

Krzysztof Radziszewski

REFLECTIONS IN EQUIDISTANT HYPERSURFACES I.
ANALYTICAL INVESTIGATIONS

1. Introduction

In this paper we study reflections in some equidistant hypersurfaces of the degenerate hyperbolic space \mathbf{H}_k^n (cf. [3]). Let us remind that the set of points of \mathbf{H}_k^n is the cone \mathbf{C}_k^n contained in projective space \mathbf{P}_n . Hyperplanes of \mathbf{H}_k^n are non empty intersections of the hyperplanes of \mathbf{P}_n and the set \mathbf{C}_k^n . A hyperplane Q is isotropic iff it corresponds to a projective hyperplane \bar{Q} containing the top \mathbf{V} of the cone \mathbf{C}_k^n (see [4]). We denote by $\Sigma = \Sigma(\mathbf{H}_k^n)$ the class of reflections of \mathbf{H}_k^n in non isotropic hyperplanes, precisely the restrictions to the set \mathbf{C}_k^n of appropriate projective symmetries. Let Ω denote the class of all axial symmetries of \mathbf{H}_k^n . In paper [3] we defined, generally, an equidistant hypersurface of \mathbf{H}_k^n to be the orbit of a point α under the centralizer of a symmetry $\sigma = \sigma_Q^q$ in the class Ω . If Q is not isotropic, such an orbit is independent from q ($q \in \mathbf{V}$) and is denoted by $E_Q[\alpha]$. Let S be the class of all sets $E_Q[\alpha]$, where Q is a non isotropic hyperplane of \mathbf{H}_k^n (see [3]). The structure $\bar{\mathbf{H}}_k^n = \langle \mathbf{C}_k^n, S \rangle$ is called an inversive degenerate hyperbolic space. In this structure we shall study the symmetries σ_E^q ($E \in S$ and $q \in \mathbf{V} \setminus \mathbf{V}(E)$), which will be defined below. The set $\mathbf{V}(E) := \{\mathbf{V} \cap \bar{L} : L \subset E\}$ is the top of E .

2. Results

Let $E \in S$ and $q \in \mathbf{V} \setminus \mathbf{V}(E)$. We define the reflection σ_E^q in E with centre q by the condition

DEFINITION 1. Let $\sigma_E^q(x) = y : \Leftrightarrow H(q, E \cap \bar{qx}; x, y)$, where H is a relation of harmonic conjugacy and \bar{qx} denotes the line passing through q and x .

This definition is correct because

PROPOSITION 1. If K is an isotropic line of \mathbf{H}_k^n , $E \in S$, and $K \not\subset E$, then $|K \cap E| = 1$.

Let $\Lambda = \Lambda(\mathbf{H}_k^n)$ be the class of all symmetries σ_E^q , where $E \in S$. Of course $\Sigma \subset \Lambda$, because S contains the class of non isotropic hyperplanes (see [3]).

First we see that

THEOREM 1. We have $\Lambda \subset \text{Aut}(\overline{\mathbf{H}}_k^n)$, and thus the group $G(\Lambda)$ generated by Λ is a subgroup of $\text{Aut}(\overline{\mathbf{H}}_k^n)$.

Let us remind that T_k^n is the set of maximal generators of \mathbf{H}_k^n i.e. of sets $\langle \alpha, \mathbf{V} \rangle \setminus \mathbf{V}$, where $\langle \alpha, \mathbf{V} \rangle$ is the subspace spanned in \mathbf{P}_n by \mathbf{V} and by point $\alpha \in \mathbf{C}_k^n$. From definition we see that Λ preserves the elements of T_k^n i.e.

THEOREM 2. If $T \in T_k^n$, $f \in \Lambda$, then $f(T) = T$.

In [3] we constructed the bijection ϕ of the set \mathbf{C}_k^n onto the halfcylinder $\frac{1}{2}\mathbf{W}_k^n$ contained in \mathbf{P}_{n+1} ; transformation ϕ is an isomorphism between $\overline{\mathbf{H}}_k^n$ and Laguerre halfspace $\frac{1}{2}\mathbf{L}_k^n$. This transformation correlates the symmetries from Λ and the symmetries of the appropriate Laguerre space. Note that the tops of \mathbf{L}_k^n and \mathbf{H}_k^n are identic.

THEOREM 3. If $E \in S$ and $\rho \in \mathbf{V} \setminus \mathbf{V}(E)$, then $\phi \circ \sigma_E^\rho \circ \phi^{-1} = \sigma_{\phi(E)}^{\rho} | \frac{1}{2}\mathbf{W}_k^n$.

As a consequence we get

THEOREM 4. If $f : \mathbf{C}_k^n \mapsto \mathbf{C}_k^n$ is a bijection, then $f \in \Lambda$ iff $\phi \circ f \circ \phi^{-1}$ is the restriction of a symmetry of Laguerre space \mathbf{L}_k^n .

Because the reflections in hyperspheres of Laguerre spaces are the restrictions of these projective symmetries of the cylinder \mathbf{W}_k^n , which centres belong to the top $\mathbf{V}(\mathbf{W}_k^n)$, we show that

THEOREM 5. The following groups of symmetries are isomorphic:

- (i) $G(\Sigma(\mathbf{H}_k^n))$
- (ii) $G(\Sigma(\mathbf{L}_k^{n-1}))$
- (iii) $G(\Sigma(\frac{1}{2}\mathbf{L}_k^{n-1}))$
- (iv) $G(\Lambda(\mathbf{H}_k^{n-1})).$

The symmetries from $\Sigma(\mathbf{H}_k^n)$ preserve the top \mathbf{V} and transform the generators of \mathbf{C}_k^n onto themselves, thus any element of $G(\Sigma(\mathbf{H}_k^n))$ is described in the projective coordinates by matrix

$$(*) \quad \begin{bmatrix} \Delta_{n-k+1} & 0 \\ B & E \end{bmatrix}, \quad \text{where } \Delta_l = \begin{bmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{bmatrix}_{l \times l}.$$

In general we have

PROPOSITION 2. $f \in G(\Sigma(\mathbf{H}_k^n))$ if and only if f is described by matrix $(*)$, where $\det(E) = \pm 1$.

From Theorem 5, Proposition 2, and from the analytical description of the isomorphism ϕ we get an analytical description of the group $G(\Lambda(\mathbf{H}_k^n))$. The set \mathbb{C}_k^n is a subset of the affine space \mathbf{A}_n , hence this description will be given in affine coordinates.

Let us recall explicit formulas defining ϕ :

$$\phi((x_2, x_3, \dots, x_{n+1})) = \left(\sqrt{1 - \sum_{i=2}^{n-k+1} x_i^2}, x_2, x_3, \dots, x_{n+1} \right).$$

Then we get

THEOREM 6. *Let g be a transformation of $\overline{\mathbf{H}}_k^n$. The following conditions are equivalent:*

- (i) $g \in G(\Lambda(\mathbf{H}_k^n))$;
- (ii) *there exists a matrix*

$$M = [m_{ij}]_{0 \leq i, j \leq n+1} = \begin{bmatrix} \Delta_{n-k+2} & O_{n-k+2, k} \\ B & E \end{bmatrix},$$

where $\det(E) = \pm 1$ such that

$$g(x)_i = \begin{cases} x_i & \text{for } 1 \leq i \leq n-k \\ \sum_{j=1}^{n-k} b_{i+1, j+1} x_j + \sum_{j=n-k+1}^n e_{i+1, j+1} x_j \\ + b_{i+1, 1} \sqrt{1 - \sum_{j=1}^{n-k} x_j^2} + b_{i+1, 0} & \text{for } n-k+1 \leq i \leq n. \end{cases}$$

3. Proofs and auxiliary lemmas

LEMMA 1. (i) *If $F \in S$, $P : x_n = 0$ is a base of F , and $\rho = [0, \dots, 0, 1]$, then $|L(\rho, \alpha) \cap F| = 1$ for any $\alpha \in \mathbb{C}_k^n$.*

(ii) *For any $E \in S$, $q \in \mathbb{V}(\mathbb{C}_k^n)$, and $q \notin \mathbb{V}(E)$ there exists an affine transformation ψ such that $\psi \in \text{Aut}(\mathbf{H}_k^n)$, $\psi^*(q) = [0, \dots, 0, 1]$, and $\psi(E)$ is an equidistant hypersurface with the base $P : x_n = 0$.*

P r o o f. First we prove (i). Let F satisfy the assumption of (i). By Theorem 2.9 and 2.11 from [3], we get that F is that part of a set with equation: $c^2(-x_0^2 + x_1^2 + \dots + x_{n-k}^2) + x_n^2 = 0$, which is on the one side of the hyperplane $P : x_n = 0$, or $F = P$. If $F = P$, then the thesis is trivial.

Let $\alpha = [\alpha_0, \alpha_1, \dots, \alpha_n] \in \mathbb{C}_k^n$, whence $\alpha \neq \rho$ and $L(\rho, \alpha)$ is described by equations:

$$x_0 = \mu\alpha_0$$

$$\vdots$$

$$x_{n-1} = \mu\alpha_{n-1}$$

$$x_n = \lambda + \mu\alpha_n, \quad \text{where } (\lambda, \mu) \neq (0, 0).$$

Let $\mu = 1$, thus

$$\begin{aligned} c^2(-\alpha_0^2 + \dots + \alpha_{n-k}^2) + (\lambda + \alpha_n)^2 &= 0, \\ \lambda &= \pm c\sqrt{\alpha_0^2 - (\alpha_1^2 + \dots + \alpha_{n-k}^2)} - \alpha_n. \end{aligned}$$

However, F is the part of a set with equation $c^2(-x_0^2 + x_1^2 + \dots + x_{n-k}^2) + x_n^2 = 0$, which is on the one side of the hyperplane P . Hence $|L(\rho, \alpha) \cap F| = 1$.

(ii) is a direct consequence of Lemma 2.6 and Theorem 2.7 from [3]. ■

Proposition 1. is a direct consequence of Lemma 1. ■

LEMMA 2. If $G \in S$ has the base $B : \sum_{i=0}^n A_i x_i = 0$, $P : x_n = 0$, $\rho = [0, 0, \dots, 0, 1]$, and $F \in S$ has the base P , then $\sigma_F^\rho(G) \in S$ and it has the base $\sigma_P^\rho(B)$.

Proof. Let $F = P$, whence the thesis is trivial because $\sigma_F^\rho = \sigma_P^\rho \in \text{Aut}(\mathbb{H}_k^n)$.

Let $F \in S$ and F be not a hyperplane. Thus, by Theorem 2.9 from [3], F is described by equation: $c^2(-x_0^2 + x_1^2 + \dots + x_{n-k}^2) + x_n^2 = 0$. Let us see that $\alpha = [1, 0, \dots, 0, c] \in F$. By Theorem 2.12 from [3], G is described by the equation:

$$\begin{aligned} &\sum_{j=1}^{n-k} (u^2 + A_j^2) x_j^2 + \sum_{j=n-k+1}^n A_j^2 x_j^2 \\ &+ \sum_{\substack{i,j=1 \\ i \neq j}}^n A_i A_j x_i x_j + 2 \sum_{j=1}^n A_0 A_j x_0 x_j = (u^2 - A_0^2) x_0^2. \end{aligned}$$

By Definition 1.2 from [3], $\sigma_P^\rho(B) : \sum_{i=1}^{n-1} A_i x_i - A_n x_n = 0$. Let H be an equidistant hypersurface with the base $\sigma_P^\rho(B)$ such that α is the affine centre of the segment $(L(\rho, \alpha) \cap G)(L(\rho, \alpha) \cap H)$. Whence, in general, H is described by the equation:

$$\begin{aligned}
& \sum_{j=1}^{n-k} (u_1^2 + A_j^2) x_j^2 + \sum_{j=n-k+1}^n A_j^2 x_j^2 + \sum_{\substack{i,j=1 \\ i \neq j}}^{n-1} A_i A_j x_i x_j + 2 \sum_{j=1}^{n-1} A_0 A_j x_0 x_j \\
& - 2 \sum_{j=1}^{n-1} A_n A_j x_n x_j - 2 A_0 A_n x_0 x_n - 2 A_0 A_n x_0 x_n = (u_1^2 - A_0^2) x_0^2.
\end{aligned}$$

Now we can calculate the coordinates of the points $g = L(\rho, \alpha) \cap G$ and $h = L(\rho, \alpha) \cap H$. We get $g = [\lambda', 0, \dots, \mu']$, $h = [\lambda'', 0, \dots, \mu'']$ for suitable $\lambda', \mu', \lambda'', \mu''$. Clearly, $\lambda', \lambda'' \neq 0$; thus $g = [1, 0, \dots, \mu_1]$, $h = [1, 0, \dots, \mu_2]$. As $g \in G$, hence $A_n^2 \mu_1^2 + 2A_0 A_n \mu_1 - (u^2 - A_0^2) = 0$, so $\mu_1 = (-A_0 + u)/A_n$, and, analogously, $\mu_2 = (A_0 + u_1)/A_n$. Since α is the affine centre of the segment gh , $u + u_1 = 2A_n c$. Now we prove that $\sigma_F^\rho(G) = H$, i.e. we prove that for every line L of \mathbf{H}_k^n passing through ρ , the affine centre of a segment qr , where $q = L \cap G$, $r = L \cap H$, lies on F . First we calculate the coordinates of the points q and r . L is described by the equations:

$$\begin{aligned}
x_0 &= \lambda \\
x_1 &= \lambda \alpha_1 \\
x_2 &= \lambda \alpha_2 \\
&\vdots \\
x_{n-k} &= \lambda \alpha_{n-k} \\
x_{n-k+1} &= 0 \\
&\vdots \\
x_{n-1} &= 0 \\
x_n &= \mu, \quad \text{where } (\lambda, \mu) \neq (0, 0) \quad \text{and} \quad \sum_{i=1}^{n-k} \alpha_i^2 > 1.
\end{aligned}$$

We can set $\lambda = 1$. As $q \in G$, hence q is characterized by

$$\mu = \left(- \left(\sum_{i=1}^{n-k} A_i \alpha_i + A_0 \right) \pm u \sqrt{1 - \sum_{i=1}^{n-k} \alpha_i^2} \right) / A_n, \quad \text{i.e.}$$

$$q = \left[1, \alpha_1, \dots, \alpha_{n-k}, 0, \dots, 0, \left(- \left(\sum_{i=1}^{n-k} A_i \alpha_i + A_0 \right) + u \sqrt{1 - \sum_{i=1}^{n-k} \alpha_i^2} \right) / A_n \right].$$

Analogously,

$$r = \left[1, \alpha_1, \dots, \alpha_{n-k}, 0, \dots, 0, \left(\sum_{i=1}^{n-k} A_i \alpha_i + A_0 + u_1 \sqrt{1 - \sum_{i=1}^{n-k} \alpha_i^2} \right) / A_n \right].$$

The affine centre α_1 of the considered segment has the coordinates:

$$\alpha_1 = \left[1, \alpha_1, \dots, \alpha_{n-k}, 0, \dots, 0, \left(+ (u + u_1) \sqrt{1 - \sum_{i=1}^{n-k} \alpha_i^2} \right) / 2A_n \right].$$

However, $u + u_1 = 2A_n c$, hence

$$\alpha_1 = \left[1, \alpha_1, \dots, \alpha_{n-k}, 0, \dots, 0, \left(+ c \sqrt{1 - \sum_{i=1}^{n-k} \alpha_i^2} \right) / 2A_n \right].$$

Now it is easily seen that $\alpha_1 \in F$, because α_1 satisfies the equation of F . Hence $\sigma_F^\rho(G) = H$. ■

LEMMA 3. *If $E \in S$ has a base Q , $q \in \mathbf{V}(\mathbf{C}_k^n)$, and $q \in \mathbf{V}(E)$, $E_1 \in S$ has a base Q_1 , then $\sigma_E^\rho(E_1) \in S$ and has the base $\sigma_Q^q(Q_1)$.*

Proof. By Lemma 1 (ii), there exists $\psi \in \text{Aut}(\mathbb{H}_k^n)$ such that $\psi^*(q) = \rho = [0, 0, \dots, 0, 1]$ and $\psi(E) = F$, where F is an equidistant hypersurface with the base $P : x_n = 0$. Whence

$$\sigma_E^q(E_1) = \sigma_{\psi^{-1}(F)}^{\psi^{-1}(\rho)}(E_1) = \psi^{-1}(\sigma_F^\rho(E_1)) = \psi^{-1}\sigma_F^\rho\psi(E_1).$$

Now, by Lemma 2, $\psi^{-1}\sigma_F^\rho\psi(E_1)$ is an equidistant hypersurface belonging to S with the base $\sigma_Q^q(Q_1)$. Hence we get the thesis. ■

Theorem 1. is a direct consequence of Lemma 3. ■

Proof of Theorem 5. Note that

$$\Sigma(\mathbb{H}_k^n) = \{\sigma_Q^q | \mathbf{C}_k^n : \sigma_Q^q \in \theta, \mathbf{V}(\mathbf{C}_k^n) \not\subset Q, q \in \mathbf{V}(\mathbf{C}_k^n) \setminus Q\},$$

$$\Sigma(\mathbb{L}_k^{n-1}) = \{\sigma_Q^q | \mathbf{W}_k^{n-1} : \sigma_Q^q \in \theta, \mathbf{V}(\mathbf{C}_k^n) \not\subset Q, q \in \mathbf{V}(\mathbf{C}_k^n) \setminus Q\}, \text{ and}$$

$$\Sigma(\frac{1}{2}\mathbb{L}_k^{n-1}) = \{\sigma_Q^q | \frac{1}{2}\mathbf{W}_k^{n-1} : \sigma_Q^q \in \theta, \mathbf{V}(\mathbf{C}_k^n) \not\subset Q, q \in \mathbf{V}(\mathbf{C}_k^n) \setminus Q\},$$

where θ is the set of symmetries of \mathbb{P}_n .

If $k \langle n-1, \mathbf{V}(\mathbf{C}_k^n) \subset Q_i$, and $q_i \in \mathbf{V} \setminus q_i$ for $i = 1, 2$, then it is easily seen that the following conditions are equivalent:

1. $\sigma_{Q_1}^{q_1} = \sigma_{Q_2}^{q_2};$
2. $\sigma_{Q_1}^{q_1} | \mathbf{C}_k^n = \sigma_{Q_2}^{q_2} | \mathbf{C}_k^n;$
3. $\sigma_{Q_1}^{q_1} | \mathbf{W}_k^{n-1} = \sigma_{Q_2}^{q_2} | \mathbf{W}_k^{n-1};$
4. $\sigma_{Q_1}^{q_1} | \frac{1}{2}\mathbf{W}_k^{n-1} = \sigma_{Q_2}^{q_2} | \frac{1}{2}\mathbf{W}_k^{n-1}.$

Thus there exist bijections f_1 and f_2 defined by

$$\sigma_Q^q | \mathbf{C}_k^n \xrightarrow{f_1} \sigma_Q^q | \mathbf{W}_k^{n-1} \xrightarrow{f_2} \sigma_Q^q | \frac{1}{2}\mathbf{W}_k^{n-1}.$$

Whence f_1 induces, on the generators, an isomorphism between $G(\Sigma(\mathbb{H}_k^n))$ and $G(\Sigma(\mathbb{L}_k^{n-1}))$, and f_2 induces, on the generators, an isomorphism between $G(\Sigma(\mathbb{L}_k^{n-1}))$ and $G(\Sigma(\frac{1}{2}\mathbb{L}_k^{n-1}))$.

From Theorem 2.19 (see [3]) we have $\frac{1}{2}\mathbf{L}_k^{n-1} \cong \overline{\mathbf{H}}_k^{n-1}$. This isomorphism is denoted by ϕ . Thus there exists a bijection f_3 defined by $\sigma \xrightarrow{f_3} \phi\sigma\phi^{-1}$, where $\sigma \in \Sigma(\overline{\mathbf{H}}_k^{n-1}) = \Lambda(\mathbf{H}_k^{n-1})$ and $\phi\sigma\phi^{-1} \in \Sigma(\frac{1}{2}\mathbf{L}_k^{n-1})$. Whence f_3 induces on the generators an isomorphism between $G(\Lambda(\mathbf{H}_k^{n-1}))$ and $G(\Sigma(\frac{1}{2}\mathbf{L}_k^{n-1}))$. Hence we have the thesis. ■

The class of all $m \times n$ matrices is denoted by $M_{m,n}$. From among all the matrices we distinguish certain special types of them, i.e. zero-matrices

$$O_{m,n} := \begin{bmatrix} 0 & & 0 \\ & \ddots & \\ 0 & & 0 \end{bmatrix}_{m \times n}, \quad \text{and unit matrices } \Delta_n := \begin{bmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{bmatrix}_{n \times n}.$$

LEMMA 4. *We have*

$\det([m_{ij}]_{0 < i,j < r+1} - \lambda\Delta_r) = (-1)^r[\lambda^r\lambda^{r-1}M_1 + \lambda^{r-2}M_2 + \dots + (-1)^rM_r]$, where M_i is the sum of all minors with i rows and i columns obtained from the matrix $[m_{ij}]_{0 < i,j < r+1}$ by cancelling the appropriate quantity of rows and columns possessing equal numbers (see [2], p. 104).

LEMMA 5. *Let $l = n - k$. If M is a matrix of the projective collineation f of P_n with the distinguished cylinder \mathbf{W}_k^{n-1} , then M has the form*

$$\begin{bmatrix} A & O_{l+1,k} \\ B & E \end{bmatrix} \quad \text{if and only if } f(\mathbf{V}(\mathbf{C}_k^n)) = \mathbf{V}(\mathbf{C}_k^n).$$

Proof. “ \Rightarrow ” Let $M = \begin{bmatrix} A & O_{l+1,k} \\ B & E \end{bmatrix}$ be a matrix of a collineation f and let $q = [0, \dots, 0, q_{l+1}, \dots, q_n] \in \mathbf{V}(\mathbf{C}_k^n)$. Then $f(q) = [0, \dots, 0, q'_{l+1}, \dots, q'_n]$ and thus $f(\mathbf{V}(\mathbf{C}_k^n)) \subseteq \mathbf{V}(\mathbf{C}_k^n)$. But $\dim(f(\mathbf{V}(\mathbf{C}_k^n))) = \dim(\mathbf{V}(\mathbf{C}_k^n))$ because f is a collineation, hence $f(\mathbf{V}(\mathbf{C}_k^n)) = \mathbf{V}(\mathbf{C}_k^n)$.

“ \Leftarrow ” Let f be a projective collineation of P_n with the matrix $M = [m_{ij}]_{-1 < i,j < n+1}$, such that $f(\mathbf{V}(\mathbf{C}_k^n)) = \mathbf{V}(\mathbf{C}_k^n)$. Since $f(\mathbf{V}(\mathbf{C}_k^n)) = \mathbf{V}(\mathbf{C}_k^n)$, thus $f(q) \in \mathbf{V}$ for any $q \in \mathbf{V}$. If $q \in \mathbf{V}$, then $q = [0, \dots, 0, q_{l+1}, \dots, q_n]$, so $f(q)_i = \sum_{j=0}^n m_{ij}q_j = \sum_{j=l+1}^n m_{ij}q_j$; since $f(q) \in \mathbf{V}(\mathbf{C}_k^n)$, $f(q)_i = 0$ for $i \leq l$ and thus $\sum_{j=l+1}^n m_{ij}q_j = 0$ for $i \leq l, j > l$. Whence $m_{ij} = 0$ for $i \leq l, j > l$. Hence $M = \begin{bmatrix} A & O_{l+1,k} \\ B & E \end{bmatrix}$. ■

Whence any projective automorphism of the space \mathbf{H}_k^n has a matrix M such that $M = \begin{bmatrix} A & O_{l+1,k} \\ B & E \end{bmatrix}$.

It is easily seen that the following lemma is true.

LEMMA 6. If $M, N \in M_{n+1, n+1}$,

$$M = \begin{bmatrix} A_1 & O_{l+1, k} \\ B_1 & E_1 \end{bmatrix}, \text{ and } N = \begin{bmatrix} A_2 & O_{l+1, k} \\ B_2 & E_2 \end{bmatrix},$$

then $MN = \begin{bmatrix} A_1 A_2 & O_{l+1, k} \\ B_3 & E_1 E_2 \end{bmatrix}.$

Whence we see that the group of matrices which have the form $M = \begin{bmatrix} A & O_{l+1, k} \\ B & E \end{bmatrix}$ contains the subgroup of matrices which have the form $M = \begin{bmatrix} \Delta_{l+1} & O_{l+1, k} \\ B & E \end{bmatrix}$. The appropriate group of transformations with the matrices which have form $M = \begin{bmatrix} \Delta_{l+1} & O_{l+1, k} \\ B & E \end{bmatrix}$ is denoted by I_k^n . Now we see that the following lemma is true.

LEMMA 7. If $M, N \in M_{n+1, n+1}$,

$$M = \begin{bmatrix} \lambda_1 \Delta_{l+1} & O_{l+1, k} \\ B & E \end{bmatrix}, \text{ and } N = \begin{bmatrix} \lambda_2 \Delta_{l+1} & O_{l+1, k} \\ C & H \end{bmatrix},$$

then $MN = \begin{bmatrix} \lambda_1 \lambda_2 \Delta_{l+1} & O_{l+1, k} \\ D & EH \end{bmatrix},$

where $D = [d_{ij} = b_{ij} \lambda_2 + \sum_{r=1}^k c_{rj} e_{ir}]_{0 \leq i < k+1, -1 < j < l+1}$.

From Lemma 7 we have following corollaries.

COROLLARY 1.

- (i) $\begin{bmatrix} \Delta_{l+1} & O_{l+1, k} \\ B_1 & \Delta_k \end{bmatrix} \begin{bmatrix} \Delta_{l+1} & O_{l+1, k} \\ B_2 & \Delta_k \end{bmatrix} = \begin{bmatrix} \Delta_{l+1} & O_{l+1, k} \\ B_1 + B_2 & \Delta_k \end{bmatrix};$
- (ii) $\begin{bmatrix} \Delta_{l+1} & O_{l+1, k} \\ O_{k, l+1} & E_1 \end{bmatrix} \begin{bmatrix} \Delta_{l+1} & O_{l+1, k} \\ O_{k, l+1} & E_2 \end{bmatrix} = \begin{bmatrix} \Delta_{l+1} & O_{l+1, k} \\ O_{k, l+1} & E_1 E_2 \end{bmatrix};$
- (iii) $\begin{bmatrix} \Delta_{l+1} & O_{l+1, k} \\ B & \Delta_k \end{bmatrix} \begin{bmatrix} \Delta_{l+1} & O_{l+1, k} \\ O_{k, l+1} & E \end{bmatrix} = \begin{bmatrix} \Delta_{l+1} & O_{l+1, k} \\ B & E \end{bmatrix}.$

COROLLARY 2.

- (i) $\begin{bmatrix} \Delta_{l+1} & O_{l+1, k} \\ B & \Delta_k \end{bmatrix}^{-1} = \begin{bmatrix} \Delta_{l+1} & O_{l+1, k} \\ -B & \Delta_k \end{bmatrix};$
- (ii) $\begin{bmatrix} \Delta_{l+1} & O_{l+1, k} \\ O_{k, l+1} & E \end{bmatrix}^{-1} = \begin{bmatrix} \Delta_{l+1} & O_{l+1, k} \\ O_{k, l+1} & E^{-1} \end{bmatrix}.$

Now we see that the group I_k^n contains three subgroups, the group E_k^n of transformations with the matrices which have the form $\begin{bmatrix} \Delta_{l+1} & O_{l+1, k} \\ O_{k, l+1} & E \end{bmatrix}$, the group T_k^n of transformations with the matrices which have the form

$\begin{bmatrix} \Delta_{l+1} & O_{l+1,k} \\ B & \Delta_k \end{bmatrix}$, and the group I_k^n of transformations with the matrices which have the form $\begin{bmatrix} \Delta_{l+1} & O_{l+1,k} \\ B & E \end{bmatrix}$, where $\det(E) = \pm 1$.

Of course T_k^n is a subgroup of I_k^n .

As a direct consequence of Corollary 1 we infer

COROLLARY 3. *For any $f \in I_k^n$ there exist g and h such that $h \in E_k^n$, $g \in T_k^n$, and $f = g \circ h$.*

LEMMA 8. *If $\sigma_Q^q \in \Sigma(\mathbf{H}_k^n)$, $q = [q_0, \dots, q_n]$, and hyperplane Q has the equation $\sum_{i=0}^n = 0$, then the symmetry σ_Q^q has a matrix of the form*

$$M = \begin{bmatrix} \Delta_{l+1} & O_{l+1,k} \\ B & E \end{bmatrix},$$

where $E = \Delta_k - (2/\alpha)[q_i A_j]_{l < i, j < n+1}$, $B = (-2/\alpha)[q_i A_j]_{l < i < n+1, -1 < j < l+1}$, $\alpha \neq 0$, and $\det(E) = -1$.

Proof. Since Q is a non isotropic hyperplane, thus $A_s \neq 0$ for some s with $l \leq s \leq n$, and $q \in \mathbf{V}(\mathbf{C}_k^n)$, because $\sigma_Q^q \in \Sigma(\mathbf{H}_k^n)$, whence $q = [0, \dots, 0, q_{l+1}, \dots, q_n]$. Now, by Definition 1.2 from [3] we get $\sigma_Q^q(x)_i = \sum_{s=0}^n A_s (q_s x_i - 2q_i x_s) = \sum_{s=0}^n m_{is} x_s$, where

$$m_{is} = \begin{cases} 0 & \text{for } i \neq s, 0 \leq i \leq l \\ \sum_{s=l+1}^n A_s Q_s & \text{for } i = s, 0 \leq i \leq l \\ -2q_i A_s & \text{for } i \neq s, l < i \leq n \\ \sum_{s=l+1}^n A_s q_s - 2q_i A_s & \text{for } i = s, l < i \leq n. \end{cases}$$

Let $\alpha = \sum_{s=l+1}^n A_s q_s$. Whence $\alpha \neq 0$, because $q \notin Q$. Matrix $M_0 = [m_{is}]_{-1 < i, s < n+1}$ is a matrix of the symmetry σ_Q^q . But $M = (1/\alpha)M_0$, thus M is a matrix of the symmetry σ_Q^q too. The proof will be completed by showing that $\det(E) = -1$ i.e. $\det([m_{is}]_{l < i, s < n+1}) = -\alpha^k$, where $[m_{is}]_{l < i, s < n+1}$ is an appropriate submatrix of M_0 . This submatrix has the following form

$$\begin{bmatrix} -2q_{l+1} A_{l+1} & -2q_{l+1} A_{l+2} & \cdots & -2q_{l+1} A_n \\ \vdots & & & \\ -2q_n A_{l+1} & -2q_n A_{l+2} & \cdots & -2q_n A_n \end{bmatrix} + \alpha \Delta_k.$$

By Lemma 4,

$$\det([m_{is}]_{l < i, s < n+1}) \\ = (-1)^k [(-\alpha)^k - (-\alpha)^{k-1} M_1 + (-\alpha)^{k-2} M_2 - \dots + (-1)^k M_k].$$

It is easily seen that $M_i = 0$ for $1 < i \leq k$. Hence $\det([m_{is}]_{l < i, s < n+1}) = -\alpha^k$. ■

LEMMA 9. *If $g \in I_k^n \cap E_k^n$, then g is a superposition of symmetries of \mathbb{H}_k^n with non isotropic axes.*

Proof. Let f be a skew symmetry of F^k with axis which is a $(k-1)$ -dimensional hyperplane A such that $(0, 0, \dots, 0) \in A$ in F^k . Whence A has the equation $\sum_{j=1}^k A_j x_j = 0$. Let $\rho = [0, \rho_1, \dots, \rho_k]$ with $\sum_{j=1}^k A_j \rho_j \neq 0$ be a direction of this symmetry. The isotropic hyperplane A' with the equation $\sum_{j=1}^k A_j x_{l+j} = 0$, and the point ρ corresponds to point $q = [0, \dots, 0, \rho_1, \dots, \rho_k] \notin A'$, and then $\sigma_{A'}^q \in \Sigma(\mathbb{H}_k^n)$. Now, by Lemma 8, the matrix $M(\sigma_{A'}^q)$ is $\begin{bmatrix} \Delta_{l+1} & O_{l+1,k} \\ O_{k,l+1} & M(f) \end{bmatrix}$, where $M(f)$ is a matrix of the skew symmetry f . Let $g \in I_k^n \cap E_k^n$. By definition of g , $M(g) = \begin{bmatrix} \Delta_{l+1} & O_{l+1,k} \\ O_{k,l+1} & D \end{bmatrix}$, where $\det(D) = \pm 1$. Therefore the transformation $g' : F^k \rightarrow F^k$ with the matrix D is an equiaffine transformation. Thus there exist skew symmetries f_1, \dots, f_n such that $g' = f_m \circ \dots \circ f_1$. Each of these symmetries induces in \mathbb{H}_k^n a symmetry $g_i \in \Sigma(\mathbb{H}_k^n)$ such that $M(g_i) = \begin{bmatrix} \Delta_{l+1} & O_{l+1,k} \\ O_{k,l+1} & M(f_i) \end{bmatrix}$. Let us see that $D = M(f_m) \cdot \dots \cdot M(f_1)$, thus $M(g) = M(g_m) \cdot \dots \cdot M(g_1)$. Hence $g = g_m \circ \dots \circ g_1$. ■

LEMMA 10. *If $g \in T_k^n$, then g is a superposition of symmetries of \mathbb{H}_k^n with non isotropic axes.*

Proof. Let $g \in T_k^n$, whence $M(g) = \begin{bmatrix} \Delta_{l+1} & O_{l+1,k} \\ B & \Delta_k \end{bmatrix}$. For $0 \leq j \leq l$ we consider arbitrary $g_j \in T_k^n$ with the matrix $M(g_j) = \begin{bmatrix} \Delta_{l+1} & O_{l+1,k} \\ B_j & \Delta_k \end{bmatrix}$ such that

$$B_j = \begin{bmatrix} & b_{l+1,j} \\ O_{k,j} & \vdots & O_{k,l-j} \\ & b_{n,j} \end{bmatrix}$$

and we prove the thesis for such g_j . If $b_{s,j} = 0$ for $l < s \leq n$, then $B_j = O_{k,l+1}$ and, by Lemma 9, g_j is a superposition of symmetries of \mathbb{H}_k^n with non isotropic axes, so we can assume $b_{r,j} \neq 0$. Let us consider two $(n-1)$ -dimensional non isotropic hyperplanes of \mathbb{H}_k^n with the equations $A : x_r = 0$ and $A' : x_r + cx_j = 0$, where $c = (-1/2)b_{r,j}$ and let

$\mathbf{q} = [0, \dots, 0, b_{l+1,j}, \dots, b_{n,j}]$. Then $q \in \mathbf{V}(\mathbf{C}_k^n)$ and $q \notin A, A'$, so $\sigma_A^q, \sigma_{A'}^q \in \Sigma(\mathbb{H}_k^n)$. By Lemma 8, $M(g_j) = M(\sigma_{A'}^q \circ \sigma_A^q)$, hence $g_j = \sigma_{A'}^q \circ \sigma_A^q$. Now clearly, the matrix B is a sum of the matrices B_j ($0 \leq j \leq l$) as above, so, by Corollary 1(i)

$$\begin{bmatrix} \Delta_{l+1} & O_{l+1,k} \\ B & \Delta_k \end{bmatrix} = M(g_0) \cdot \dots \cdot M(g_l), \quad \text{thus } g = g_0 \circ \dots \circ g_l. \blacksquare$$

PROPOSITION 2. *We have $G(\Sigma(\mathbb{H}_k^n)) = I_k^{n^*}$.*

Proof. From Lemma 8 and the definition of $I_k^{n^*}$ we have $G(\Sigma(\mathbb{H}_k^n)) \subseteq I_k^{n^*}$. Next, by Corollaries 3, 1(iii), and Lemmas 9, 10, $I_k^{n^*} \subseteq G(\Sigma(\mathbb{H}_k^n))$. \blacksquare

References

- [1] K. Borsuk, *Geometria analityczna wielowymiarowa*, Warszawa 1977.
- [2] A. Mostowski, M. Stark, *Elementy algebry wyższej*, Warszawa 1958.
- [3] K. Radziszewski, *Cyclic hypersurfaces in degenerate hyperbolic spaces*, Atti. Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur. Italy, vol. LXXII (1994), 1–16.
- [4] K. Radziszewski, *Groups of dilatations of degenerate hyperbolic spaces*, Zeszyty Nauk. Geometria 19 (1991), 55–65.
- [5] K. Radziszewski, *On some inversion-like transformations of degenerate hyperbolic plane*, Zeszyty Nauk. Geometria 18 (1990). 53–61.

INSTITUTE OF MATHEMATICS
GDAŃSK UNIVERSITY
Wita Stwosza 57
80-952 GDAŃSK, POLAND

Received June 15, 1994.

