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LOWER B O U N D S OF A FEEDBACK F U N C T I O N 

1. Introduction 
The feedback functions and the corresponding recurring sequences — 

having numerous applications, for instance in coding theory, in cryptography 
or in several branches of electrical engineering — have been studied with 
methods of linear algebra, ideal theory or formal power series [1,3,4]. In 
1963 Yoeli [9] published two theorems dealing with sequences joining and 
a sequence splitting. This has led to a design of algorithms for finding the 
Hamiltonian circuits in a de Bruijn graph (Cf. [2,8,11]). 

In more general case, the paper [9] yields a tool for studying connections 
between the feedback functions and allows us to describe them as the ele-
ments of a partially ordered set. For a study of this order it is convenient 
to investigate the families of upper bounds and lower bounds of a feedback 
function. 

Here we present properties of the families of the lower bounds of feedback 
functions. Each of such family forms an upper semilattice. It is completely 
described by a binary relation, called the independent splits relation, closely 
related to the interlacing relation defined in [5]. We study the independent 
splits relations and isomorphisms of the semilattices mentioned above. For 
instance, an isomorphism of an independent splits relation determines an iso-
morphism of the corresponding semilattices, and conversely. We shall show 
several examples of such isomorphisms: in particular, upper semilattices are 
isomorphic if the corresponding independent splits relations are identical. 
We shall describe a transformation of a feedback function which preserves 
its independent splits relation. 

2. A n order in the family of feedback functions 
Let Tk be the family of total functions >p: {0, l}fc —• {0,1} such that 

(2.1) <p{xi,x2,...,xfc) ^ <p(xux2,...,xk), 
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for each ( x j , . . . , i * ) G {0, l}fc, ( ¿1 = xx + 1 in GF(2) ). Each function 
from Tk will be called a feedback function. Note that {0,1}* —• {0,1} is 
a feedback function iff 

(2.2) <p(xi,x2,...,xk) = xx + y>(0,x2, •• .,xk), 

where + is the addition in GF(2). Then for <p £ Tk and X C {0, the 
function <̂ 11x1 defined by 

(2.3) <p\\x(x\ixh • • -,xk) = <p(zi,X2, •• -,Xk) + Xx(x2, •• -,xk) 

(xx is the characteristic function of X ) , is the feedback function too. This 
implies tha t for an arbitrary fixed 0 G Tk we have 

(2.4) ^ { f l i i x ^ C f O , ! } * - 1 } . 

Figure 2.1. The de Bruijn graphs: (a) of order 2, (b) of order 3. 

There exists an interesting connection between the feedback functions 
and subgraphs of the de Bruijn graph. 

The de Bruijn graph of order A: is a directed graph Bk that consists of the 
elements of {0,1}* as the vertices, where each edge {v\, v2,. •., vk) is followed 
by two edges: (v2,..., ujt,0) and (v2,..vk, 1). Each feedback function <p de-
termines a maximal subgraph Bk[tp\ of Bk composed of disjoint directed cir-
cuits in which a vertex v = ( v i , . . . , vk) is followed by v' = (v2,..., vk, <p(v)). 
The graph Bk[ip\ is said to be the factor of Bk corresponding to <p. 

Let v' and v" be vertices of the same directed circuits of Bk[ip] with 
¥ € T k . By (v',v")y we denote the sequence of the consequtive vertices of 
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the circuit from v' to v". (If v' = v" then {v',v')v contains all vertices of 
the circuit and v' appears at the beginning and at the end of the sequence.) 
Moreover, (v ' , v")^ and ( v v " ) v denote the sequences which can be obtained 
from (v',v")y by deleting v' and v", respectively. In particular, each of the 
sequences ( v v ' ) v and (v ' , vconsists of all vertices of the circuit and each 
of them appears once. 

Figure 2.2. The factors -S3[t?] and jB3[t?||j01j] with t?(ii,12,13) = i i -

2 . 1 . T H E O R E M . [9] Let <p e T k and v = ( v u v 2 , . . . , vk) £ { 0 , 1 } * . If 

v = (vi, i'2,..., Vk) does not occur in (v, v t h e n for u = (v2,..., vk) we 
have 

while (v', v')vM{u) = {v',v')v i f f neither v nor v occurs in {v'^v')^, for v' £ 

2 . 2 . C O R O L L A R Y . Let <p £ T k and v = ( v i , v 2 , . . ,,Vk) £ { 0 , L}F C . I f 

v — (v i,v2,..Vk) occurs in (v, then for u = (v2,..., Vk) the sequences 
(v, and (v, t>)¥>n<u) do not have common elements and 

(v,v)tfi = (v,v}niu)(v,v)VlHu) 

while (v', v')vn{u} = {v'iv')<fi i f f neither v nor v occurs in ( t / , v')^, for v' £ 

{ 0 , l } * \ { t / , t ; } . " • 

Let —> C Tk x Tk be the binary relation such that ip ip iff there 
exists e = ( e i , . . . , e j t - i ) £ {0 , l } f c _ 1 for which V = V||{e} a nd the vertices 
e(0) = (0, e i , . . . , ek-i) and e(i) = (1, e i , . . . , are in different circuits 
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of 5jt[v]- Let A be the reflexive and transitive closure of —•. Then A is a 
partial order in Tk. 

The most interesting for applications is the family of feedback functions 
which form the maximal elements of A . They correspond to the factors 
which form the Hamiltonian circuits in B* ([2]), so they are said to be the 
Hamiltonian functions and the family of such functions is denoted by 7ik. 

Beside 7i k , there exists another interesting family of feedback functions 
— the minimal elements of A . They are called locally reducible feedback 
functions as forming a "bridge" between the families J r k ~ 1 and T k , because 
each circuit of the factor of a locally reducible feedback function may be 
reduced to a circuit of B k - i , [10]."The family of all locally reducible feedback 
functions is denoted by C1Zk. 

<Po <Pi 
00 0 0 
01 0 1 
10 1 1 
1 1 1 0 

Table 2.1. The feedback functions Figure 2.3. The diagram of in T 2 

from T"1 

fo Vi <¿>2 V3 V4 <¿>5 <P6 V7 <P8 V9 ¥>10 V11 V12 Vl3 <¿>14 Vi 
000 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
001 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
010 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
Oil 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
100 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
101 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 
110 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 
111 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

Table 2.2. The feedback funct ions from T^ . 

For each feedback function <p £ Tk let us set C(<p) = {ip : ip v}• We 
shall study the partially ordered set (£(y>), A 

2.3. THEOREM. Let <p € T k . The poset ( £ ( y ) , ) an upper semilat-
tice. 

P r o o f . For arbitrary functions tp\ and tp2 from £(<p), if Vi = 
and <p2 — V11.V2 ^ e n for each U C X1 and for each V C X2 we have 
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Figure 2.4. The diagram of A in 

f\\u £ and £ particular ^y^nA^ £ therefore 
Vi V = VH^nXj- • 

The semilattice A ) may be extended to a lattice as follows. Let 
us set 

Clu>\ = ! if (£(V>).A ) i s a lattice, 
m \ C(ip) U {0}, otherwise, 

where 0 denotes any object which is not a feedback function, and assume 
that 0 - ^ 0 and 0 A if 0 e £(<f>). 

2 . 4 . T H E O R E M . The poset {C*{<p), A ) is a lattice. 

P r o o f . If there exists ip such that ip A ¡p-y and ^ A ip2, and if ip = 
and ip — ip||A-2 then ipi A = V'| |x1nx2- Otherwise we set <pi A ip2 = 0. m 

V>||{io} VlUoi} 

VlKoo.io} V||{10,11} ¥>||{oo,n} Vmoo.oi} V||{oi,n} 

¥>||{00,10,11} ¥>||{00,01,11} 

Figure 2.5. The poset (£(v>), A ) for <p = <p\\. 
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3. T h e independent splits relation 
It is convenient to analyse the relation A with the help of a relation from 

{0, l} f c _ 1 x {0, l } * - 1 . This relation deals with the vertices of the factor of a 
feedback function ip each of which may cause splitting one of the circuits of 
Bk[ip]. Elements u and v of {0, l} f c _ 1 will be in the relation iff the change 
of if at U(o) a fid «(i) leaves the vertices U(0) in the same circuit of 

^ allows us to generalize Corollary 2.2 for more arguments. 
The independent splits relation for <p G Tk is a binary relation C 

{0, l } * - 1 x {0, such that for arbitrary elements u and v of {0, l } * - 1 

one of the following conditions holds: 
(3.1) (« ,« ) € iff («(0), "(0)>v» = (U(0),M(1))V(U(1),W(0))*>, 
(3.2) if u ± v then (u,v) G iff (u,u) G and (v,v) G and either 

y(0) and do not occur in («(o)» "(0))v> o r the sequence (u(o)> U(o))*> 
has one of the form 

(»(0), "(0))V = U(i)).^(li(i), U(0))v 

(U(O)i «(<>))'* = ("(0), 1)>^.( '̂(1), W(l))v(U(l), «(0))v 

(«(0)> "(0)>v> = (u(0),«(i))v(u(i)>i;(0))¥>("(0),U(i))v,(r(1),U(0))v, 

("(0), U(0))v = (u(0),«(i))v(«(i),u(1))v(t;(1),?;(0))v,(u(0),W(0))v-
Note that if (u, v) G and the vertices U(0)> U(i), V(0), are in the 

same circuit of Bk[<p] then they have to keep the order as in Figure 3.1. The 
condition (3.1) and Theorem 2.1 imply 

(3.3) ©v = 0 iff V € CU k . 

"(o)y ' \v(a) 

yt>(a) 

u(0)»'' V O ) 

" ( a ) v Jf'V(c 

Figure 3.1. 

The full characterization of the independent splits relations needs the 
confrontation them with the other relations, called the interlacing relations, 
defined and investigated in [5,6,7]. 

The interlacing relation of tp G Tk is the relation C {0, l } * - 1 X 
{0, l } * - 1 such that ( x , y ) G iff the sequence (x(0), X(o))v has one of the 
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form: 

or 

Such a relation is irreflexive and symmetric. The connections between 
and are the best evident for the Hamiltonian functions: if a; € H k 

then 

®u,U®u, = {0, l}*" 1 x {0, l } * - 1 , 

while fl = 0. In the general case we have 

U = TR{<p} x TR{tp}, 

with TR{<p} = {e G {0, l} f c _ 1 : (e,e) G <$„}. (We have TR{g} = 0 for 
e € C1lk as well as TR{u) = {0, l}*" 1 for u G Hk.) 

The difference between the relations and can be noticed if we 
observe the lines which join the vertices i(0) with i ( i ) as well as j/(0) with 
y(i): if they are crossing then (x,y) G otherwise (x,y) G ©y . (If not all 
of the vertices £(o)> £(i)> 2/(o)> î/(i) a r e in the same circuit then (x,y) £ 

U ( D V >'W(a) 

«(0). ; 

> « ( 1 ) 

Figure 3.2. 

3 . 1 . T H E O R E M . Let <p G T k . For each X C { 0 , 1 } * _ 1 we have 

¥>11* A V iff X x X C 

P r o o f . For X — 0 the proof is a direct consequence of the definition 
of the relation A . Let us assume that X / 0 and let { A i , . . . ,A"m} be 
a partition of X which corresponds with the family {Ci,...,Cm } of the 
vertex disjoint circuits of Bk[y>] such that for each x G X and for each 
i G { l , . . . , m } 

(a) x G X{ iff i(o) and i ( i ) are the vertices of C{. 
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N e c e s s i t y . Suppose that (p\\X f - Because of ( a ) each element x of X 

satisfies the condition 

(*(0)>Z(0))v> = (Z(0),Z(l))*>(Z(lhZ(0))YM 

which means that (x , x ) G (J)^. From this and the definition of { X i , . . . , A ' m } 

it follows that for every X G { X i , . . . , A " m } and ¿ G l w e have (x , x ) G (g)^ 

if x G X \ X. Let X G . . . , Xm}. If |X| > 1 then for arbitrary elements 

x and x of X we have 

( b ) f \ \ x A f \ \ { x , i } <r>||{*} f -

The above condition means that the following circuits (x(o),^(o>)vn<^ «) 
( x ( i ) , ®(i))V||{x j , of B k [ < P \ \ { x , x } \ a r e vertex disjoint and either the vertex 
¿(0) belongs to one of them and the vertex X(i) belongs to none of them or 
conversely. (Otherwise the relation A ¡p would not hold.) On the other 

hand, there exists a circuit C G { C \ , . . . , C m } in i?jt[y>] containing each of 
the vertices: X(o), X( i ) , X(o)> ¿(1)- If ( x i ^ then it would exist a G { 0 , 1 } 
such that 

Then 

and next 

(^(0), ^(O))^!,^^} = i(a)>v>(^(a), a r ( l ) ) v ( x (0 ) » ¿ (a )>v ( i (a ) , ^(O))^-

The last equality disagree with the disjointness of the circuits 

( z (0 ) ,S (0 ) ) V l M l l i , a n d (® ( i ) . l ) > , o f Thereby each pair of 

elements of X is in (2)^,. 

S u f f i c i e n c y . Suppose that X X X C (g)^ and let X G { X i , . . . , X m } . For 

each x G X let us set X ( x ) = { x G X : ( x , x ) G If - ^ ( z ) = { z } then 

Vj jX( x ) —*• f , because of Theorem 2.1. If |A"(x)| > 1 then for x G X ( x ) \ { x } 

we have 

(Z(0) ,Z(0) )V = ( a ; ( o ) » i ( a )> v ( i ( a ) , i ( a ) ) v >( i (a ) ,a : ( i )>v ( a : ( i ) ' ; c (0 ) ) v 

or 

(®(0)1®(0))V = (X (0)T x (a)>v(x (a)> 
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Then 

(Z(0),Z(0))*||{x} = (Z(l)i *(<>))V 

or 

(•c(l)i ®(l))vm*) = (*(0),Z(l))v, 

respectively. This means that <p\\{x} f a n d ©vn<x} = 
\ ( { ( M ) : 

x € -^ (z )} U {(x, x) : x 6 X(x )} ) . It follows from the definition of A that 
ipl{x A <p. m 

3.2. COROLLARY. Let <p e T k . If X C {0, 1}*_1 then <pilx € CRk i f f X 
is a maximal set such that X X X C m 

3.3. COROLLARY. Let <p e Tk and X C {0, l}fc_1. If <p\\x V then 

<8>vux ^ • 

Theorem 3.1 gives an effective method to estabish all elements of the 
family C(tp) and it describes its s tructure determined by A . 

3.4 . EXAMPLE. For the feedback function ip = <pn, where <pu is defined 
in Table 2.2, we obtain 

( 0 0 0 , 0 0 0 ) ^ = 0 0 1 , 0 1 0 , 1 0 1 , 0 1 1 , 1 1 1 , 1 1 0 , 1 0 0 , 0 0 0 . 

Then the matrix which represents the characteristic function of has the 
form 

00 01 10 11 
00 / I 1 1 l \ 
01 1 1 0 1 
10 1 0 1 1 
11 1 1 1 / 

So, there exist two different maximal sets mentioned in Corollary 3.2, namely 
{00,10,11} and {00,01,11}. Then v̂ JKoo, 10,11} = <Po but V||{oo,oi,u} = Ve-
(Note that the relations (g)Vo and (3)Vg are empty.) The poset (£(y>), A ), 
the subset of ( F k , A ) is presented in Figure 2.5. 

3.5. COROLLARY. Let <p e T k . The poset (£(<p), A ) is a lattice i f f 
is an equivalence relation. m 



194 E. L a z u k a , J. Z u r a w i e c k i 

4. A n isomorphism of the posets [C(ip),-1* ) 
Let <p € T k . We shall s t a t e all funct ions <p 6 Tk for which the posets 

(£(<p), A ) and (£(<,5), A ) are isomorphic. 

4 . 1 . T H E O R E M . Let <p G Tk. For every function r G Tk the posets 
(£(</?), A ) and ( £ ( r ) , A ) are isomorphic iff the relations and ($)T 
are isomorphic. 

P r o o f . If £(<p) = {ip} then the posets (C(ip), A ) and ( £ ( r ) , A ) are 
isomorphic iff one of the equivalent condit ions holds: 

(a) £ ( r ) = { r } , 

(b) T € cnk, 

(c) = 0 = © T . 

T h e condit ion (c) means t h a t the relat ions and are isomorphic. 
If C(ip) contains the funct ions different f rom ip then , according to The-

orem 3 . 1 , each element of the family C(tp) has the form tp\\xi where X is a 
subset of {0, l } ' 1 - 1 such t h a t the relation restricted to X is an equiva-
lence relat ion. 

Necessity. If the posets (£(</>), A ) and ( £ ( r ) , A ) are isomorphic and 
the t r ans fo rma t ion I:C(ip) —* C{T) is an isomorphism then for each X C 
{0, l } * - 1 such t h a t tp\\x G £(Y>) a f l d <t>\\x V there exists X C {0, l } * - 1 

sat isfying the following condit ions: 

r||X = H<P\\x) and r | | X A r ' 
and for every x G X it is t rue t h a t 

and there exists x G X sat isfying the condit ions 

r | |X \{r} = J (V | |* \{ r}) and r ^ -» r | | j f X { . } . 

Then every t r ans fo rma t ion i: {0, l } * - 1 —• {0, l } f c _ 1 such tha t i(x) - x is an 
isomorphism of the relations and ($)T. 

Sufficiency. If z: {0, —• {0, is an isomorphism of the relations 
and (g)T then for every X C {0, such t ha t <p\\X € C(<p) the relation 
restr icted to X = {i(x) : x G X} is an equivalence relation. Therefore 

R||X G C(T) and r ^ A r and it is sufficient to set 

Hnx) = T\\x-
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Then I is an isomorphism of the sets (C(<p), A ) and (C(T), A ). • 

4 . 2 . COROLLARY. Let <p e T k and X C { 0 , L } * " 1 . If <p\\x A <P then for 

every function r € T k , for which there exists an isomorphism i: { 0 , l } * - 1 —» 

{ 0 , l } f c _ 1 of the relations (JJ)V and ©T, the following conditions hold: 

(a) r||i(A-) A T , 

(b) the relations <8)V||X and ($T||i(X) are isomorphic, 

( c ) the posets (C(<pHX),-^ ) and (¿(T'IKA'))'"^ ) are isomorphic. m 

4 . 3 . E X A M P L E . For arbitrary function <p £ T k the transformation 
i: {0, l }*" 1 — {0, l }*" 1 defined by the equality 

is an isomorphism of the relations and (J)^, where 

<p(xi,x2,...,xk) = ¥>(xi, i 2 , 

So, it transforms an arbitrary sequence (c\,c2, •. .,ck,ck+1) G { 0 , 1 } * + 1 into 
the sequence ( c ! , c 2 , . . c k , c f c + 1) . If c f c + i = <p(c1,c2,.. .,ck) then 

ck+1 = 1 + <p(ci,c2,...,ck) = <p(ci,c2,...,ck) = <p(c1,c2,...,ck). 

It means that the graphs Bk[ip] and Bk[<p] are isomorphic, so the relations 
and are isomorphic too. 

4 . 4 . E X A M P L E . For arbitrary function <p 6 T k let us consider a function 
(p such that 

<p(x1,x2,...,xk) = (p(xi, I f c , . . . , x 2 ) . 

If e { 0 , 1 } * + 1 and = <p(xi,x2,... ,xk) then in 
comparison with the condition (2.2) we have xk+i = x\ + ip(0,x2,.. .,xk), 
from where 
(а) x-i = <p(0, x 2 , . . . , xk) + xk+1. 
We shall prove that the graphs Bk[<p) and Bk[(p\ are isomorphic. To this 
purpose let us notice that each circuit of the graph Bk[<p] represented by 
the sequence of the vertices (v , v)v determines the finite binary sequence 
c j , . . . , cp such that 

(б) v = ( c i , . . . , c f c ) , 

( c ) ci+k = <p(ci,...,ci+k-i), for i e { l , . . . , p -

where p is a number of the elements of the sequence (v,v)v. Now, let us 
consider the sequence c p , . . . , c\ and notice that it corresponds with the 
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sequence (u, of the vertices of a certain circuit of Bk[<f\. According to 
the conditions (a) and (b) we have 

(d) Ci = • - ,Cj+ i ) . 

Hence, the transformation z*: {0, —• {0, 1}* satisfying the condition 

states an isomorphism of the graphs Bk[f ] and Bk[<p]. It follows that the 
transformation i: 

{0, l } f c _ 1 {0, l } * - 1 defined by the equality 

l ' (X i , . . . , I fc - l ) = {xk- i , • • 

states an isomorphism of the relations and (J)^. 

4.5. EXAMPLE. For k = 5 and the functions <p and <p defined as follows: 

tp(xi, . . . ,X5) = Xj + X2X3X4X5 + 22X3X4X5 

tp(xi,. . . , x 5 ) = <p(xj, . . , ,X5 ) + X2X3X4 + X3X4X5, we have 
' ( 0 0 0 1 , 0 0 0 1 ) , 1 

( 0 0 0 1 , 1 1 1 1 ) , 
( 1 1 1 1 , 1 1 1 1 ) , 

= = ( 1 1 1 1 , 0 0 0 1 ) , . 
( 1 1 1 1 , 1 0 0 0 ) , 
( 1 0 0 0 , 1 1 1 1 ) , 
( 1 0 0 0 , 1 0 0 0 ) 

It means that the sets (£(<p), A ) and (£(<p), ) are isomorphic. 

¥>||{0001} V||{iiii} <?||{iooo} ¥>||{oooi} VlUmi} VlUiooo} 

V||{0001,1111} V||{1111,1000} ¥>||{oooi,mi} V||{ini,iooo} 

Figure 4.1. The sets ) and ( £ ( £ ) , f r o m Example 4.5. 

The above example shows that may exist feedback functions with the 
same independent splits relation. We can state a transformation of a feed-
back function which preserves its independent splits relation. 



Lower bounds of a feedback function 197 

4.6 . THEOREM. For each X C {0 , L } * - 1 \ TR{<p) we have 

<8>„I|X=<8>„ i f f TR{<ptlx} = TR{<p}. 

P r o o f . The proof of the necessity is obvious. Let us suppose that 
TR{<p\\x} = TR{<p}. If AT is nonempty then there exists a nonempty subset 
U of X such that <p <P\\u- By Corollary 3.3 we obtain C (8)V||l/. On 
the other hand we have <p\\x <P\\Ur thereby Q This implies, 
because of TR{<p\\x} — TR{ip}, the equality = . • 
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