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REFLECTIONS IN EQUIDISTANT HYPERSURFACES 1.
ANALYTICAL INVESTIGATIONS

1. Introduction

In this paper we study reflections in some equidistant hypersurfaces of
the degenerate hyperbolic space H} (cf. [3]). Let us remind that the set of
points of Hj is the cone C} contained in projective space P,. Hyperplanes
of H} are non empty intersections of the hyperplanes of P,, and the set C}.
A hyperplane @ is isotropic iff it corresponds to a projective hyperplane ¢
containing the top V of the cone C} (see [4]). We denote by £ = X(H})
the class of reflections of H; in non isotropic hyperplanes, precisely the
restrictions to the set C} of appropriate projective symmetries. Let (2 denote
the class of all axial symmetries of Hy. In paper [3] we defined, generally,
an equidistant hypersurface of H; to be the orbit of a point o under the
centralizer of a symmetry o = 022 in the class 2. If @ is not isotropic, such
an orbit is independent from ¢ (¢ € V) and is denoted by Eq[a]. Let S be the
class of all sets Fg[a], where Q is a non isotropic hyperplane of H} (see [3]).
The structure ]i_{: = (Cp,S) is called an inversive degenerate hyperbolic
space. In this structure we shall study the symmetries o}, (E € § and
q € V\V(E)), which will be defined below. The set V(E) := {VNL: L C E}
is the top of F.

2. Results
Let £ € S and ¢ € V\ V(E). We define the reflection o} in E with
centre ¢ by the condition

DEFINITION 1. Let of(z) = y : & H(q,ENGZ;z,y), where H is a
relation of harmonic conjugacy and gz denotes the line passing through ¢
and z.

This definition is correct because
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ProprosITION 1. If K is an isotropic line of Hy, E € S, and K ¢ E,
then |[K N E| = 1.

Let A = A(H}) be the class of all symmetries o}, where E € S. Of
course ¥ C A, because S contains the class of non isotropic hyperplanes

(see [3]).

First we see that

THEOREM 1. We have ll_ﬂc Aut(H, ), and thus the group G(A) generated
by A is a subgroup of Aut(H, ).

Let us remind that T} is the set of maximal generators of H i.e. of sets
(a, V)\ V, where (a, V) is the subspace spanned in P, by V and by point
a € C}. From definition we see that A preserves the elements of T} i.e.

THEOREM 2. IfT € T(, f € A, then f(T)=T.

In [3] we constructed the bijection ¢ of the set C} onto the halfcylinder
%Wz contained in P,4;; transformation ¢ is an isomorphism between ﬁ:
and Laguerre halfspace 1L7. This transformation correlates the symmetries
from A and the symmetries of the appropriate Laguerre space. Note that
the tops of L} and H} are identic.

THEOREM 3. IfE € S and p € V\V(E), then ¢poofop™! = az(E)I%W}:.
As a consequence we get

THEOREM 4. If f: C} — C} is a bijection, then f € A iff po fod~! is
the restriction of a symmetry of Laguerre space L}.

Because the reflections in hyperspheres of Laguerre spaces are the re-
strictions of these projective symmetries of the cylinder W%, which centres
belong to the top V(W}), we show that

THEOREM 5. The following groups of symmetries are isomorphic:

(i) G(X(Hy))
(i) G(Z(Ly™)
(ii) G(Z(3LE™)
(iv) G(A(H;™)).

The symmetries from X(H}) preserve the top V and transform the gen-
erators of C; onto themselves, thus any element of G(X(H})) is described
in the projective coordinates by matrix

1 0
(%) [A"_k“ 0] , Wwhere A; = :

B E . .
0 1 Ixi
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In general we have

ProPOSITION 2. f € G(E(Hy)) if and only if f is described by matriz
(*), where det(E) = £1.

From Theorem 5, Proposition 2, and from the analytical description of
the isomorphism ¢ we get an analytical description of the group G(A(H})).
The set C} is a subset of the affine space A,, hence this description will be
given in affine coordinates.

Let us recall explicit formulas defining ¢:

#((z2,23,. .-, Tut1)) = ( 1—E::“r?,l‘z,za,---,1n+1>-
Then we get

THEOREM 6. Let g be a transformation ofﬁ:. The following conditions
are equivalent:

(i) g € G(A(HE));

(ii) there ezists a matriz

M = [mijlocijgntr = [A"}_f?kH On—Fz.k] ’
where det(E) = £1 such that
Ti for1<i<n-k
g(z)i = Z;:‘k bit1,i+1%5 + Lo n ki1 Git1,i+1%;
+bit1 l—zgfz§+b,~+1'0 forn—k+1<i<n.

3. Proofs and auxiliary lemmas

LEMMA 1. (i) If F€ S, P :z, =0 is a base of F, and p = [0,...,0,1],
then |L(p,a)N F| =1 for any a € C}.

(ii) For any E € S, q € V(C;), and q¢ ¢ V(E) there ezists an affine
transformation v such that ¢ € Aut(H}), ¢¥*(q) = [0,...,0,1], and ¢(E) is
an equidistant hypersurface with the base P: z,, = 0.

Proof. First we prove (i). Let F satisfy the assumption of (i). By Theo-
rem 2.9 and 2.11 from [3], we get that F is that part of a set with equation:
c?(—zd+ai+...+2%_,)+z2 =0, which is on the one side of the hyperplane
P:z,=0,0or F=P.If F = P, then the thesis is trivial.

Let a = [ag, ay,...,a,] € C}, whence a # p and L(p, ) is described by
:quations:
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To = pag

Tn_1 = papn_
zn, = A+ pa,, where (A u)#(0,0).

Let 4 = 1, thus

02(—01(2) + ...+ai_k) +(A+ Oz,,)2 =0,
A= :i:c\/a% (2 +...+a_,)-an.

However, F is the part of a set with equation ¢?(—z8+23+...+22_,)+2? =
0. which is on the one side of the hyperplane P. Hence |L(p,a)n F| = 1.

(i) is a direct consequence of Lemma 2.6 and Theorem 2.7 from (3]. =

Proposition 1. is a direct consequence of Lemma 1. m

LEMMA 2. If G € § has the base B : 3. Aiz; = 0, P : z,, = 0.
p=1[0.0,...,0,1], and F € S has the base P, then c%(G) € S and it has
the base a%(B).

Proof. Let ' = P, whence the thesis is trivial because 0% = o} €
Aut(HE).

Let '€ S and F be not a hyperplane. Thus, by Theorem 2.9 from [3],
F is described by equation: ¢*(—z8 + 23 + ...+ z2_,) + 22 = 0. Let us see
that « = [1,0,...,0,¢] € F. By Theorem 2.12 from (3], G is described by
the equation:

n—k n
Z(u2+A§)z§+ Z A?z?
j=1 j=n—k+1
n n
+ Z A,‘Ajl‘,'.’l?j + 22 AoAjI()Ij = (u2 - Ag)x%
i,‘._;_—}l j=1

By Definition 1.2 from (3], op(B) : Z?z—ll Aiz; — Apz, = 0. Let H be an
equidistant hypersurface with the base o5 (B) such that a is the affine centre
of the segment (L(p, a)NG)(L(p,a)NH ). Whence, in general, H is described
by the equation:
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n—-k n n-1
YA+ Y Akl+ z AiAjziz; +2 Y AoAjzoz;
j=1 j=n—k+1 i,5=1 ij=1
i#J
n—1
-2 Z AnAJ'InIJ' —2ApAnzoz, — 2A0Anzo:cn = (u% - Ag)zg
Jj=1

Now we can calculate the coordinates of the points ¢ = L(p,a) N G and
h = L(p,a)n H. We get g = [N,0,...,4'], h = [A",0,...,4"] for suitable
M,op' A" ", Clearly, A", A" # 0; thus g = [1 0,...,u1), h = [1,0,..., 1)
As g € G, hence A2u? +2A0Anpy — (u? — A3) = 0,50 ) = (—Ao + u)/An,
and, analogously, p = (Ae + u1)/An. Since a is the affine centre of the
segment gh, u + u; = 2Anc. Now we prove that 05(G) = H, i.e. we prove
that for every line L of H} passing through p, the affine centre of a segment
gqr,where ¢ = LNG, r = LN H,lies on F. First we calculate the coordinates
of the points ¢ and r. L is described by the equations:

Ig = A
T = /\al
Iy = /\ag

Tn_k = AQn_k

Tp-k41 =0

Tp1 =0
n—k

n = i, where (A, p)#(0,0) and Z a? > 1.

i=1

We can set A = 1. As ¢ € G, hence ¢ is characterized by

u:( (EAa,+Ao):hu 1-Y""a?) /An, ie.

q= [l,al,...an_k,o,...,o,(— (ZA,'O,'-{-A())-{-u 1—2:‘;"0? /An]
=1
Analogously, '

= [1,a1,...a,,_,,,0,. (ZA0.+A0+1£1 1-Yyrta? /A]
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The affine centre a; of the considered segment has the coordinates:

o1 = [Lar, a0, ,0, (4 (w4 w)y /1507 2) /24a)

However, u + u; = 2A,.¢, hence
o = {l,al,...an_k,O,...,O, ( +cy/1 _E,":—,k"? /2An}.

Now it is easily seen that a; € F, because «; satisfies the equation of F.
Hence 0p.(G)=H. m

LEMMA 3. IfE € S has a base Q, g € V(C}), and g € V(E), Ey € S has
a base Q, then o (E1) € S and has the base a{y(Q1).

Proof. By Lemma 1 (ii), there exists ¢ € Aut(H}) such that ¢*(¢) =
p =[0,0,...,0,1] and ¥(F) = F, where F is an equidistant hypersurface
with the base P :z, = 0. Whence

o1
oL(Er) = a3y D(Er) = 7 (oh(Ey) = v~ ofp ().

Now, by Lemma 2, ¢ ~'o%¢(E) is an equidistant hypersurface belonging
to S with the base 02?(@1)- Hence we get the thesis. =

Theorem 1. is a direct consequence of Lemma 3. =

Proof of Theorem 5. Note that

S(HE) = {0glCk : o €6, V() £ Q, g€ V(C)\Q},
S(LE™") = {o§IW" : 0d €6, V(C) £ Q, g€ V(G)\Q)}, and
S(LETY) = {odl3WiTh 1 0g €6, V(Q) £ Q, g€ V(C))\ Q)

where 6 is the set of symmetries of P,,.
I k(n—-1,V(C}) C Qi,and ¢; € V\ ¢ for i = 1,2, then it is easily seen
that the following conditions are equivalent:

1. 081 = 0522;

2. 04,ICk = o IC;;

3. 081|W:'1 = agz|w;;-‘;
4. ol 3Wi! = o 13w

Thus there exist bijections f; and f; defined by
/ -1 f -1
0§|Ch-——0h|Wy b—2>az?|%w;: .

Whence f; induces, on the generators, an isomorphism between G(X(H}))
and G(X(L}™')), and f; induces, on the generators, an isomorphism between
G(B(Ly™) and G(Z(3LE7Y)-



Reflections in equidistant hypersurfaces 211

From Theorem 2.19 (see [3]) we have JL; ™! ]—{:—1. This isomorphism

is denoted by ¢. Thus there exists a bijection f; defined by m£+¢>a¢"1,
where o € E(ﬁ:_l) = A(H;™')and ¢o¢~! € (2L} "). Whence f; induces
on the generators an isomorphism between G(A(H;™')) and G(S(3L771)).

Hence we have the thesis. m

The class of all m X n matrices is denoted by M,, ,. From among all the
matrices we distinguish certain special types of them, i.e. zero-matrices

0 0 1 0
Omni= , and unit matrices A,, := .
mxn nxn

0 0 0 1

LEMMA 4. We have
det([milocijarsr — AAL) = (1) ATATIM + A7 2My — L 4 (=1)"M,],

where M; is the sum of all minors with i rows and i columns obtained from
the matriz [m;;lo<i j<r+1 by cancelling the appropriate quantity of rows and
columns possessing equal numbers (see 2], p. 104).

LEMMA 5. Let l = n — k. If M is a matriz of the projective collineation
f of P, with the distinguished cylinder W}:'l , then M has the form

[g O’E‘"‘] if and only if f(V(G)) = V(C).

W m _ A Ol+l,k
Proof “=” Let M = B E
let ¢ = [0,...,0,q141,---,9r] € V(C). Then f(q) =[0,...,0,q;,,,...,4;)
and thus f(V(C})) C V(C;). But dim(f(V(C;))) = dim(V(C})) because f
is a collineation, hence f(V(C})) = V(C}).

“«" Let f be a projective collineation of P, with the matrix M =
) -1<ii<nt1, such that S(V(CP)) = V(GE). Since f(V(GD)) = V(QY),
thus f(¢q) € Vfor any g € V. If ¢ € V, then ¢ = [0,...,0,¢141,---,¢n], 50
f(@)i = Xioomifgs = X4 Misqs; since f(q) € V(CY), f(g)i = 0 for
¢ <1 and thus z;l:,H mijq; =0 for ¢ <1, 7 > 1. Whence m;; =0 for 1 <,

A Ourk|
B E |

Whence any projective automorphism of the space H} has a matrix M
A Ouprk
B E |

It is easily seen that the following lemma is true.

be a matrix of a collineation f and

j>l.HenceM:[

such that M =
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LEMMA 6. If M, N € M, 41 n+1,

_ A1 Ok _ A2 Ok
M—[Bl E, ],andN—[ )

B, E,
_ | A142 Ok
then MN = [ B, EE, |-

Whence we see that the group of matrices which have the form M =

A Ol+1,k
B E

A1 O x
B E

trices which have form M = [

] contains the subgroup of matrices which have the form M =

]. The appropriate group of transformations with the ma-

A1 Oiprk
B E
that the following lemma is true.

LeMMA 7. If M,N € Mn+1,'n+ly
M= [/\1A1+1 Ol+1,k] Cand N = [/\2A1+1 Ol+l,k],

] is denoted by I}. Now we see

B E C H
_{MA2l O
then MN = [ D EH |

k
where D = [di; = bijAs + 3, -, Cri€irlocicks1,~1<i<itl-
From Lemma 7 we have following corollaries.

CORQLLARY 1. )
(i) A1 Ok | [Bi41 Oigrk _ | B Ouag|,
| B, Ay || B Ag Bi+ B, A |

(ii) [ A Ol+l,k] [ A Ol+l,k] _ [ JAVISY 01+1,k]_
| Okue1 En Okir1 B, Okiv1 E1Ey )’

(iii) (A1 O | [ At O] _ [Air Oigrk
B Ar [|Okgr  E | | B E |

COROLLARY 2. "
(i) [Am Ol+1,k] =[A1+1 01+1.k].

B Ak -B Ak !
(ii) [ Ay 01+1,k]—l _ [ JAVISY 01+1,k]
Okut1 E Okiqr E7V [T

Now we see that the group I contains three subgroups, the group E of

. . . . A
transformations with the matrices which have the form [0 f+1 OIEI"‘ )
k141

the group T} of transformations with the matrices which have the form
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B Ag

which have the form [Agl Olg'k] , where det(E) = 1.

Of course T} is a subgroup of I}".

[Al“ O'“'k] , and the group I} of transformations with the matrices

As a direct consequence of Corollary 1 we infer

COROLLARY 3. For any f € I there exist g and h such that h € E},
geT?, and f=goh.

LeMMA 8. If o), € E(H}), ¢ = [qo,- - -,qn], and hyperplane Q has the
equation Y., = 0, then the symmetry 08 has a matriz of the form

_ A1 Ok
M= [ B E |
where E = Ax — (2/a)[giAj)ici,j<nt1, B = (-2/@)[qiAj)ici<nt1,~1<i<i41

a # 0, and det(E) = —1.

Proof. Since Q) is a non isotropic hyperplane, thus A, # 0 for some
s with { < s < n, and ¢ € V(C}), because 0} € T(H}), whence ¢ =
(0,...,0,q141,-.-,qn]. Now, by Definition 1.2 from [3] we get az(z); =

E::O As(gszi — 2qiz,) = E:=0 m;,T,, where

0 fori#s,0<:<1
_ Z:=t+1 A,Q, fori=3,0<1:1<1
T T ~2g:4, fori#s, l<i<n

Yoveir1 Asqs — 2giA, fori=s,l<i<n.

Let @ = 3 7_,,, Asqs. Whence a # 0, because ¢ ¢ Q. Matrix Mp =
[mis]-1<i s<n+1 1s a matrix of the symmetry ag). But M = (1/a)M,, thus M
is a matrix of the symmetry az too. The proof will be completed by showing

that det(E) = —1 i.e. det([mis]ici scns1) = —a*, where [my,]ici s<cns1 is an
appropriate submatrix of M. This submatrix has the following form

=2q414i1 “2q41A142 - —2qi4144
. + alg.

—2¢nA141 —2qnAi2 - —2¢nAn

By Lemma 4,
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det([mis)ici,s<cnt1)
= (=D)¥[(—a)* = (ma)* IMy + (—a)F "My — .+ (1) M.

It is easily seen that M; = 0 for 1 < i < k. Hence det([ms)ici scnt1) =

—aF

. .
LEMMA 9. Ifg € I,’:' N E}, then g is a superposition of symmetries of

H} with non isotropic azes.

Proof. Let f be a skew symmetry of F* with axis which is a (k — 1)-
dimensional hyperplane A such that (0,0...,0) € A in F*. Whence A has
the equation Zf__.l Ajz; = 0. Let p = [0,p1,...,pk] with Zle Ajp; # 0
be a direction of this symmetry. The isotropic hyperplane A’ with the
equation Z‘l;:l Ajziy; = 0, and the point p corresponds to point ¢ =
[0,...,0,p1,...,px) ¢ A’, and then ¢%, € T(H}). Now, by Lemma R, the

Aiyr Oipr

matrix M(o%,) is Orins M) | where M(f) is a matrix of the skew

Al+1 01+1 ,k}
Ok 41 D |
where det(D) = *1. Therefore the transformation g’ : F¥ +— F* with the
matrix D is an equiaffine transformation. Thus there exist skew symmetries
fiy..., fn such that ¢’ = f,, o...0 f;. Each of these symmetries induces in

H} a symmetry g; € E(H}) such that M(g;) = [53'“ SZJIU';] Let us
k41 i

see that D = M(fp)-...- M(f1), thus M(g) = M(gm)-...- M(g1). Hence
g=gmo...00;. m

LemMmA 10. If g € T, then g is a superposition of symmetries of H}
with non isotropic azxes.

symmetry f. Let g € I} NEP. By definition of g, M(g) = [

Ay Ok

Proof. Let g € T[, whence M(g) = [ B A
k

].Foéogjglwe

consider arbitrary g; € T with the matrix M(g;)

that
biy1,

Bj = Ok, ; : Ok,i-;
bn,;
and we prove the thesis for such g;. If b,; = 0 for I < s < n, then
B; = Ogu41 and, by Lemma 9, g; is a superposition of symmetries of
H? with non isotropic axes, so we can assume b,; # 0. Let us consider
two (n — 1)-dimensional non isotropic hyperplanes of Hy with the equa-

tions A : z, = 0 and A’ : z, + cz; = 0, where ¢ = (-1/2)b,; and let
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q=100,...,0,bi41j,...,bn;]. Then g € V(C}) and ¢ ¢ A, A’, so 0%,0}, €
T(H}). By Lemma 8, M(g;) = M(c%, o c%), hence g; = 0%, o 0. Now
clearly, the matrix B is a sum of the matrices B; (0 < j < I) as above, so,
by Corollary 1(i)

Aipr Ok = M(go)-...-M(g;), thusg=gpo...0g. m
B Ay

PROPOSITION 2. We have G(Z(HL)) = I7.

Proof. From Lemma 8 and the definition of I}” we have G(Z(H})) C
I Next, by Corollaries 3, 1(iii), and Lemmas 9, 10, I} C G(X(H})). =
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