () = 7(2) = 7 (2) + T (y).
(F) follows, since by (RD) we get (zoy)ez = (zoz)e(yoz)=ze(yez). =

Some authors prefer to call (E) medial law and (F) diassociativity. How-
ever, we note that in our situation, the notion of diassociativity is com-
pletely different from the one used with respect to loops, where diassocia-
tivity means that any subloop generated by two elements is associative, i.e.
a group (cf. [B], p.87).

2.2. Remark. (a) Canonically monoid splitting SG RI-groupoids are
SGRID-groupoids.

(b) If in the situation of (1.18), (R,e) is a SGRI D-groupoid, then also
(R/N,n) is a SGRID-groupoid. Moreover, (N, +, ) is an entropic algebra
(IRS],(127)).

(c) If in the situation of (1.19), (R,e) is a SGRID-groupoid, then also
the extended groupoid (R*,e,) is a SG RI D-groupoid.

Proof. (b) Since ga is a homomorphism, (R/N,s) is distributive.
(N, +,9) is entropic by the formula in (1.18), by commutativity of + and
entropicity of (N, e).

(¢) By calculation, using (Hom) and the definition of 7. =

Examples of SG RI D-groupoids can be found among affine spaces, which
have been widely considered in ([RS], p.3, p.39ff). For the reader’s conve-
nience we discuss these examples anew below in (2.3),(b). Preparing for this,
for a module W over a ring L with unit and r € L, by t, : W —> W we
agree to denote the mapping given by w > r - w. Strictly speaking, in the
following we sometimes consider only suitable restrictions of mappings ¢,
(cf. (1.3)).

All subreducts of affine spaces are isomorphic by translation to sub-
groupoids of SG RI D-groupoids, but not necessarily vice versa, at least not
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in a canonical manner. We shall illustrate this by one of the following ex-
amples and in a subsequent paper ([E3],(1.2)).

2.3. EXAMPLE. (a) Let G be an abelian group, H < G, h:G - G a
homomorphism such that h(H) < H. Then H, equipped with the binary
operation

(z,9)— = — h(z) + h(y)

forms a SGRID-groupoid. In particular, any group homomorphism induces
on G the structure of a SGRI D-groupoid.

(b) Let L be a ring with unit, W an L-module and V' a submodule of
W. For any r € L, on V we get the structure of an SG RI D-groupoid with
the binary operation e, given by

(@, 9)z—t(z)+t(y)=(1-r)z +ry.
Moreover, if L € {R,C,H}, and r € [0, 1], each convex subset C of L with
0 € C becomes a SGRID-groupoid by e,.
(c) Let L be a ring with unit, W an L-module and ¢ : W — W a linear
map, ¢ # idw, having a fixed point g # 0, and denote by e the binary
operation on W given by

(z,y) — z ~ g(z) + 9(y)

(cf. Ex. (a)). For a field K and a K-vector space V, for r € K we consider
on V the binary operation e, given by t, (cf. Ex. (b)). Then for all r € K,
there is no algebra monomorphism from (W, ) to (V,e,). In particular for
a field L, the SGRID-groupoid (W, e) is not isomorphic to a subreduct of
an affine subspace of any vector space.

Proof. (a) Idempotency is obvious. Since h is a group homomorphism,
condition (Hom) of (2.1) is satisfied.

(b) Similar to the proof of (a), using the fact that ¢, is a group homo-
morphism on (W, +).

(c) For an algebra homomorphism k : (W, e) — (V,e,) and z,y € W we
get

k(z — g(z) + g(v)) = (1 — r)k(z) + rk(y),
and ¢(0) = 0 implies
Kz — 9(2)) = (1 - r)k(z) + rk(0).
For the fixed point 0 # zo of g we conclude
k(0) = (1 - r)k(zo) + rk(0), i.e.
(1= 7)(k(x0) — k(0)) = 0.
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In case 7 # 1 we get k(z9) = k(0), since V is a vector space, hence
injectivity fails. For r = 1, the binary operation e, is trivial, but e is not,
since g # idw; consequently there are z,y € W such that z e y # y, but
k(y) = k(z) o k(y) = k(z o y), which again shows that k is not injective. m

As was already mentioned in the preliminaries, in our investigations we
orient ourselves from [E1)], where group related symmetric groupoids have
been discussed. Such groupoids in particular are SG RI D-groupoids, which
different from the general case (see (2.6)), are canonically monoid splitting
with R = RY, and RT = R, because r for symmetric groupoids is even
bijective. Since by means of these conditions, in generalization of the meth-
ods applied in [E1], we can get far-reaching results for SG RI D-groupoids,
we now study circumstances of their validity for our situation.

According to (1.6), underlying groups in the next proposition are all the
same, and describing maps are given by restrictions of 7.

2.4. ProPOSITION. For a SGRID-groupoid (R,e), also (R*,e) is a
SGRID-groupoid. In addition, if RT + ’Ri C R and 1‘|’R¢ is a monoid
homomorphism, then (Ri,e) and (R, e) are SGRID-groupoids as well,
and R} is a left ideal in R w.r.t. o, i.e. Re R C RE.

Proof. The first assertion follows by (2.1),(Hom’) and (1.6). Now let
RT + R C R, and r|R{ be a monoid homomorphism. r(RY) € R
implies 7(R{) C RY, thus R e RE C RY + 7(R{) C R{ and trivially,
R eRL C RL. Hence R{ is a left ideal as well as a SGRID-groupoid.
From 7(R{) € R{ and 7|R{ being a monoid homomorphism we conclude
T(Ri) C R, therefore

Ry o Ry C o(Ry) + 7(Ry) € Ry - 7(Ry) + 7(Ry) C 3Ry C Ry,
which shows that R is a SGRID-groupoid. =

Corresponding results for RT, R] and R instead of R, R{ and R+
can be obtained by dualizing applying (1.2).

2.5. PROPOSITION. Let (R, ) be a SGRI-groupoid.

(a) The following are equivalent:

(1) (R,e) is a SGRID-groupoid, and RT = R.

(2) R is canonically monoid splitting, and T(R+) = R*.

(b) If RT = R, then R+ R1 C R and consequently, R + RL C R, and
the following are equivalent:

(1) (R,e) is a SGRID-groupoid,

(2) TE PartR,Rt (R, G),

(3) oc PartR'Rt(R, G),
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(4) there is N o< G such that R is N'-splitting, and Rt C N,

(5) there is N o< G such that R+ N C R, o € Partg (R, G), and
RECN.

If one of the equivalent conditions of (a) resp. (b) is satisfied, T(R{) = RE.

Proof. (a), (1) = (2). By (2.1) we conclude 7(Rt) = 7(c(R)) =
o(RT) = o(R) = RL. Trivially, R + Rt C R, and (2.1) implies 7 €
Partg g1(R,G). Thus by (1.14), R is canonically monoid splitting.

(2) = (1). For r € R, by definition r - 7(r) =: m € RL. r(R%) = RL
yields m' such that 7(m') = m, and 7 € Partg g1 (R,G) gives r = 7(r) +
(m') = 7(r + m'). By (2.2),(a), (R,) is a SGRID-groupoid.

(b) cf. (a), (2.1), (1.14) and (1.10).

The last assertion can be easily seen using (a),(2). »

Now we turn to a necessary condition for canonically monoid splitting
SGRID-groupoids, namely Ry C R. Among the following examples there
are SGRID-groupoids with R{ ¢ R and consequently, Rt # Ri. In
particular, these examples are not canonically monoid splitting.

2.6. EXAMPLE. Let k € N,k > 2, put £ := {kz| 2z € Z}, R := LU(1+L) C
Z, and define 7 : R — Z by r + kr. Clearly 7(0) = 0,and RT C L C R.
Assigning (a,b) — a — 7(a) + 7(b) we get a binary operation e on R, since
fora, € Z,v,6 € {0,1} and a := y + ka, b := § + k(3 we calculate

a-71(a)+7(b) =7+ ka — k(y + ka) + k(6 + kB)
=y+k(la-y—-ka+8+kB)eR.

Obviously, the binary operation is idempotent, and e is even left distributive,
since

7(a e b) = k(a — ka + kb) = ka — k*a + kb = (a) o T(b).
Hence, (R, ) is a SGRID-groupoid. For k = 2 we have R = Z, o(r) = —r;
consequently, R+ = Ri =RE =R. For k > 2 we get
Rt =0(R)=0(LU(1+L))=0(L)Ua(1+L)
={(1-k)kz| 2z€ ZYU {(1 - k)(1 +k2)| z€ Z}
={(1-k)kz| z€ ZYU {1+ k(z-1-k2)| z€ Z},
which shows R, € R: For z € Z and m := 1+k(2—1-kz) € R, obviously
2m ¢ R.

For the following we remember that for SGRI D-groupoids, RT = R
implies 7(R+) = RL, hence (2.7) covers the situation given in (2.5),(a).
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2.7. PROPOSITION. Let (R, ) be a SGRID-groupoid and T(R+) = R*.
Then RE: C R.

Proof. (2.1) implies that T € Partgr g1(R,G). Trivially always holds
™+ (R) € r™(R), and 7(RL) = RL implies 7™(RL) = R (m € Ny).
First we show inductively 7% € Partgr g+(R,G) for k € N. For the induc-
tive step from k to k + 1,let s € RT and m € R+. Then

1"’“(3 +m)= r(rk(s + m))

= 7(74(s) + TH(m))

= ThH1(s) 4 741 (m),

since 7 € Partgr g2(R,G), 7%(s) € R and 7¥(m) € R*.

Now by induction as well, we show R = 7%(R) + kR (k € Np). For
k = 0,1 the assertion is immediate (cf. (1.16)), and the inductive step looks
like follows:

R = mHR)+kR* = r*(RT +R*) + kR*
=" R) + ¥ (RY) + kRY, since 7F € Partgr 2+ (R, G)),
=" (R) 4+ (k+ 1)RL, since TF(RL) = RL.
Consequently, Ry = Uken, kRTCR. m

3. Characterization of some idempotent and distributive group-
oids

Now we prove a theorem for canonically monoid splitting SGRID-
groupoids, which illuminates their structure from various standpoints: (2)
and (3) take into account that on R + AN under consideration we have a
partial order < on the set of classes by means of inclusion. Proceeding from
item to item we shall see that for the description of such SG RI D-groupoids
we can forget about much of both algebraic and order structure. Finally in
(4), we come to an almost set theoretic statement.

To avoid possible misunderstandings, we note that group relatedness of
course refers to the group G given in the prerequisites of the respective
statements (cf. convention in chapter 1).

3.1. THEOREM. For an abelian group (G,+) and a subset R C G with
0 € R the following are equivalent:

(1) There is a binary operation ¢ : R x R — R, such that (R,e) is a
canonically monoid splitting SG RI D -groupoid.

(2) There is a submonoid N of G with R + N C R, a monoid ho-
momorphism t : N' — G such that t{(N) C N and u — t(uv) € N for all
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u € N, an idempotent binary operation m on R/N and a homomorphism
0:(R/N,m)— (R/N,u), such that for A,B € R/IN, m,ne€N

(i) AwB < ©O(A)=O(B),

(i) A+ m= B+ n= 0(A)+ t(m) = O(B) + t(n).

(3) There is a submonoid N of G with R+ N C R, a monoid homomor-
phism t : N — G such that t{N) C N and u — t(u) € N for allu € N, as
well as a mapping © : R/N — R/N satisfying for A,B€ R/IN,mneN

(i) A < O(A),

(ii) A+ m= B +n = 0(A) + t(m) = O(B) + t(n).

(4) There is a submonoid N of G and a monoid homomorphism t : N —
G such that t(N) C N and u —t(u) € N for all u € N, a family (z;)ier of
elements of R such that 2o = 0 and z; — zx ¢ Ny := N + (=N) for j # k,
i k € I, subsets K; C N, and elementst; € R (i € I) with ty = 0, such
that

(l) Viel:z;+K;+N Dt +t*(I\’;),

(ii)ViGIVkLG K,':Zi—t,'-l-k‘—t*(kt)EN,

(i) R = Use i + Ki + N,
where t, : Ny — G denotes the extension of t given by (1.19).

Proof. (1) = (2). N := R{ and ¢ := 7|Ri satisfy the conditions
required, and by (1.18), (R/N,s) is a SG RI-groupoid with describing map
Tx : 7+ N — 7(r)+ N. Since (R/N,m ) is even distributive by (2.2),(b), the
restriction © of 7,/ to the range is a groupoid homomorphism by (2.1). From
z—1(z) € N for all z € R we conclude z + N C 7(z) + N, consequently

AnB < O(AsB) = 0(A)=0O(B),

thus (2),(i) holds.— As for (2),(ii), we calculate for r,s € R, m,n € N

r+N+m=s+N+n
>71(r+N+m)=1(s+N +n)
= 7(r) + 7(m) + 7(N) = 7(s) + 7(n) + 7(N)
by partiality of 7; and since 7(N)+ N = N and by definition of ©,t we get
O(r + M) + t(m) = (s + N) + t(n).
(2) = (83). Since = is idempotent, we get for A € R/N

A=AuA < O(A)aO(A) = O(A).

(3) = (4). Consider R* := R+ N, and take a family (z;);¢; of elements
of R satisfying R* = |J;c;zi + Mo (where we put zo = 0) and z; — z; ¢
Nyfori,jeI,i# j. Foriel,let (yf'))te_,(.-) be a complete family of
representatives of the relation RY on H; := {y € R| y+ N C z; + N, }, and
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set K; := {yfi) —z;] ¢ € J}. Now obviously, (4),(iii) holds. Define t, := 0,
choose t; € R for any ¢ € I \ {0} such that ©(z; + N) = t; + N. Then for
i€l k € K; and m,,n, € N with k, = m, — n, we have

zi+k+N+n =z; + N +m,,
consequently by (ii)
O(zi+ k. +N)+t(n)=t; + N+ t(m,),
hence by (i)
i+ kN <O@i+k+N)=ti+t(m,)-t(n)+ N =t; +ti(k)+N,

which shows (4),(i). ©(z; + k., + N) € R/N implies ¢; + t,(k,) € R, thus
by construction of K, there exists k. € K; such that

ti+tk(kt)+N=xi+kn +N,

from which we conclude (4),(ii).
(4) = (1). By (iii), R+ N C R. t, is a group homomorphism and
tA(Ni) < N,. We define 7 : R — G, assigning

zi+kitu—t;+t,(ki+u), z;€R, k€K, ,ueN.

The mapping 7 is well defined, since for z € R there is exactly one 7 € I such

that z € z; 4+ N, and for k, k' € K;and u, v’ e N withz = z; +k+u = z;+

k'+u' we have k+u = k'+u’, and consequently t;+¢, (k+u) = t;+t,(k'+u').

The assignment (z,y) — z — 7(z) + 7(y) defines a binary operation on

R. To show this, let ¢,j € I, k; € K;, k; € K, u,v € N,and z := z;+ ki +u,

y:=z;+ kj+v. Then

z—r(@)+r(y)=zi+tkitu—ti—to(ki+u)+t;+ti(k;+v)

=z;~-t;+k;— tk(k,')-l- u— tA(u) + ¢+ t*(kj) +tA(v)

- ~~ N e\ -~ N

€N by (ii) EN €R by (i),(iii) eEN

ER+NCR.

to = 0 implies 7(0) = 0, and since the binary operation is idempotent, R
proves to be a SG RI—groupoid. The mapping 7 is in Partg a(R,G), since
forveN,z=2z;+ ki +u € R we have

r(zi+v)=r(zitkitu+v)=t;+ti(kitu+tv)
N
= ti 4+ ta(ki + u) + ti(v) = 7(2:) + 7(0).
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Furthermore, with z as above we get
r—1(z)=z;+ ki +u—t; -t (ki) —tr(u)
=zi—titki—ta(k)+tu—ti(u) EN,
€N by (i) eN

consequently, Rt C N, and R+N C R, 7 € Partg 4(R,G) yield R+RL C
R, T € Partg g1 (R, G). Applying (1.14) completes the proof. »

In case of ' = N, and a family (z;);e; with zo = 0 being given, (3.1),(4)
means that by any choice of a family (¢;);er such that ¢y = 0 and z;—t; € N,
(i €I)on R :=J;c i + N we get a SGRID-groupoid.

In general, (4),(i) and (ii) imply that

ViEI:Z,'+K,'+N=t,'+tA(K;)+N,

but not vice versa. By the following example we show that condition (4),(i)
of (3.1) can not be replaced by

VieIVk €K;:zi+k +N 3t +t,(k).

3.2. ExaMPLE. Fix a €]0,1][, let G := R? be equipped with the usual
vector addition, A" := R} x {0}, ¢ : A — A be given by u — au. Obviously,
H{N)C N and u—t(u) = (1 - a)u € N for all w € N. With the notation
from (1.19), N, = R x {0} and ¢, : N\, — N, is given by k — ak.

Now let R 3 8 < 0, z; := (e1,€2) with €1,62 € R, g2 # 0, and put
t1 := (&1 + (1 — @)B,¢e2), K1 :=]B,0] x {0}, and K¢ := {0} x {0}. Clearly
conditions (4),(i) and (4),(ii) of (3.1) are satisfied for ¢ = 0; so it remains to
check them for ¢ = 1:

Condition (4),(i) holds, since

18,01 218,(1 ~ a)B] =
18,01 + R} 216,(1 - a)f] <<
£1+]6,01+ R D &1 + (1 - a)B + 2B, 0],

which implies z; + K1 + N 2 #; + t,(K1). (On the other hand, we have
B < af3, which is equivalent to &; + (1 — a)f + %aﬂ del+ %ﬂ + R}, thus
for k := /2 we get t; +t,(k) & z1 + k + N.) Condition (4),(ii) for i = 1 is
a consequence of

0,-(1-a)B] CRS <= €1 - (e1+(1-a)B)+(1-a)lB,0]CR].
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