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SOLVING THE TRAVELLING SALESMAN PROBLEM 
WITH A HOPFIELD-TYPE NEURAL NETWORK 

1. Introduction 
Hopfield-type neural networks [5] composed of highly-interconnected 

analog elements (neurons) can be successfully used in solving optimization 
problems. Structure of a network and weights of connections between neu-
rons depend on the specific constraints of a problem. For each neuron in the 
network the so-called input and output potentials can be defined, denoted 
by u and u, respectively. In the Hopfield model, the function of response is 
usually S-shaped. In this paper 

where Q is a gain of that function. For sufficiently big values of a, v is of 
binary character, i.e. approximately 

In a network composed of TO neurons a function of energy E of the 
network is in general of the following form [5, 6]: 

where t{j ( i , j = l , . . . , m ) is weight of a connection between the output 
of the j-th neuron and the input of the z-th one. All t { j form a matrix of 
connection weights. They can be positive (excitatory stimulus) or negative 
(inhibitory stimulus) or equal to zero, i.e. there is no connection from neuron 
j to neuron i. The input potential Ui of the i-th neuron is defined by the 

(1) v(u) = 1/2(1 + tanh(au)] 

m m 

Key words and phrases: neural network, NP-Hard optimization problem, Travelling 
Salesman Problem, Hopfield network, N-Queens Problem. 
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equation 

(3) 

From (2) and (3) we obtain 
m 

(4) v-i = Ylt,jv-> ( » = i , . . . , " 0 -
J = I 

The above rules were exploit by various authors in attempts to solve hard 
optimization problems. The greatest attention among them was probably 
paid to the T S P . The problem can informally be stated as follows: 

D E F I N I T I O N 1. Given a set of n cities and distances between every two of 
them, find the closed tour for a salesman through all cities that visits each 
city only once and is of minimum length. 

Based on the Graph Theory terminology the T S P is defined as below: 

D E F I N I T I O N 2. Given a graph Kn and a symmetric matrix representing 
weights of edges in A'n , find the Hamiltonian cycle in Kn of minimum length 
(cost) . 

N o t e 1. Problem definition presented here is not the only possible ver-
sion of the T S P . In other definitions, the matrix is not symmetric or not every 
two different cities are connected by an edge. Some alternative definitions, 
as well as main, well known theoretical results concerning the computational 
complexity of various versions of the T S P can be found in [13]. 

N o t e '2. Since, the two above mentioned definitions are equivalent, and 
due to some "tradition" associated with formulating the T S P is terms of 
"route across cities", we would rather use terminology from Definition 1. 

Due to the presumable non-polynomial complexity of the T S P , conven-
tional approaches to solving the problem are based either on the extensive 
search methods or on heuristics. The most popular and one of the best 
heuristical methods are those presented in [8], [3], [4] or [12]. 

Our solution to the problem is based on the papers [15], [9] and [11]. 
Actually, the idea of network evolution as well as the way of choosing starting 
point of the simulation are identical to the ones used for the N-Queens 
Problem ( N Q P ) in the last two of above cited papers. 

T h e fact that these two problems are well suited to the method proposed 
is encouraging and stimulating for future research and development of the 
method. 

In this paper, any syntactically valid solution of the T S P (Hamiltonian 
cycle in a city graph) will be treated as solution of the problem, and solutions 
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that minimize length of the tour will be called best solutions. Obviously, for 
any solution there exist 2n — 1 other solutions of the same length which 
differ from one another in the starting city or direction of the tour. For the 
sake of simplicity, all of them would be treated as the same solution. 

Solving optimization problems with the Hopfield network requires careful 
and adequate choice of the energy function, i.e. weights . Function E must 
be determined in such a way that its minima correspond to solutions of the 
problem considered. 

In this paper E is of the form 

(5) E = El + E2 

where 

^ n n n ^ n n n 

(5.1) i i ^ E E E v " v * j + 2 S £ E V + X— 1 1 = 1 j = 1 1 = 1 1=1 y=l 

Ct ' 

X —11=1 

and 
J J n n n 

( 5- 2) £ 1 = ~2 S £ E dxy»xi(wtf,i+l + »».i-l)-
x-\ y= 1 i=l 

y?x 

In eqs. (5.1) and (5.2), n denotes the number of cities, and dxy the 
distance between cities x and y. 

The way of solving the TSP presented here, except for different choice 
of network parameters, differs from the classical approach in the way of 
updating neurons output potentials. Hopfield [5] and others ([14], [7], [1]) 
have used the following updating rule 

j=1 »=1 

n n n 

~ C ( E E V l J " ( n +
 a))"'DE dxy(Vy,i+1 + »y.i-l ) 

z= l j= l y=l 

with T — 1. 
In the practical computer realization, after applying the Euler method, 

eq. (6) was of the form 
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n n 
(7) u x , ( t + A t ) = u x , { t ) + A l ( - u r i - ( 0 - A Y , u * j ( 0 - B Y l V ( 0 " 

j = i y=i 
j «̂ y^x 

n n n 
" r j ( 0 - ( n + * ) ) - D Y , dXy(Vy,i + i ( t ) + « „ , , • - ! ( / ) ) ) 

i = l j = l y=l 

with At equal to 1 0 " 5 . 
In eq. (7) , the state of neuron x i ( x , i = 1 , . . . , n ) at time t + 1 depends 

on its state at time t. In our simulations an input potential at t ime t + 1 does 
not directly depend on its state in the previous moment. Actually, from (3) 
and (5) 

n n 
( 8 ) u x l ( t + 1) = - A Y v x j ( t ) - B Y w » i ( 0 -

j=1 y = l 

n n n 

x = l j = l y = l 

T h e above presented updating rule was also used in [15]. Yao et al. [15J 
reported used about 50% convergence rate to valid tours. Bet ter conver-
gence rate obtained in our simulations is due to a better choice of network 
constants. 

T h e biggest advantage of the proposed network is its independence on 
the initial state (the output potentials of neurons at the beginning of a 
simulation test) . Results of computer simulations as well as discussion on 
the influence of network constants on the quality of results are presented in 
the following sections. 

2. Network description and simulation results 
In computer simulations the network was represented by a matrix V n x n . 

At the end of a simulation test which converged to a solution each element 
vxi (x , i = 1 , . . . , n) , representing output potential of neuron xi, was equal 
to either zero or 1. Moreover, elements of V fulfiled the constraints that in 
each row and in each column of V there existed exactly one element equal 
to 1. In the resulting matrix, vxi = 1 was interpreted as that city x was in 
the T-th position in a salesman's tour. 

The above requirements for resulting matrix V were implied by the con-
dition that minima of (5) should correspond to solutions of the problem. 

Actually, in (5 .1) term multiplied by A fulfils the constraint that in each 
row x there exist at most one element equal to 1 (city x is visited not more 
than once). Similarily, term multiplied by B fulfils the same condition for 
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start start 
V;; E i j ' T 
i j=l , . . . ,n ! 

5n2 iterations 
r } I 

M 

stop 

Repeat until E is not constant in 
20 successive external iterations 

and the number of external 
iterations does not cxceed 1000 

Fig. 1. A diagram of network evolution in one test 

columns (at the ¿-th step of the tour at most one city is visited). Finally, 
the third term in (5.1) forces the sum of all elements of V to a value close 
to n, which means that the tour is composed of n steps. 

Minimization of a tour length is covered by (5.2). 
In a simulation test, the network starting from some energy level, slowly 

decreases its energy and, in the end, settles in the minimum of E. The 
''deeper" the minimum, the better the obtained solution (global minima of 
E correspond to best solutions). 

A single simulation test was performed as follows (see Fig. 1): 
(i) all initial output potentials vXi (x, i = 1 , . . . , n) were set and from (5) 

the starting value of energy E was evaluated, 
(ii) neuron ( i , i) was chosen at random and from (8) was calculated, 

and then from (1) vxi was obtained. 

Operation (ii) was repeated 5n2 times, and then a new value of E from 
(5) was calculated. 

Every n2 repetitions of (ii) was called an internal iteration. Five internal 
iterations composed one external iteration. 

A simulation process terminated if the energy remained constant in a 
priori established amount of successive external iterations or, the number 
of external iterations exceeded the constraint for a global number of iter-
ations and the network still did not achieve a stable state, i.e. a constant 
value of E . 

In simulation tests four strategies for setting initial output potentials 
were used. In those strategies the output of each of n2 neurons was initially 
set to (cf. [9], [11]): 
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a — random value from [0,/3], 
b — random value from [0,1], 
c — random value from [1 - (3,1], 
H — random value from [0,/3] + 1/n, 

where (3 % 0.03. 
Two strategies, denoted F (Full) and P (Part) were employed for choos-

ing neuron xi to be modified in (ii). 
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City set 1 

A =(0.25,0.16), 
C =(0.65,0.24), 
E=(0.15,0.22), 
G =(0.4,0.45), 
M0.55 0.9), 

B=(0.85,0.35), 
D=(0.7,0.5), 
F=(0.25,0.78), 
H=(0.9,0.65), 
J=(0.6,0.28) 

Fig. 2. City set 1: cities coordinates and three shortest tours 
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In case F, the choice of neurons to be modified in the internal iteration 
was completely random. In case P, in every internal iteration a permuta-
tion of numbers 1 , . . . , n2 was randomly chosen, and neurons were modified 
according to that permutation. 

Simulations were based on three 10-element data sets. The first one was 
taken from [5], next one from [1] and the last one was similar to one of the 
sets used in [2]. Three "shortest" tours for each data set and coordinates of 
cities are presented in Figs. 2-4. 
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City set 2 

A=(0.025.0.125). 
C=(0.125,0.225), 
E=(0.5,0.15), 
G=(0.7,0.375), 
HO.9,0.425), 

B=(0.15,0.75). 
D=(0.325,0.55), 
F=(0.625,0.5), 
H=(0.875,0.4), 
J=(0.925,0.7) 

Fig. 3. City set 2: cities coordinates and three shortest tours 
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City set 3 

A=(0.06,0.?), 
C=(0.22,0.67), 
E=(0.35,0.95), 
G=(0.5,0.75), 
I=(0.7,0.8). 

B=(0.08,0.9) , 
D=(0.3,0.2) , 
F=(0.4,0.15), 
H=(0.62,0.7), 
J=(0.83,0.2) 

Fig. 4. City set 3: cities coordinates and three shortest tours 

As previously stated, the crucial point of network design is the proper 
choice of connection weights or, equivalently, constants A, B,C, D,a in (5.1) 
and (5.2). 

According to preliminary simulations the following values of parameters 
appeared to be suitable ones: 

A = B = 100; C — 90,100; D = 90,100,110,120; a = 1,1.1; a = 50. 
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In all simulation tests there was kept 

A = B = 100 and a = 50. 

Parameters C,D and a were altered, to suit them for the exact layout 
of cities. For each considered configuration of parameters, 100 tests were 
done. 

Results of simulations performed for the city set 1 are presented in 
Tab. 1. In all tests, a — 1 was used. The convergence rate of the network 
was very high (up to 100%) and did not at all depend on the initial state 
of the network. Best results were obtained for C = 90, D = 110. The 
average length, in that case was only about 10% greater than the optimum. 
Lowering parameter D to 100 (with C = 90) resulted in 100% convergence 
with av. length 20% greater than the best one. Similar quality results were 
also obtained for the choices C - 100, D = 120 and C = 100, D = 110, 
respectively, but with lower convergence rate. Increasing parameter D to 
130 caused the network to be unable to close tours. Trying to fulfil the 
minimization of (5.2) the network did not meet the requirement based on 
minimization of (5.1). On the other hand, setting C = D = 100 led to over 
90% (100% for strategy P) convergence rate but the quality of tour lengths 
was evidently poorer. 

Changing parameters C and D allows also adjusting the approximate 
average number of iterations. From Tab. 1, it can be seen that the higher 
the proportion U, the greater the average number of iterations required. 

Table 1. Results of computer simulations for the city set 1. 
Parameters: A = B = 100, a = 1 

PART Best Mean Worst % Succ Iter. FULL Best Mean Worst ro Succ Iter. 

C = 90, D = 100 C = 9 0 , D = 100 

a 2.785 3.19 3.69 100 80.7 a 2.767 3.21 3.79 100 121.1 
b 2.696 3.22 3.65 100 64.4 b 2.765 3.21 3.88 100 107.0 
c 2.696 3.17 3.68 100 64.4 c 2.696 3.21 3.70 100 97.1 
d 2.696 3.20 3.63 100 51.1 d 2.696 3.21 3.69 100 106.3 

C = 90, D = 110 C = 9 0 , D= 110 

a 2.696 3.00 3.31 100 129.8 a 2.765 3.01 3.34 97 219.8 
b 2.696 2.99 3.31 100 127.1 b 2.696 2.99 3.41 95 238.2 
c 2.696 3.00 3.33 100 165.1 c 2.696 3.02 3.43 96 223.4 
d 2.696 3.01 3.33 99 154.7 d 2.696 3.04 3.52 96 231.6 

C = 100, D = 100 C=100 , D = 100 

a 2.877 3.52 4.38 100 33.4 a 2.937 3.49 4.08 97 51.8 
b 2.765 3.51 4.21 100 34.5 b 2.787 3.53 4.51 95 65.5 
c 2.785 3.54 4.42 100 31.4 c 2.785 3.45 4.14 93 68.7 
d 2.696 3.55 4.20 100 33.9 d 2.767 3.47 4.15 97 61.4 
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Table 1 [cont.] 

PART Best Mean Worst % Succ Iter FULL Best Mean Worst % Succ I ter 

C = 100, £> = 110 C=100, £> = 110 

a 2 .696 3.24 3 .88 92 107.3 a 2 .696 3 .22 3 .89 82 157.3 

b 2 .696 3.26 3.89 93 113.5 b 2 .765 3.27 4 .05 79 159.2 

c 2 .696 3.26 3 .88 93 137.4 c 2 .696 3 .22 3 .79 78 155.4 

d 2 .696 3.23 3.88 94 109.9 .1 2 .696 3 .25 3.75 81 116.3 

C = 100, £> = 120 C— 100, D — r.;u 

a 2 .785 3.06 3 .42 54 223.5 a 2 .696 3.0C 3.46 42 224.6 

b 2 .696 3.04 3 .46 59 162.7 b 2 .696 3.05 i .46 34 231 .2 

c 2 .696 3.01 3 .46 52 201.3 c 2 .696 3 .05 3.41 36 208 .0 

d 2 .696 3.03 3.46 66 210.0 d 2 .696 3.10 i.'H 44 219 .2 

For the c ity set 2 the same five sets of parameters were used (with 
a = 1). Results are presented in Tab. 2. The convergence rate was also high 
— for C = 90, D = 100 about 95%, for C = 100 ,0 = 110 and C = D = 100 
over 80%. In the first two cases the mean length was about 20% greater 
than the best one. In the last case the average length was longer. For the 
two other sets of parameters the average length was much better, but the 
success rate was lower (especially for C = 100, D = 120). To improve the 
success rate (for C - 100) it was neccessary to lower parameter D to 90. 
In that case over 95% (100% for strategy P) convergence was achieved, but 
since the network "worked" mostly on the syntactical constraint (5.1), the 
mean length of the tours was about 3.65 which was 30%: greater than the 
optimum. 

The remark about the mutual dependence between the average num-
ber of required iterations and the proportion ^ is also true for this set of 
cities. 

Table 2. Results of computer simulations for the city set 2. 
Parameters: A = B = 100, a = 1 

PART Best Mean Worst % Succ Iter FULL Best Mean Worst % Su-.-f Iter 

C-yo, D — 1 00 c = { 10, D = 100 

a 2 .862 3.24 3.91 99 123.9 a 2 .862 3.22 3.89 94 188.3 

b 2 .862 3.21 3.91 96 139.1 b 2 .862 3.26 3.82 97 174.6 

c 2 .862 3.23 3 .69 98 109.6 c 2 .862 3.26 3 .93 97 189.3 

d 2 .862 3.21 3 .87 95 127.4 d 2 .862 3.25 3.95 98 220.8 

C = 90, D- 110 C = 90, D = 110 

a 2 .862 3.02 3 .20 52 280.1 a 2 .862 3.04 3.64 68 448 .9 

b 2 .862 3.02 3 .20 60 294 .5 b 2 .862 3.07 3 .50 58 355.6 

c 2 .862 3.03 3 .20 52 272.2 c 2 .862 3 .05 3 .45 62 445 .0 

d 2 .862 3.03 3 .20 57 243.8 d 2 .862 3 .05 3.64 60 378 .9 
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Table 2 [cont.] 

PART Best Mean Worst % Succ I ter F U L L Best Mean Worst % Succ I ter . 

C = 100, D = 90 C = 100, D = 90 

a 2.880 3.66 4.55 100 41.3 a 2.919 3.65 4.28 97 54.5 
b 2.919 3.71 4.69 100 33.9' b 2.989 3.65 4.62 95 68.1 
c 2.996 3.64 4.39 100 38.4 c 2.880 3.69 4.62 98 70.9 
d 2.862 3.66 4.51 100 47.5 d 2.862 3.46 4.38 99 66.4 

C = 100. D-= 100 C = 1 0 0 , D--= 100 

a 2.862 3.42 4.02 96 78.2 a 3.051 3.48 4.32 93 115.2 
b 2.862 3.43 4.04 98 83.5 b 2.951 3.39 4.09 84 132.2 
c 2.880 3.44 4.23 98 71.1 c 2.880 3.45 4.22 84 130.3 
d 2.862 3.44 3.97 96 89.4 d 2.880 3.41 3.97 95 113.2 

C=1U0, D-= 110 C = 1 0 0 , D-. = 110 

a 2.880 3.26 3.76 82 93.5 a 2.880 3.32 3.89 68 145.7 
b 2.862 3.31 3.89 85 113.1 b 2.880 3.31 4.04 65 143.0 
c 2.880 3.32 3.85 81 139.1 c 2.880 3.28 3.81 64 204.0 
d 2.938 3.34 3.85 89 116.5 d 2.862 3.25 3.87 66 175.3 

(' = 10 U, D-= 120 C = 100, D-= 120 

a 2.862 3.04 3.22 12 250.5 a 2.919 3.19 3.43 12 149.8 
b 2.862 3.05 3.15 13 399.8 b 2.862 3.13 3.43 13 170.4 
c 2.919 3.09 3.20 12 188.1 c 2.919 3.08 3.43 9 223.3 
d 2.862 3.12 3.48 15 481.7 d 2.862 3.07 3.35 12 230.0 

Table 3. Results of computer simulations for the city set 3. 
Parameters: A = B = 100 

PAKT Best Mean Worst % Succ I ter . F U L L Best Mean Worst % Succ I ter . 

bi^ni.i = 
( • = !!(), D = 

;i 
90 

2 . 7 8 6 3 . 3 5 4.00 100 145.3 

s igma = 
C = 90, D-

a 
90 

2.919 3.38 4.11 100 194.3 
1. 2 . 7 8 6 3 . 3 7 3.84 100 149.4 b 2.786 3.38 4.00 98 230.1 
c 2 . 7 8 6 3 . 3 6 3.82 99 135.5 c 2.786 3.39 3.90 96 221.7 
<1 2 . 7 8 6 3 . 3 5 3.99 100 140.5 d 2.786 3.36 4.36 99 206.6 

sigma = 
(=1011 , D-

a 
100 

2 . 7 8 6 3 . 3 5 3.86 87 209.6 

s igma = 
C = 100, D = 

a 
100 

2.932 3.40 4.24 73 267.8 
1. 2 . 7 8 6 3 . 3 6 4.08 95 266.9 b 2.786 3.38 3.93 67 236.9 
c 2.786 3.42 4.08 93 251.0 c 2.786 3.35 4.04 69 257.4 
d 2.786 3.33 3.90 92 234.7 d 2.786 3.38 4.21 78 279.2 

sigma =1 
C = 90, D = 

a 

1 
100 

2.919 3.31 3.99 98 153.7 

s igma = 1 
C = 9 0 , D = 

a 

1 
100 

2.786 3.36 3.90 96 236.0 
b 2.786 3.34 3.84 99 183.5 b 2.786 3.41 4.15 94 246.6 
c 2.786 3.34 4.00 97 143.3 c 2.786 3.33 3.87 97 242.4 
d 2.786 3.34 3.99 99 168.5 d 2.786 3.38 4.00 98 258.3 
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Solving the problem for the third set required slight modification of 
the parameters. In that case best results were obtained for C = D = 90 
and C = D = 100, with <7=1 . Comparable results were also achieved for 
C = 90, D = 100, a = 1.1 (Tab. 3). Generally, for this set of cities a little 
worse results were obtained, with the mean length about 20% - 25% greater 
than the shortest one. 

Based on the three examples we can state that the network is quite sensi-
tive to alteration of parameters. In all examples, when parameters had been 
changed beyond some limit values, either the lengths of tours have increased 
or the success rate has decreased or the average number of iterations has 
increased. The crucial for the method is the proper setting of proportions 

and ^ (on condition that A — B). These proportions, rather than exact 
values, decide on the quality of results. 

3. Final remarks and conclusions 
The method of solving the TSP presented in this paper is based on 

some modifications of the "classical" Hopfield-Tank's approach. Primarily 
a new way of updating neuron output potential is applied. Based on initial 
simulations proper network constants were found, which led to good quality 
results, with mean lengths of tours about 10%-20% greater than the best 
lengths. 

Based on the same method another non-plynomial problem — the NQP 
— was also solved ([9], [11]) with very good results. 

Comparably worse results obtained for the TSP are due to stronger re-
quirements associated with minimization of the tour length (5.2). In the 
NQP any valid solution is automatically the best one, since all solutions are 
equally good. On the other hand, because of additional constraints for all 
diagonals of matrix V in (5.1), t>he function of energy in the NQP is of a 
much more complicated form than that of the TSP. 

Good results obtained for both problems indicate that after more re-
search the proposed method may be applied to the wide subset of NP-Hard 
optimization problems. 

The very good point of the introduced method is its independence on 
the initial state of the network. All four ways of setting the starting point 
of the network, resulted in similar quality of success rates and mean lengths 
of obtained tours. 

There are, however, some open questions. In further research we plan 
to completely discretize the network, i.e. allow output potentials to take on 
values only from the set {0,1}. We are not yet sure if the results would "be 
of as high quality as they were for the NQP ([9], [10]). 
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Our interest is also associated with a theoretical analysis of an influence 
of network parameters on network bahaviour. 
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