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SOME PROPERTIES OF THE HAUSDORFF DISTANCE
IN PROBABILISTIC METRIC SPACES

1. Introduction

Menger in [5] introduced the notion of the probabilistic metric spaces and
the study of such spaces expanded rapidly starting with the pioneering works
of Schweizer and Sklar [6, 7]. The theory of probabilistic metric spaces is
of fundamental importance in probabilistic functional analysis. For detailed
discussion of these spaces and their applications we refer to [1]-[4], [8] and
[9]. Let Z be a subfamily of the family M of all nonempty and bounded
subsets of a probabilistic metric space. For A € M define a distribution
function $);(A) as the probabilistic Hausdorff distance of A from the family
Z. The function £, is a kind of measure of noncompactness. In the paper
we study properties of £),.

2. Preliminaries

Let R stands for the set of real numbers and R* = [0,00). A mapping
f : R = R* is called a distribution function if it is nondecreasing, left
continuous with inf f(z) = 0 and sup f(z) = 1. We shall denote by L the
set of all distribution functions on R. Let us note that the Heaviside function

0 ift<0
H(t)‘{1 ift >0,

is a distribution function.

DEFINITION 2.1. A probabilistic metric space is a pair (X, F), where X
is a nonempty set and F is mapping from X x X into L.
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We shall denote the distribution function F(z,y) by ¥, , and the value
of F(z,y) at t € R by F; ,(t). The function F, , is assumed to satisfy the
following conditions:

(P1) Fpy(t)=H(t)forallt e Rifand only if z = y.

(P2) fxyy(o) = 0'

(P3)  Fry(t) = Fya(?).

(P4) If F;y(t1) = 1 and F, .(t2) = 1, then F, 4(t1 + t2) = 1 for every
z,¥y,2€ X.

DEFINITION 2.2. A t-norm is a function 7 :[0,1] x [0,1] — {0, 1], which
is associative, commutative, nondecreasing, T'(a,1) = a and 7(0,0) = 0.

Let us notice that among a number of possible choices for the -norm
T mentioned by Schweizer and Sklar ([6]), “T(a,b) = min{a,b}” is the
strongest possible universal 7 and in this paper, we will always use this.

DEFINITION 2.3. A Menger probabilistic metric space, (shortly, a Menger
PM-space) is a triple (X, F,T) where (X, F) is a probabilistic metric space
and T is a t-norm with the following condition:

(P5) fz‘.y(tl + t2) 2 T(fz.z(tl),fz,y(t2)) for all z,Y,2 € X’ tlat2 Z 0.

Remark 2.4. Schweizer and Sklar [6] proved that if (X,F,T) is a
Menger PM-space with the continuous t-norm T, then (X,F,T) is a Haus-
dorff space in the topology 7 induced by the family,

{U(e;, ) :2€X,e>0, e (0,1)}
of neighbourhoods U,(e, A), where
Us(e,N)={ye X : Fpy(e) > 1= A}

DEeFINITION 2.5. Let (X, F) be a PM-space and A be a nonempty subset

of X. The probabilistic diameter of A is a function D, defined on Rt by
Da(t) = inf F .
A =52 2L eals)

DEFINITION 2.6. Let (X, F) be a PM-space. A subset A of X is said to
be probabilistically
(i) bounded, if sup,so Da(t) = 1,
(ii) semibounded, if 0 < sup,so Da(t) < 1,
(ili) unbounded, if sup,5o D(t) = 0.
DEFINITION 2.7. A nonempty subset A of a probabilistic metric space
(X, F) is said to be relatively compact if its closure is compact.

DEFINITION 2.8. Let (X, F) be a probabilistic metric space and A be a
nonempty subset of X. A finite subset B of X is said to be (¢, A)-net for A
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if for each a € A, there is at least one b € B such that
Faple)>1=X, e>0and A€ (0,1).

Let (X, F,T) be a complete Menger PM-space. Denote by M, (or, briefly
M) the family of all nonempty and probabilistically bounded subsets of X.
Moreover, the family of all nonempty and relatively compact subsets of M
will be denoted by N.

DEFINITION 2.9. If 2 € X and 7y > 0, ¢ € (0,1), then we define the open
balls centered at z by

K(z,v)={ye X : Fry(v)>1-¢}.
Similarly for A € M, we define
Ke(A,'Y) = U Ke(zv'Y)'
TE€EA

By A we shall denote the closure of a subset A C X. Apart from this for
an arbitrary family U of subsets A C X, we define

U°={AeclU:A=A)}.
Let A, B € M and denote by
da,p(t) =sup{e € [0,1]: A C K.(B,1)},
D4 p(t) = ililz) T{da,B(r),danB(r)}
DEFINITION 2.10. The function D4 g(t) is called the Hausdorff distance
between the sets A and B.

THEOREM 2.11 [4]. If A and B are non-empty subsets of a Menger PM
space X. Then
Dap=H jf and only if A=B.
NoTATION 2.12. Let Z be a nonempty subfamily of M. We will use the
following notations:
Dy =sup{Dap:B¢€ Z},
day=sup{dap: B¢ Z}.
In what follows we will consider the function £, : M — L, defined by
9;(A) = Da.
For simplicity, we will write $(A) instead of H,(A).
3. The results
We begin with the following simple, but useful lemma:

LEMMA 3.1. Let A\ BE M andr > 0,0<e< 1. If BC K.(A,r) then
ANK.(B,r)# ¢ and BC K.(AN K.(B,r),r).
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Proof. Let b be an arbitrary element of B. Then by hypothesis there
exists @ € A such that Fg3(r) > 1 — €. It implies that a € K,(b,r) and
consequently a € K.(B,r). Hence a € ANK (B, 7). Thus ANK (B,r) # ¢.
On the other hand, we have shown that for any b € B thereisana € AN
K(B,r),such that F, y(r) > 1—¢ which means that b € K. (ANK.(B,r),r).
Hence B C K.(An K. (B,r),r).

THEOREM 3.2. Let Z be a nonempty subfamily of M with the property:

(1) ifA€Z, p#BCA then BelZ.
Then for any A € M, the following equality holds
das = Dag.

Proof. Since
Da,p(t) = sup T{da,5(),da,5(r)}
therefore for all ¢ > 0
(2) D4 5(t) < das(t).
To prove the reverse inequality let § € (0,1) be arbitrary but fixed and let
dA's = €, i.e-
sup{da,B(t): B€ 2} =¢.
Then there exists a B € Z such that
dap(t)>e-6
Thus
AC K,_g(B,’I‘).
This in view of Lemma (3.1) implies that
BNnK. s(A,r)#¢ and AC K._s(BNK._s(A,r),7).
Consequently,
(3) da,Brk,_sAn(T) 2 €—6.

On the other hand, BN K._s(A,r) C K._s(A,r). This allows us to infer
that

(4) dBnk,_s(ar).a(T) 2 €6
Combining (3) and (4), we get

Min{d4 Bnk,_sa,r(7):@BnK,_s(am).4(T)} 2 €= 6.
Taking sup on r < ¢, we obtain

Da,Bnk,_san(t) 2 €~ 6.
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But in view of condition (1) we have B N K._s5(A,r) € Z. So the latter
inequality implies that

Dyyt) 2 -6
Since § is arbitrary, therefore

(5 Day(t) 2 € = day(t).
From (2) and (5) we get

D 4,5() = da,(1)-

COROLLARY 3.3. Let 2 be a nonempty subfamily of M satisfying the
condition (1), then D 4 4(t)=d, a(t), where d, 4(t)=sup{dpa(t): B€Z}.

COROLLARY 3.4. Let Z be a subfamily of M satisfying the condition (1).
If A C B then $(A) > 5(B) (i.e. for allt > 0 Da,4(t) 2 Dpy(t)).

Proof. From Theorem (3.2) we know that
Dyy(t) =day(t) and Dp,(t) = dpy(t).
So it suffices to show that d4 4(t) > dp ,(t). Put
€ =dp4(t) =sup{dp,c(t): C € }.

Then for any given § > 0, there exists a C € Z such that dp¢c > ¢ — 6,
what means that B C K._s(C,t), and consequently A C K._s(C,t). This
implies that

dA,c(t) >e-4.
Since C € Z so ds,(t) > € — 6. But é§ was arbitrarily chosen so we get

COROLLARY 3.5.(a) If A, B € M then, min{$(A),H(B),} > H(AU B).
(b)) IfA,BeM and AN B # 0, then

$H(AN B) > max{$H(4), H(B)}.

Proof. Since AC AUB and B C AU B. So by using Corollary 3.4, we
get
min{$(A), H(B) 2 H(AU B),
what showes (a). Also ANB C A and AN B C B and again by Corollary
3.4, we get

H(AN B) 2 max(5(A), H(B)}.
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THEOREM 3.6. If a family Z fulfils the condition (1) and also the follow-
ing one
A, Be Z implies AUBEe€ Z.
Then
(AU B) = min{H(A4), H(B)}.
Proof. Denote ¢ = min{$H(A), H(B)} and take an arbitrary § > 0. Then
there exist C;,Cy € Z such that
dA,Cl(t) >e—-6 or dB,Cg(t) >e—6.
It implies that
AC K. §(C1,t) and B C K._5(Cs,1).
Thus
AUBCK _5(Cl,t) UK ..5(Cg,t) = 1{5_5(01 U Cz,t).
But by the given condition C; UC,; € Z and therefore
dAUB,j(t) 2E— é.
Since 6 is arbitrary therefore, in view of Theorem 3.2, the last inequality
implies that
DAUB,;(t) > ¢ = min{H(A),H(B)}
and this together with Corollary 3.5 completes the proof.

THEOREM 3.7. ,(A) = H if and only if A € Z, the closure of Z in M®
with respect to the topology generated by D.

Proof.
9(A)=H & Dyy=H

<sup{Dap:B€eZ}=H
< Dyp=H forsomeBe2Z.
& A =B, B € Z (by Theorem 2.11)
& AcZ.
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