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REFLECTIONS IN EQUIDISTANT HYPERSURFACES I. 
ANALYTICAL INVESTIGATIONS 

1. Introduction 
In this paper we study reflections in some equidistant hypersurfaces of 

the degenerate hyperbolic space H£ (cf. [3]). Let us remind that the set of 
points of is the cone C£ contained in projective space Pn . Hyperplanes 
of H£ are non empty intersections of the hyperplanes of P„ and the set C ^ 
A hyperplane Q is isotropic iff it corresponds to a projective hyperplane Q 
containing the top V of the cone C£ (see [4]). We denote by E = E(H£) 
the class of reflections of H£ in non isotropic hyperplanes, precisely the 
restrictions to the set CJJ of appropriate projective symmetries. Let i2 denote 
the class of all axial symmetries of H£. In paper [3] we defined, generally, 
an equidistant hypersurface of H£ to be the orbit of a point a under the 
centralizer of a symmetry a = OQ in the class fi. If Q is not isotropic, such 
an orbit is independent from q (q 6 V) and is denoted by Let S be the 
class of all sets where Q is a non isotropic hyperplane of H£ (see [3]). 
The structure = (C£, S) is called an inversive degenerate hyperbolic 
space. In this structure we shall study the symmetries aqE (E £ S and 
q e V\V(£)) , which will be defined below. The set V ( £ ) := { V n l : L C E) 
is the top of E. 

2. Results 
Let E e S and q e V \ V(E) . We define the reflection aqE in E with 

centre q by the condition 

D E F I N I T I O N 1. Let crqE(x) = y : o H(q,E n qx\x,y), where H is a 
relation of harmonic conjugacy and qx denotes the line passing through q 
and x. 

This definition is correct because 



206 K. R a d z i s z e w s k i 

PROPOSITION 1. If K is an isotropic line O /H£ , E E S, and K <£ E, 
then | A ' n £ | = 1 . 

Let A = A(H£) be the class of all symmetries <rqE, where E 6 5 . Of 
course E C A, because S contains the class of non isotropic hyperplanes 

First we see that 

T H E O R E M 1. We have A C Aut(H^), and thus the group G(A) generated 
by A is a subgroup of Aut(H f c). 

Let us remind that is the set of maximal generators of H£ i.e. of sets 
(a , V) \ V , where (a , V) is the subspace spanned in P n by V and by point 
a Ç C£. From definition we see that A preserves the elements of T£ i.e. 

T H E O R E M 2 . IfT e T£, f e A , then f(T) = T. 

In [3] we constructed the bijection (f> of the set C£ onto the halfcylinder 
contained in P n + i ; transformation <f> is an isomorphism between 

and Laguerre haifspace This transformation correlates the symmetriei-
from A and the symmetries of the appropriate Laguerre space. Note that 
the tops of L£ and H£ are identic. 

T H E O R E M 3 . If E e S and p e V\V(E), then 4>oopEo4>-x = 

As a consequence we get 

T H E O R E M 4 . / / / : C £ C £ is a bijection, then f £ A i f f <j>o f o <f>~1 is 
the restriction of a symmetry of Laguerre space L]J. 

Because the reflections in hyperspheres of Laguerre spaces are the re-
strictions of these projective symmetries of the cylinder W£, which centres 
belong to the top V(WJJ), we show that 

T H E O R E M 5 . The following groups of symmetries are isomorphic: 

The symmetries from E(H£) preserve the top V and transform the gen-
erators of C£ onto themselves, thus any element of G(E(HJJ)) is described 
in the projective coordinates by matrix 

(see [3]). 

0 ) 

(ii) 
(Hi) 

(iv) 

g ^ M ; - 1 ) ) 

< ? ( £ ( ¿ L r 1 ) ) 

GiHK-1)). 

r i 0 
A „ _ f c + i 0 

B E 
, where A/ = 

0 Ixl 
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Cn general we have 

PROPOSITION 2 . / e G ( E ( H J ! ) ) if and only if f is described by matrix 
(*), where det (£) = ± 1 . 

From Theorem 5, Proposition 2, and from the analytical description of 
the isomorphism <f> we get an analytical description of the group <j(A(H£)). 
The set C£ is a subset of the affine space A„, hence this description will be 
given in affine coordinates. 

Let us recall explicit formulas defining <f>: 

Then we get 
fl 

T H E O R E M 6 . Let g be a transformation ofHk. The following conditions 
are equivalent: 

3. Proofs and auxiliary lemmas 

LEMMA 1. (i) // F 6 S, P : xn = 0 is a base of F, and p = [0 , . . . ,0 ,1] , 
then | L(p, a ) n F| = 1 for any a € C£. 

(ii) For any E G 5", q € V(C£), and q ^ V ( £ ) there exists an affine 
transformation V> such that tp £ Aut(HjJ), ip*(q) = [0 , . . . ,0 ,1] , and ip(E) is 
an equidistant hypersurface with the base P: xn = 0. 

P r o o f . First we prove (i). Let F satisfy the assumption of (i). By Theo-
rem 2.9 and 2.11 from [3], we get that F is that part of a set with equation: 
C2(-XQ + x\ + .. , + x^l_k)-\-x'}l = 0, which is on the one side of the hyperplane 
P : xn = 0, or F = P. If F = P, then the thesis is trivial. 

Let a = [ a o , a i , . . . , a n ] 6 <C£, whence a ^ p and L(p,a) is described by 
equations: 

for n - k + 1 < i < n. 

for 1 < i < n — k 
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l 0 = (l<*0 

Zn-1 = P n - l 
xn = X + (ian, where (A,(i) ^ (0,0). 

Let (i = l , thus 

c 2 ( _ a 2 + _ + Q 2_ f c ) + ( A + Q n ) 2 = 0 ) 

A = ±c^ja2 - (af + ... + a2
n_k) - an. 

However, F is the part of a set with equation c2(—xl+x2 + . • •+xn-k)~^~xn = 

0. which is on the one side of the hyperplane P. Hence \L(p, a) fl F\ = 1. 

(ii) is a direct consequence of Lemma 2.6 and Theorem 2.7 from [3]. • 

Proposition 1. is a direct consequence of Lemma 1. • 

L E M M A 2. If G e S has the base B : = 0, P : xn = 0. 
p = [ 0 . 0 , . . . , 0,1], and F £ S has the base P, then op

F{G) € S and it has 
the base ap{B). 

P r o o f . Let F = P, whence the thesis is trivial because ap
F = ap £ 

Aut(H£). 

Let F G S and F be not a hyperplane. Thus, by Theorem 2.9 from [3], 
F is described by equation: c 2 ( - + x\ + ... + + x2

n = 0. Let us see 
that a = [1,0, . . . , 0 , c ] 6 F. By Theorem 2.12 from [3], G is described by 
the equation: 

i>2+*?)*?+ t 
j=1 j=n-k+l 

n n 
+ E AjAjXjXj + 2^A0Ajx0xj - (u2 - Al)x2

0. 
i,j= 1 j = l 

By Definition 1.2 from [3], <rp
p(B) : 

AjXi — Anxn — 0. Let H be an 
equidistant hypersurface with the base up(B) such that a is the affine centre 
of the segment (L(p, a)f)G)(L(p, a)f]H). Whence, in general, H is described 
by the equation: 
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5 > ? + A))x) + £ A)x) + £ AiAjXiXj + 2 £ AoAjXoxj 

j= 1 j=n-fc+l i,j=1 j=l 
n —1 

2 ^ Ani4ji„ij - 2A0J4ni0in - 2A0Anx0xn = (uj - j4o)xq. 
i=i 

Now we can calculate the coordinates of the points g = L(p, a) fl G and 
h = L(p, a) fl H. We get g = [A', 0,..., /*'], h = [A", 0,..., p."} for suitable 
AV,A",/i". Clearly, A', A" ^ 0; thus 5 = [1,0,.. .,/ii], /i = [1,0,.. ,,//2]. 
As g £G, hence + 2i40y4n/ix - (u2 - yl̂ ) = 0, so p.x = (-A0 + u)/An, 
and, analogously, /¿2 = (-̂ o + u i ) / A n . Since a is the affine centre of the 
segment gh, u + ui = 2A„c. Now we prove that opF(G) = H, i.e. we prove 
that for every line L of HJ? passing through p, the affine centre of a segment 
qr, where q = LOG, r = L(~\H, lies on F. First we calculate the coordinates 
of the points q and r. L is described by the equations: 

x0 = A 
x\ = Aqj 
X2 - Ac*2 

Xn-k = 

Xn-k+1 = o 

x„_i = 0 
n—k 

xn=n, where (A,/x) ^ (0,0) and ^ a{ >1. 
»=i 

We can set A = 1. As q € G, hence q is characterized by 
n—k 

* = (~ (E A i a i + ± V1 -E;:>?)/i4n' ie-¿=i 
n-k 

q= [l,a!, . . .an_ f c ,0,. . . ,0,(- ( 5 3 Ajttj + ilo) 
1=1 

Analogously, 
n—k 

r = [l.ai,.. .an_fc,0,.. .,0, ( £ Aiai + A0 + ulyJl -£".7«?)/^»] • 
i=i 



210 K. R a d z i s z e w s k i 

The affine centre c*i of the considered segment has the coordinates: 

«1 = 

However, u U\ — 2Anc, hence 

a 1 1, , . . . a„_ f c , 0 , . . . , 0, ( + c^Jl ! 2 A n 

Now it is easily seen that C*I 6 F, because QI satisfies the equation of F. 
Hence cr^(G') — H. m 

L E M M A 3. If E e S has a base Q,q £ V(<C£), and q £ V{E), Ex £ S has 
a base Q1, then apE{E\) £ S and has the base CFQ{Q\). 

P r o o f . By Lemma 1 (ii), there exists ip £ Aut(H£) such that ip*(q) — 
p — [ 0 , 0 , . . . , 0 ,1] and tp(E) = F, where F is an equidistant hypersurface 
with the base P : xn = 0. Whence 

< { E X ) = o - J I T ^ C ^ i ) = ^ - ' « ( ¿ i ) = i>-xo"Fi>{Ex). 

Now, by Lemma 2, ip~1OpiJ}(E\) is an equidistant hypersurface belonging 
to S with the base cTQ(Qi)- Hence we get the thesis. • 

Theorem 1. is a direct consequence of Lemma 3. • 

P r o o f o f T h e o r e m 5. Note that 

E(H£) = {aqQ\Cnk : o'Q £ 0, V(Q) £ Q, q £ V(Q) \ Q}, 
S ( L r 1 ) = K | W r 1 : <TqQe9, 9 £ V ( Q ) \ Q } , and 

E ( i L r 1 ) = { ^ | i W r 1 : a<Qe0, V ( Q ) £ Q, < ? £ V ( q ) \ Q } , 

where 0 is the set of symmetries of P n . 
If k(n - 1, V(<C£) C Qi, and £ V \ q, for i = 1,2, then it is easily seen 

that the following conditions are equivalent: 

1- °qQ\ = 

2- « ^ I Q ^ I Q ; 

3. 4 ' j w r 1 ^ ^ j w r 1 ; 
4. ^ w r 1 = 

Thus there exist bijections f\ and ¡2 defined by 

W ^ i w r ' ^ i l w r 1 -
Whence f\ induces, on the generators, an isomorphism between ( j (E (H£) ) 
and G ( S ( L ] J _ 1 ) ) , and ¡2 induces, on the generators, an isomorphism between 
G ^ L r 1 ) ) and G ^ L r 1 ) ) -
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n-1 H^ 1 • This isomorphism From Theorem 2.19 (see [3]) we have = n k 

is denoted by <j>. Thus there exists a bijection f 3 defined by , 
where a G E ( H £ _ 1 ) = A ( H £ _ 1 ) and 4*7<j>~1 e Whence f3 induces 
on the generators an isomorphism between G ( A ( H £ - 1 ) ) and G(E( j L £ - 1 ) ) . 
Hence we have the thesis. • 

The class of all m x n matrices is denoted by Mm<n. From among all the 
matrices we distinguish certain special types of them, i.e. zero-matrices 

O m ,n 

o 

o 

o 

o 
and unit matrices A n := 

1 

0 

0 

1 

Lemma 4. We have 

det([m i j]o<i,i<r+i - AA r) = ( - l ) r [ A r A r " 1 M 1 + A r " 2 M 2 - . . . + ( - 1 )rMr], 

where Mi is the sum of all minors with i rows and i columns obtained from 
the matrix ["iij]o<:,j<r+i by cancelling the appropriate quantity of rows and 
columns possessing equal numbers (see [2], p. 104). 

L E M M A 5 . Let I = n — k. If M is a matrix of the projective collineation 
f of Pn with the distinguished cylinder W £ _ 1 , then M has the form 

A 
B 

Oi+i,k 
E 

if and cm/y . y / ( V ( Q ) ) = V ( Q ) . 

P r o o f . "=>" Let M be a matrix of a collineation / and A 0/+i,jfc' 
B E 

let q = [ 0 , . . . , 0 , 9 / + 1 , . . . , ? „ ] € V(<QJ): Then f(q) = [ 0 , . . . , 0, q'l+l,..., q'n) 
and thus /(V(C£)) C V ( C J ) . But dim(/(V(C£))) = dim(V(<C£)) because / 
is a collineation, hence / ( V ( Q ) ) = V(C£). 

"•<=" Let / be a projective collineation of P n with the matrix M = 
K j ] - I < i . > < n + 1 , such that / ( V ( Q ) ) = V(Cg). Since / ( V ( Q ) ) = V(C£) , 
thus f(q) e V for any q € V . If q G V, then q = [0 , . . . ,0 ,9/+1, •. • ,9n], so 
/(?)» = m « j ? j = E " = i + i m . j 9 j ; s i n c e /(?) G /(?)« = 0 f o r 

i < I and thus = 0 for i < I, j > /. Whence m, j = 0 for i < I, 
A Oi+i,jt j > I. Hence M = B 

Whence any projective automorphism of the space H£ has a matrix M 
a o,+1y such that M = „ „ n Li 

It is easily seen that the ollowing lemma is true. 
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LEMMA 6. If M,N e M n + i , n + i , 

M Oi+i,jt 
Bl Et 

then MN = 

M = and N — A2 
b2 

AiA2 Ot+ i,jt 
B3 E1E2 

0¡+i,k 
E 2 

Whence we see that the group of matrices which have the form M = 
A 0i+1,* 
B E 

B E 

contains the subgroup of matrices which have the form M = 

trices which have form M = 

. The appropriate group of transformations with the ma-

A/+i 
B 

that the following lemma is true. 

L E M M A 7. If M,N e Mn+I,„+I, 

0i+ i,k 
E is denoted by IJ¡. Now we see 

M = B E 

then MN = 

and N = A 2 A / + I 
C 

Oi+i,k 
H 

AIA2A/+i OJ+I,* 
D EH 

where D = [dij = bijX2 + E r = i crjeir]o<»<fc+i,-i<j<i+i • 

From Lemma 7 we have following corollaries. 

0) 

(Ü) 

(Hi) 

C O R O L L A R Y 1. 

: Bi Ak 
0/+i,jt 

_Ok,i+i Ei 

B A * 

C O R O L L A R Y 2 . 

A/+i Oi+ i tk 
B Ak 

A;+ i 0i+ 
_Ok,i+1 E 

A/+i 
B2 

' A / + 1 

Ok,i+i 
A/+i 

.Ok,1+1 

Oi+i,k 
A 

E2 
0,+i,k 

E 

Af+i 
+ 5 2 

A / + i 
Ok,i+1 

Aj+i 0/+i,k 
5 £ 

A* j 

EiE2 

0) 

00 

- 1 

- 1 

A/+i Oi+itk 
-B Ak 

A/+i Oi+i tk 
ok,t+1 S- 1 

Now we see that the group I£ contains three subgroups, the group £ £ of 
A / + i Oi+i , k 

.Ok,i+1 £ 
the group T£ of transformations with the matrices which have the form 

transformations with the matrices which have the form 
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B A k 
, and the group /£* of transformations with the matrices 

which have the form 
B E 

, where det(.£;) = ±1. 

Of course T£ is a subgroup of /£*. 
As a direct consequence of Corollary 1 we infer 

C o r o l l a r y 3. For any f € there exist g and h such that h € Ek, 
g e Tfc", and f = goh. 

L e m m a 8. If <Jq E E ( H £ ) , q = [901-• •>9n]i and hyperplane Q has the 

equation = 0, then the symmetry cTq has a matrix of the form 

M = 
A/ + i 0/+i,jfe 

B E 

where E = Ak - (2/a)[qiAj},<iJ<n+i, B = (-2/a)[qiAj]i<i<n+1-i<j<l+i, 
o ^ O , and d e t ( £ ) = - 1 . 

P r o o f . Since Q is a non isotropic hyperplane, thus A3 ^ 0 for some 
s with I < s < n, and q 6 V(<C£), because Oq € £(H£), whence q = 
[0, . . . , 0 , g / + i , . . . ,?„]. Now, by Definition 1.2 from [3] we get <Jq(x)i = 
E"=o Aa(<i*xi ~ 29«1») = £ ? = o m i s x s , where 

0 for i j t s, 0 < i < I 

E L / + 1 A*Q' f o r i = s,o < i < 1 

-2qiAs f o r i ^ s, I < i < n 

£"=/+1 - 2<liA* f o r i = S, l < i < n. 

Let a = Aaqs. Whence a / 0, because q & Q. Matrix Mq — 
[ m I 3 ] _ i < i a < n + i is a matrix of the symmetry (Tq. But M = ( l / a ) M o , thus M 
is a matrix of the symmetry Oq too. The proof will be completed by showing 
that d e t ( £ ) = - 1 i.e. de t ( [mi s ] / < t ) J < „ + 1 ) = - a k , where [m i 4 ] i < I i 4 < n + i is an 
appropriate submatrix of Mq. This submatrix has the following form 

m,-

-2qi+iAi+i -2qi+iAi+2 ••• -2ql+1An 

-2qnAi+i -2qnAl+2 ••• -2qnAn 

+ aAk. 

By Lemma 4, 
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d e t ( [ m i a ] « t | i < r i + i ) 

= ( _ l ) * [ ( - a ) * - (—a)k~1 Mi + (-a)k~2M2 - . . . + ( - l ) k M k ] . 

It is easily seen that M, = 0 for 1 < i < k. Hence d e t ( [ m i s ] ; < ; i s < n + 1 ) = 
- a k . m 

L e m m a 9 . If g £ 1% fl then g is a superposition of symmetries of 
with non isotropic axes. 

P r o o f . Let / be a skew symmetry of Fk with axis which is a (k - 1 )-
dimensional hyperplane A such that ( 0 , 0 . . . , 0 ) € A in Fk. Whence A has 
the equation AjXj = 0. Let p = [ 0 , p i , . . .,pk] with AjPj / 0 
be a direction of this symmetry. The isotropic hyperplane A' with the 
equation AjXi+j = 0, and the point p corresponds to point q = 
[ 0 , . . •, 0, p i , . . . , pk 

matrix M(a q A , ) is 

# A', and then a\, £ £ ( H £ ) . Now, by Lemma 8, the 

A/+1 Oi+itk ^ w^ere M { f ) is a matrix of the skew 
Ok,,+1 M ( / ) 

symmetry / . Let g £ I£ C\E%. By definition of g, M (g) = 

a symmetry gi £ £ ( H £ ) such that M ( g , ) = . Let us 

Ok,i+1 D 
where d e t ( D ) = ± 1 . Therefore the transformation g' : Fk •—> Fk with the 
matrix D is an equiaffine transformation. Thus there exist skew symmetries 
f\i- • • > fn such that g' = / m 0 • • • 0 / i - Each of these symmetries induces in 

Af+i O i + 

Ok,l+1 M ( f i ) 
see that D = M ( f m ) •... - M ( f i ) , thus M(g) = M(gm) •... • M(gi). Hence 
9 = 9m o • • • o gi. m 

L e m m a 10. If g £ TJ}, then g is a superposition of symmetries of H]J 
with non isotropic axes. 

B A* 
P r o o f . Let g £T£, whence M(g) = 

consider arbitrary gj £ T£ with the matrix M{gj) = 

that 
L B j 

. For 0 < j < I we 

such Oi+i,k 
A fc 

B} = o Ok,,-: 
n>j 

and we prove the thesis for such gj . If b3j = 0 for I < s < n, iben 
B j = O k t i + i and, by L e m m a 9, gj is a superposition of symmetries of 
H£ with non isotropic axes, so we can assume b r j ^ 0. Let us consider 
two (n — l)-dimensional non isotropic hyperplanes of H£ with the equa-
tions A : xT = 0 and A' : xr -f cxj = 0, where c = ( — l / 2 ) 6 r j - and let 
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q = [ 0 , . . . , 0 , 6 / + l i j , . . . , 6 „ j ] . Then q <E V ( Q ) and q $ A, A', so o\,o\, € 
£ ( H £ ) . By Lemma 8, M ( ^ ) = M{a\, o a» ) , hence gj = a\, o Now 
clearly, the matrix B is a sum of the matrices Bj (0 < j < I) as above, so, 
by Corollary l( i ) 

Oi+iyk 
B Ak 

- M(g0) • . . . • M(gi), t h u s g = g0o ...ogt. 

PROPOSITION 2. We have G ( E ( H £ ) ) = i f . 

P r o o f . From Lemma 8 and the definition of we have G(E(H£)) C 
i f . Next, by Corollaries 3, l(iii), and Lemmas 9, 10, i f C G(E(H£)) . • 
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