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1. Introduction 
Menger in [5] introduced the notion of the probabilistic metric spaces and 

the study of such spaces expanded rapidly starting with the pioneering works 
of Schweizer and Sklar [6, 7]. The theory of probabilistic metric spaces is 
of fundamental importance in probabilistic functional analysis. For detailed 
discussion of these spaces and their applications we refer to [l]-[4], [8] and 
[9]. Let Z be a subfamily of the family M of all nonempty and bounded 
subsets of a probabilistic metric space. For A 6 M define a distribution 
function ^ ( A ) as the probabilistic Hausdorff distance of A from the family 
Z. The function is a kind of measure of noncompactness. In the paper 
we study properties of 

2. Preliminaries 
Let R stands for the set of real numbers and R + = [0,oo). A mapping 

/ : R —• R + is called a distribution function if it is nondecreasing, left 
continuous with inf f(x) = 0 and sup f(x) = 1. We shall denote by £ the 
set of all distribution functions on R. Let us note that the Heaviside function 

is a distribution function. 

D E F I N I T I O N 2 . 1 . A probabilistic metric space is a pair (X,!F), where X 
is a nonempty set and T is mapping from X x X into £. 
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We shall denote the distribution function F(x,y) by TXtV and the value 
of F(x,y) at t G R by Fx,y(t). The function Tx^y is assumed to satisfy the 
following conditions: 

(PI) Fx,y{t) = H(t) for all t e R if and only if x = y. 
(P2) ^ ; y ( o ) = 0 . 
( P 3 ) ?x,y(t) = FViX{t). 
(P4) If Tx,y(t\) = 1 and Ty,z{t2) = 1, then Tx,y{t\ + t2) = 1 for every 

x,y,z € X . 

DEFINITION 2 .2 . A i-norm is a function T : [0 ,1 ] x [0 ,1] -»• [0 ,1 ] , which 
is associative, commutative, nondecreasing, T(a, 1) = a and T(0,0) = 0. 

Let us notice that among a number of possible choices for the i-norm 
T mentioned by Schweizer and Sklar ([6]), uT(a,b) = min{a, 6}" is the 
strongest possible universal T and in this paper, we will always use this. 

DEFINITION 2 .3 . A Menger probabilistic metric space, (shortly, a Menger 
PM-space) is a triple (X, T, T) where (X, T) is a probabilistic metric space 
and T is a ¿-norm with the following condition: 

(P5) ^ . „ ( f i +<2) > T(?x,x(ti),rz,y(t2)) for all x,y,z € X, t u t 2 > 0. 

R e m a r k 2.4. Schweizer and Sklar [6] proved that if (X,^",T) is a 
Menger PM-space with the continuous i-norm T, then (X, T, T) is a Haus-
dorff space in the topology r induced by the family, 

{Ux(e,X):x e X , e>0, Ae(0,l)} 

of neighbourhoods Ux(e, A), where 

Ux(£, A) = {y e X : Tx,y(e) > 1 - A}. 

DEFINITION 2.5. Let ( X , ^ ) be a PM-space and A be a nonempty subset 
of X . The probabilistic diameter of A is a function DA defined on R + by 

Dyi(i) = sup inf TP,q{s). 
s<t 

DEFINITION 2.6. Let ( X , F ) be a PM-space. A subset A of X is said to 
be probabilistically 

(i) bounded, if sup t > 0 D ^ t ) = 1, 
(ii) semibounded, if 0 < sup t > 0 ^ ^ ( i ) < 1, 

(iii) unbounded, if sup t > 0 = 0. 
DEFINITION 2 .7 . A nonempty subset A of a probabilistic metric space 

(X,JF) is said to be relatively compact if its closure is compact. 

DEFINITION 2 .8 . Let ( X , T ) be a probabilistic metric space and A be a 
nonempty subset of X. A finite subset B of X is said to be (e, A)-net for A 
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if for each a £ A, there is at least one 6 € B such that 

f a , b ( £ ) > 1 - A, £ > 0 and A 6 (0,1). 
Let (X, T, T) be a complete Menger PM-space. Denote by Mx (or, briefly 

M) the family of all nonempty and probabilistically bounded subsets of X. 
Moreover, the family of all nonempty and relatively compact subsets of M 
will be denoted by N . 

DEFINITION 2.9. If x € X and 7 > 0, e e (0,1), then we define the open 
balls centered at x by 

Kc(x,-r)={yeX : T x > y ( t ) > l - e } . 

Similarly for A € M, we define 

Ke(A> 7)= U 

By A we shall denote the closure of a subset A C X. Apart from this for 
an arbitrary family U of subsets A C X, we define 

Uc = {A e U : A = A}. 

Let A, B £ M and denote by 
dAiB(t) = sup{£ G [0,1] : A C Kc(B,t)}, 

DA.B(t) = suvT{dAtB(r),dAiB(r)}. 
r<t 

DEFINITION 2 .10 . The function DAiB(t) is called the Hausdorff distance 
between the sets A and B. 

THEOREM 2 . 1 1 [4]. If A and B are non-empty subsets of a Menger PM 
space X . Then 

DA,B — H j.f and only if A = B. 
NOTATION 2 .12 . Let Z be a nonempty subfamily of M. We will use the 

following notations: 
DAti = sup{DAiB : B e Z ) , 

djii3 = s u p { d A t B : B € Z}. 

In what follows we will consider the function f j j : M C, defined by 

HA) = Da, 3 . 

For simplicity, we will write f)(A) instead of 
3. The results 
We begin with the following simple, but useful lemma: 
LEMMA 3.1 . Let A, B e M and r > 0 , 0 < e < 1. If B C KC{A, r) then 

A (1 Ke(B, r)^<p and BC Ke(A n KC(B, r), r). 
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P r o o f . Let b be an arbitrary element of B. Then by hypothesis there 
exists a € A such that Ta,b{T) > 1 — e. It implies that a 6 Ke(b,r) and 
consequently a € Ke(B,r). Hence a € Af\Ke(B,r). Thus Af\Kt(B,r) ± (p. 
On the other hand, we have shown that for any b 6 B there is an a 6 A CI 
Ke(B, r), such that ^„^(r) > which means that 6 6 Ke(AC\Kt(B,r),r). 
Hence B C Ke(A n Ke(B, r ) , r) . 

THEOREM 3 .2 . Let Z be a nonempty subfamily of M with the property: 
(1) if A € Z, <p ^ B C A then B € Z. 
Then for any A £ M, the following equality holds 

dA, i = DA>y 

P r o o f . Since 

Da,b(T) = supT{dA,B(r),dA>B(r)} 
r<t 

therefore for all t > 0 

(2) DAJt) < dAi(t). 
To prove the reverse inequality let 6 6 (0,1) be arbitrary but fixed and let 
d.4,j = £, i.e. 

sup{d A i B ( t ) :B £Z} = e. 
Then there exists a B £ Z such that 

dA,B(t) >£-6 
Thus 

A C Kes(B,r). 
This in view of Lemma (3.1) implies that 

B n Kc-s(A, r) i <p and A C Ke.6(B n Ke-S(A, r), r). 
Consequently, 

(3) dAtBnKc_s(A>r)(r) >e-S. 
On the other hand, B fl Ke-s(A,r) C Kes(A, r). This allows us to infer 
that 

(4) dBnKc_s(Atr)iA(r) >e-6. 

Combining (3) and (4), we get 

Wlm{dAtBnKe_s{A<r)(r),dBnKe_6{Atr)iA(r)} >£-6. 

Taking sup on r < t, we obtain 

DAiBnKc_s{A,r)(t) > £ - 6 . 
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But in view of condition ( 1 ) we have B D Kc~s(A,r) G Z. SO the latter 
inequality implies that 

DA,i(t) > e - S . 

Since 6 is arbitrary, therefore 

( 5 ) DAtS(t) > e = dA,s(t). 

From (2) and (5) we get 

DAti(t) = ^ , , ( 0 -

COROLLARY 3 . 3 . Let Z be a nonempty subfamily of M satisfying the 
condition (1), then DAfi(t) = d^A(t), where = : B e Z } . 

COROLLARY 3 .4 . Let Z be a subfamily of M satisfying the condition (1). 
If AC B then Sj(A) > S)(B) (i.e. for all t > 0 DA<i(t) > 

P r o o f . From Theorem (3.2) we know that 

¿ W ) = and £>b,,(*) = dBli(t). 

So it suffices to show that dAti(t) > dB,}(t). Put 

e = dBj(t) = sup{d B > c(0 : C € }• 

Then for any given 6 > 0, there exists a C £ Z such that dB,c > £ — S, 
what means that B C Ke-s(C,t), and consequently A C Kcs(C,t). This 
implies that 

dA,c{t) > e - S . 

Since C € Z so dAti(t) > e — 6. But 6 was arbitrarily chosen so we get 
< W 0 £ £ = 

COROLLARY 3 .5 . (a) If A,B £ M then, min{FI(YL), £ ( £ ) , } > Sj(AuB). 

( b ) I f A , B e M and An B ^ 0 , then 

f ) ( A DB)> max{Sj(A),f)(B)}. 

P r o o f . Since A C A U B and B C A U B. So by using Corollary 3.4, we 
get 

what showes (a). Also A CI B C A and A ("1 B C B and again by Corollary 
3.4, we get 

f)(An B) > max(s(.4),£(#)}• 
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T H E O R E M 3 . 6 . If a family Z fulfils the condition ( 1 ) and also the follow-

ing one 

A,B £ Z implies A U B E Z. 
Then 

f } ( A \ j B ) = mm{Sj(A),f)(B)}. 

P r o o f . Denote e = min{f)(yl),.f)(.B)} and take an arbitrary 6 > 0. Then 
there exist Ci,C2 € Z such that 

d A > C l ( t ) > £ - 6 o r d B , C i ( t ) > s - 6. 

It implies that 

A C K c s ( C \ , t ) a n d B C Kc-s(C2, 

Thus 
A U B C K e . s ( C u t ) U Kc-.s(C2,t) = K£.S{CX U C 2 , t ) . 

But by the given condition C\ U C2 € Z and therefore 

dAUB,i(t) > £ - 6 . 

Since 8 is arbitrary therefore, in view of Theorem 3.2, the last inequality 
implies that 

DAuBl}(t) > £ = min{S(A),.S(fl)} 
and this together with Corollary 3.5 completes the proof. 

T H E O R E M 3 . 7 . fi^A) = H if and only if A e Z , the closure of Z in Mc 

with respect to the topology generated by D. 

P r o o f . 
^ ( A ) = H & DAti = H 

s u p { D a , b :B e Z } = H 

& Da,b = H for some B e Z. 
&A = B, B 6 Z (by Theorem 2.11) 
O A Z Z . 
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