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SOLVING THE TRAVELLING SALESMAN PROBLEM
WITH A HOPFIELD-TYPE NEURAL NETWORK

1. Introduction

Hopfield-type neural networks [5] composed of highly-interconnected
analog elements (neurons) can be successfully used in solving optimization
problems. Structure of a network and weights of connections between neu-
rons depend on the specific constraints of a problem. For each neuron in the
network the so-called input and output potentials can be defined, denoted
by u and v, respectively. In the Hopfield model, the function of response is
usually S-shaped. In this paper

(1) v(u) = 1/2[1 4 tanh(au)]
where « is a gain of that function. For sufficiently big values of a, v is of
binary character, i.e. approximately
o(u) = {0 ifu<0
1 ifu>0.
In a network composed of m neurons a function of energy E of the
network is in general of the following form [5, 6]:

1
(2) E = —5 Ztijv,-vj
1=1 j=1
where ¢;; (¢,j = 1,...,m) is weight of a connection between the output

of the j-th neuron and the input of the :-th one. All ¢;; form a matrix of
connection weights. They can be positive (excitatory stimulus) or negative
(inhibitory stimulus) or equal to zero, i.e. there is no connection from neuron
j to neuron i. The input potential u; of the i-th neuron is defined by the
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equation

(3) u,-:—gfi (i=1,....m).

From (2) and (3) we obtain

(4) ui:Ztijvj (t=1,...,m).
=1

The above rules were exploit by various authors in attempts to solve hard
optimization problems. The greatest attention among them was probably
paid to the TSP. The problem can informally be stated as follows:

DEFINITION 1. Given a set of n cities and distances between every two of
them, find the closed tour for a salesman through all cities that visits each
city only once and is of minimum length.

Based on the Graph Theory terminology the TSP is defined as below:

DEFINITION 2. Given a graph K, and a symmetric matrix representing
weights of edges in K, find the Hamiltonian cycle in K, of minimum length
(cost).

Note 1. Problem definition presented here is not the only possible ver-
sion of the TSP. In other definitions, the matrix is not symmetric or not every
two different cities are connected by an edge. Some alternative definitions,
as well as main, well known theoretical results concerning the computational
complexity of various versions of the TSP can be found in [13].

Note 2. Since, the two above mentioned definitions are equivalent, and
due to some “tradition” associated with formulating the TSP is terms of
“route across cities”, we would rather use terminology from Definition 1.

Due to the presumable non-polynomial complexity of the TSP, conven-
tional approaches to solving the problem are based either on the extensive
search methods or on heuristics. The most popular and one of the best
heuristical methods are those presented in [8], {3], [4] or [12].

Our solution to the problem is based on the papers [15], [9] and [11].
Actually, the idea of network evolution as well as the way of choosing starting
point of the simulation are identical to the ones used for the N-Queens
Problem (NQP) in the last two of above cited papers.

The fact that these two problems are well suited to the method proposed
is encouraging and stimulating for future research and development of the
method.

In this paper, any syntactically valid solution of the TSP (Hamiltonian
cycle in a city graph) will be treated as solution of the problem, and solutions
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that minimize length of the tour will be called best solutions. Obviously, for
any solution there exist 2n — 1 other solutions of the same length which
differ from one another in the starting city or direction of the tour. For the
sake of simplicity, all of them would be treated as the same solution.

Solving optimization problems with the Hopfield network requires careful
and adequate choice of the energy function, i.e. weights t;;. Function E must
be determined in such a way that its minima correspond to solutions of the
problem considered.

In this paper E is of the form

(5) E=FE| +F,
where
A n n n B n n
(r) 1) E, = '2_2 Zvrxvr]+ 2 ZZ Zvrxvyz'*‘
z=11i=1 j=1 i=1 z=1 y=1
# y#zr
C n n 2
+ 3(1_1;”11' - (n+0))
and
. DM
(')'2) E, = 5 Z Z dzyvri(vy,i+l + vy,i—l)-
=1 y=1 =1
y#zT

In eqs. (5.1) and (5.2), n denotes the number of cities, and d;, the
distance between cities z and y.

The way of solving the TSP presented here, except for different choice
of network parameters, differs from the classical approach in the way of
updating neurons output potentials. Hopfield [5] and others ([14], [7], [1])
have used the following updating rule

(6) d;‘:‘: —Eﬂ—AZer—BZvy,

J-‘#' y¢1‘
n n n
- C( Z Z vz —(n+ ‘7)) -D Zdry(vy.iﬂ + vy,i-1)
=1 j3=1 y=1

with 7 = 1.
In the practical computer realization, after applying the Euler method,
eq. (6) was of the form
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(7) u.ri(t + At) = uri(t) + At(_uri(t) - A Z vrj(t) - B Z vyi(t)_
i=1 y=1

i y#zT

~c( Z:l ; vaj(t) = (n+0)) = D 2-:1 dey(vy,41(8) + vy,i-1(1))

with At equal to 107°.

In eq. (7), the state of neuron zi (z,7=1,...,n) at time t + 1 depends
on its state at time ¢. In our simulations an input potential at time ¢+ 1 does
not directly depend on its state in the previous moment. Actually, from (3)
and (5)

(8) wm(t+1)=-A4Y vg(t) =B Y vy(t)-
1=1 y=1

#i y#zT

n n n
—C( XY a0 = (40) = DY day(vyi1 () + vyima ().
r=1 j3=1 y=1

The above presented updating rule was also used in [15]. Yao et al. [15]
reported used about 50% convergence rate to valid tours. Better conver-
gence rate obtained in our simulations is due to a better choice of network
constants.

The biggest advantage of the proposed network is its independence on
the initial state (the output potentials of neurons at the beginning of a
simulation test). Results of computer simulations as well as discussion on
the influence of network constants on the quality of results are presented in
the following sections.

2. Network description and simulation results

In computer simulations the network was represented by a matrix V,, x,.
At the end of a simulation test which converged to a solution each element
vz (z,1=1,...,n), representing output potential of neuron zi, was equal
to either zero or 1. Moreover, elements of V fulfiled the constraints that in
each row and in each column of V there existed exactly one element equal
to 1. In the resulting matrix, v;; = 1 was interpreted as that city z was in
the i-th position in a salesman’s tour.

The above requirements for resulting matrix V were implied by the con-
dition that minima of (5) should correspond to solutions of the problem.

Actually, in (5.1) term multiplied by A fulfils the constraint that in each
row z there exist at most one element equal to 1 (city z is visited not more
than once). Similarily, term multiplied by B fulfils the same condition for
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Fig. 1. A diagram of network evolution in one test

columns (at the i-th step of the tour at most one city is visited). Finally,
the third term in (5.1) forces the sum of all elements of V to a value close
to n, which means that the tour is composed of n steps.

Minimization of a tour length is covered by (5.2).

In a simulation test, the network starting from some energy level, slowly
decreases its energy and, in the end, settles in the minimum of E. The
“deeper” the minimum, the better the obtained solution (global minima of
E correspond to best solutions).

A single simulation test was performed as follows (see Fig. 1):

(i) all initial output potentials v,; (2,7 = 1,...,n) were set and from (5)
the starting value of energy F was evaluated,

(ii) neuron (z,¢) was chosen at random and from (8) u,; was calculated,
and then from (1) v;; was obtained.

Operation (ii) was repeated 5n? times, and then a new value of E from
(5) was calculated.

Every n? repetitions of (ii} was called an internal iteration. Five internal
iterations composed one ezternal iteration.

A simulation process terminated if the energy remained constant in a
priori established amount of successive external iterations or, the number
of external iterations exceeded the constraint for a global number of iter-
ations and the network still did not achieve a stable state, i.e. a constant
value of F.

In simulation tests four strategies for setting initial output potentials
were used. In those strategies the output of each of n? neurons was initially
set to (cf. [9], [11]):
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a — random value from [0, 3],

b — random value from [0, 1],

¢ — random value from [1 — §, 1],

d — random value from {0,3] + 1/n,

where 3 = 0.03.
Two strategies, denoted F' (Full) and P (Part) were employed for choos-
ing neuron zi to be modified in (ii).

* + * b * *

02 04 o6 o8 10 X 03 o4 05 08 10 X

- 2696460 2.765742

City set 1

* *

0z o4 056 08 10 X

A=(0.25,0.16), B=(0.85,0.35),
2.767233 C=(0.65.0.24), D=(0.7.0.5),
E=(0.15,022), F=(0.25,0.78),
G=(04,045), H=(09,065),
1=0.55 09),  J=(0.6,028)

Fig. 2. City set 1: cities coordinates and three shortest tours
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In case F, the choice of neurons to be modified in the internal iteration
was completely random. In case P, in every internal iteration a permuta-
tion of numbers 1,...,n? was randomly chosen, and neurons were modified
according to that permutation.

Simulations were based on three 10-element data sets. The first one was
taken from [5], next one from [1] and the last one was similar to one of the
sets used in [2]. Three "shortest” tours for each data set and coordinates of
cities are presented in Figs. 2-4.

109 109

- $ * 1 ) g — 12

02 04 o6 03 10 X 02 04 05 03 10 X

'2.862427 2.880978

City set 2

02 04 o;s o; l'n X
A=(0.025,0.125), B=(0.15,0.75),
C=(0.125,0.225), D=(0.325,0.55),
2.919809 E=(0.5,0.15), F=(0.625,0.5),
G=0.7,0.375), H=(0.875,04),
1=0.9,0.425), J=(0.925.0.7)

Fig. 3. City set 2: cities coordinates and three shortest tours
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2.932482 C=(0.22,0.67), D=(0.3,0.2),
E=(0.35,0.95), F=(04,0.15),
G=(0.5,0.75), H=(0.62,0.7),
1<0.7,0.8), J;(0.83,0.2)

Fig. 4. City set 3: cities coordinates and three shortest tours

As previously stated, the crucial point of network design is the proper
choice of connection weights or, equivalently, constants A, B,C, D,oin (5.1)
and (5.2).

According to preliminary simulations the following values of parameters
appeared to be suitable ones:

A=B=100; C=90,100; D =90,100,110,120; ¢ =1,1.1; a=50.
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In all simulation tests there was kept
A=B =100 and a = 50.

Parameters C, D and o were altered, to suit them for the exact layout
of cities. For each considered configuration of parameters, 100 tests were
done.

Results of simulations performed for the city set 1 are presented in
Tab. 1. In all tests, 0 = 1 was used. The convergence rate of the network
was very high (up to 100%) and did not at all depend on the initial state
of the network. Best results were obtained for C = 90, D = 110. The
average length in that case was only about 10% greater than the optimum.
Lowering parameter D to 100 (with C' = 90) resulted in 100% convergence
with av. length 20% greater than the best one. Similar quality results were
also obtained for the choices C = 100, D = 120 and C = 100, D = 110,
respectively, but with lower convergence rate. Increasing parameter D to
130 caused the network to be unable to close tours. Trying to fulfil the
minimization of (5.2) the network did not meet the requirement based on
minimization of (5.1). On the other hand, setting C = D = 100 led to over
90% (100% for strategy P) convergence rate but the quality of tour lengths
was evidently poorer.

Changing parameters C and D allows also adjusting the approximate
average number of iterations. From Tab. 1, it can be seen that the higher
the proportion g, the greater the average number of iterations required.

Table 1. Results of computer simulations for the city set 1.
Parameters: A= B =100, =1

PART Best Mean Worst % Succ. Iter. FULL Best Mean Worst % Succ. Iter.
¢=90, D=100 C=90, D=100

a 2.785 3.19 3.69 100 80.7 a 2.767 3.21 3.79 100 121.1

b 2.696 3.22 3.65 100 64.4 b 2.765 3.21 3.88 100 107.0

C 2.696 3.17 3.68 100 64.4 c 2.696 3.21 3.70 100 97.1

d 2.696 3.20 3.63 100 51.1 d 2.696 3.21 3.69 100 106.3
C=90, D=110 C=90, D=110

a 2.696 3.00 3.31 100 129.8 a 2.765 3.01 3.34 97 219.8

b 2.696 2.99 3.31 100 127.1 b 2.696 2.99 3.41 95 238.2

c 2.696 3.00 3.33 100 165.1 [ 2.696 3.02 3.43 96 2234

d 2.696 3.01 3.33 99 154.7 d 2.696 3.04 3.52 96 231.6
C=100, D=100 C=100, D=100

a 2.877 3.52 4.38 100 334 a 2.937 3.49 4.08 97 51.8

b 2.765 3.51 4.21 100 34.5 b 2.787 3.53 4.51 95 65.5

c 2.785 3.54 4.42 100 31.4 C 2.785 3.45 4.14 93 68.7

d 2.696 3.55 4.20 100 339 d 2.767 3.47 4.15 97 61.4
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Table 1 [cont.}
PART Best Mean Worst % Succ. lter. FULL Best Mean Worst % Succ. Iter
=100, D=110 C=100, D=110
a 2.696 3.24 3.88 92  107.3 a 2.696 3.22 3.89 82 157.3
b 2,696 3.26 3.89 93 113.5 b 2,765 3.27 4.05 79 159.2
c 2.696 3.26 3.88 93 1374 c 2,696 3.22 3.79 78 1554
d 2.696 3.23 3.88 94 109.9 d 2,696 3.25 3.75 81 116.3
C=100, D=120 C=100, D=1
a 2,785 3.06 3.42 54 2235 a 2,696 3.06 3.46 42 224.6
b 2.696 3.04 3.46 59 162.7 b 2.696 3.05 31.46 34 231.2
c 2.696 3.01 3.46 52 201.3 c 2.696 3.05 3.41 36 208.0
d 2.696 3.03 3.46 66 210.0 d 2.696 3.10 3.58% 44 219.2

For the city set 2 the same five sets of parameters were used (with
o = 1). Results are presented in Tab. 2. The convergence rate was also high
— for C' = 90, D = 100 about 95%, for C = 100,D = 110and C = D = 100
over 80%. In the first two cases the mean length was about 20% greatoer
than the best one. In the last case the average length was longer. For the
two other sets of parameters the average length was much better, but the
success rate was lower (especially for C = 100, D = 120). To improve the
success rate (for ¢' = 100) it was neccessary to lower parameter D to 90.
In that case over 95% (100% for strategy P’) convergence was achieved, but
since the network “worked” mostly on the syntactical constraint (5.1), the
mean length of the tours was about 3.65 which was 30% greater than the
optimum.

The remark about the mutual dependence between the average num-
her of required iterations and the proportion g is also true for this set of
cities.

Table 2. Results of computer simulations for the city set 2.
Parameters: A = B =100, o = 1

PART Best Mean Worst % Succ. lter FULL Best Mean Worst % Succe. Iter

C=90, D=100 C=40, D=100

a 2.862 3.24 3.91 99 1239 a 2.862 3.22 3.89 Y4 188.3

b 2.862 3.21 3.91 96 139.1 b 2.862 3.26 3.82 97  174.6

C 2.862 3.23 3.69 98 109.6 c 2.862 3.26 3.93 97 189.3

d 2.862 3.21 3.87 95 1274 d 2.862 3.25 3.95 98 220.8
C=90, D=110 C=90, D=110

a 2.862 3.02 3.20 52 280.1 a 2.862 3.04 3.64 68 448.9

b 2.862 3.02 3.20 60 294.5 b 2.862 3.07 3.50 58 355.6

2.862 3.03 3.20 52 272.2 [« 2.862 3.05 3.45 62 445.0

d 2.862 3.03 3.20 57 243.8 d 2.862 3.05 3.64 60 378.9
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PART Best Mean Worst % Succ. Iter. FULL Best Mean Worst % Succ. Iter.
C=100, D=90 C=100, D=90
a 2.880 3.66 4.55 100 41.3 a 2.919 3.65 4.28 97 54.5
b 2.919 3.71 4.69 100 33.9 b 2.989 3.65 4.62 95 68.1
C 2.996 3.64 4.39 100 38.4 [ 2.880 3.69 462 98 70.9
d 2.862 3.66 4.51 100 47.5 d 2.862 3.46 4.38 99 66.4
C=100, D=100 C=100, D=100
a 2.862 3.42 4.02 96 78.2 a 3.051 3.48 4.32 93 115.2
b 2.862 3.43 4.04 98 83.5 b 2.951 3.39 4.09 84 132.2
2.880 3.44 4.23 98 T71.1 C 2.880 3.45 4.22 84 130.3
d 2.862 3.44 397 96 894 d 2.880 3.41 3.97 95 113.2
C'=100, D=110 C=100, D=110
a 2.880 3.26 3.76 82 93.5 a 2.880 3.32 3.89 68 145.7
b 2.862 3.31 3.89 85 113.1 b 2.880 3.31 4.04 65 143.0
C 2.880 3.32 3.85 81 139.1 c 2.880 3.28 3.81 64 204.0
d 2.938 3.34 3.85 89 116.5 d 2.862 3.25 3.87 66 175.3
¢'=100, D=120 C=100, D=120
a 2.862 3.04 3.22 12 250.5 a 2.919 3.19 3.43 12 149.8
b 2.862 3.05 3.15 13 399.8 b 2.862 3.13 3.43 13 1704
c 2.919 3.09 3.20 12 188.1 c 2.919 3.08 3.43 9 2233
d 2.862 3.12 3.48 15 481.7 d 2.862 3.07 3.35 12 230.0
Table 3. Results of computer simulations for the city set 3.
Parameters: A = B =100
ml’.r\l(l' Best Mean Worst % Succ. Iter. FULL Best Mean Worst % Succ. lter.
__si;g-m.\ =1 sigma =1
=90, D=90 C=90, D=90
a 2.786 3.35 4.00 100 145.3 a 2.919 3.38 4.11 100 194.3
b 2.786 3.37 3.84 100 1494 b 2.786 3.38 4.00 98 230.1
5 2,786 3.36 3.82 99 1355 [« 2,786 3.39 3.90 96 221.7
d 2.786 3.35 3.99 100 140.5 d 2.786 3.36 4.36 99 206.6
sigma =1 sigma =1
=100, D=100 C=100, D=100
a 2.786 3.35 3.86 87 209.6 a 2.932 3.40 4.24 73 267.8
b 2.786 3.36 4.08 95 266.9 b 2.786 3.38 3.93 67 236.9
C 2.786 3.42 4.08 93 251.0 c 2.786 3.35 4.04 69 2574
d 2.786 3.33 3.90 92 234.7 d 2.786 3.38 4.21 78 279.2
sigma =1.1 sigma =1.1
=90, D=100 C =90, D=100
a 2.919 3.31 3.99 98 153.7 a 2.786 3.36 3.90 96 236.0
b 2.786 3.34 3.84 99 183.5 b 2.786 3.41 4.15 94 246.6
c 2.786 3.34 4.00 97 1433 c 2.786 3.33 3.87 97 2424
d 2.786 3.34 3.99 99 168.5 d 2.786 3.38 4.00 98 258.3
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Solving the problem for the third set required slight modification of
the parameters. In that case best results were obtained for C = D = 90
and C = D = 100, with ¢ = 1. Comparable results were also achieved for
C =90, D = 100, 0 = 1.1 (Tab. 3). Generally, for this set of cities a little
worse results were obtained, with the mean length about 20% — 25% greater
than the shortest one.

Based on the three examples we can state that the network is quite sensi-
tive to alteration of parameters. In all examples, when parameters had been
changed beyond some limit values, either the lengths of tours have increased
or the success rate has decreased or the average number of iterations has
increased. The crucial for the method is the proper setting of proportions
c

% and % (on condition that A = B). These proportions, rather than exact

values, decide on the quality of results.

3. Final remarks and conclusions

The method of solving the TSP presented in this paper is based on
some modifications of the “classical” Hopfield-Tank’s approach. Primarily
a new way of updating neuron output potential is applied. Based on initial
simulations proper network constants were found, which led to good quality
results, with mean lengths of tours about 10%-20% greater than the best
lengths.

Based on the same method another non-plynomial problem — the NQP
— was also solved ([9], [11]) with very good results.

Comparably worse results obtained for the TSP are due to stronger re-
quirements associated with minimizatioh of the tour length (5.2). In the
NQP any valid solution is automatically the best one, since all solutions are
equally good. On the other hand, because of additional constraints for all
diagonals of matrix V in (5.1), he function of energy in the NQP is of a
much more complicated form than that of the TSP.

Good results obtained for both problems indicate that after more re-
search the proposed method may be applied to the wide subset of NP-Hard
optimization problems.

The very good point of the introduced method is its independence on
the initial state of the network. All four ways of setting the starting point
of the network, resulted in similar quality of success rates and mean lengths
of obtained tours.

There are, however, some open questions. In further research we plan
to completely discretize the network, i.e. allow output potentials to take on
values only from the set {0,1}. We are not yet sure if the results would be
of as high quality as they were for the NQP ([9], [10]).
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Our interest is also associated with a theoretical analysis of an influence

of network parameters on network bahaviour.
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