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LOWER BOUNDS OF A FEEDBACK FUNCTION

1. Introduction

The feedback functions and the corresponding recurring sequences —
having numerous applications, for instance in coding theory, in cryptography
or in several branches of electrical engineering — have been studied with
methods of linear algebra, ideal theory or formal power series [1,3,4]. In
1963 Yoeli [9] published two theorems dealing with sequences joining and
a sequence splitting. This has led to a design of algorithms for finding the
Hamiltonian circuits in a de Bruijn graph (Cf. [2,8,11]).

In more general case, the paper [9] yields a tool for studying connections
between the feedback functions and allows us to describe them as the ele-
ments of a partially ordered set. For a study of this order it is convenient
to investigate the families of upper bounds and lower bounds of a feedback
function.

Here we present properties of the families of the lower bounds of feedback
functions. Each of such family forms an upper semilattice. It is completely
described by a binary relation, called the independent splits relation, closely
related to the interlacing relation defined in [5]. We study the independent
splits relations and isomorphisms of the semilattices mentioned above. For
instance, an isomorphism of an independent splits relation determines an iso-
morphism of the corresponding semilattices, and conversely. We shall show
several examples of such isomorphisms: in particular, upper semilattices are
isomorphic if the corresponding independent splits relations are identical.
We shall describe a transformation of a feedback function which preserves
its independent splits relation.

2. An order in the family of feedback functions
Let F* be the family of total functions ¢: {0,1}* — {0,1} such that

(2.1) (1,22, ..,2k) # 0(Z1,22,...,Zk),
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for each (zy,...,zx) € {0,1}%, ( 2, = z; + 1 in GF(2) ). Each function
from F* will be called a feedback function. Note that ¢:{0,1}* — {0,1} is
a feedback function iff

(2.2) (21,22, ..,2k) = 21 + @(0,22,...,7k),

where + is the addition in GF(2). Then for ¢ € F¥ and X C {0,1}*~! the
function @) x, defined by

(23) (P”X(Ilv:t%--"zk) = ‘p(xl,l‘?a"'axk) + XX(xZa- . 'vzk)

(xx is the characteristic function of X), is the feedback function too. This
implies that for an arbitrary fixed § € F* we have

(2.4) Fr={x : X C {0,1}1}.

Figure 2.1. The de Bruijn graphs: (a) of order 2, (b) of order 3.

There exists an interesting connection between the feedback functions
and subgraphs of the de Bruijn graph.

The de Bruijn graph of order k is a directed graph B, that consists of the
elements of {0, 1}* as the vertices, where each edge (v;, v2, . . ., vx) is followed
by two edges: (v,, ..., vk, 0) and (v,, ..., vk, 1). Each feedback function ¢ de-
termines a maximal subgraph By[p] of B composed of disjoint directed cir-
cuits in which a vertex v = (vy,...,v,) is followed by v’ = (vs, ..., vk, p(v)).
The graph B[] is said to be the factor of By corresponding to .

Let v' and v" be vertices of the same directed circuits of Bi[p] with
@ € Fk. By (v',v"), we denote the sequence of the consequtive vertices of
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the circuit from v’ to v”. (If v/ = v" then (v',v'), contains all vertices of
the circuit and v’ appears at the beginning and at the end of the sequence.)
Moreover, (v, v"), and (v',v"),, denote the sequences which can be obtained
from (v',v"), by deleting v' and v", respectively. In particular, each of the
sequences (v, v'), and (v',v'),, consists of all vertices of the circuit and each

of them appears once.

e
»001 100 »001

o1l $———————110 one——————
s L '/. .

Figure 2.2. The factors B3[d] and Bs[¥)(01}] with ¥(z1,22,23) = z1.

2.1. THEOREM. [9] Let ¢ € F* and v = (vy,vs,...,vx) € {0,1}%. If
b = (91,v2,...,0x) does not occur in (v,v), then for u = (vy,...,vx) we
have
(vav>¢||(..) = (9, i’)w(v’v)wv

while (v',v") g, (., = (v, v")y iff neither v nor v occurs in (v',v'),, for v' €

{0,1}¥\ {v, 9}. .

2.2. COROLLARY. Let ¢ € F*¥ and v = (v,v,...,vx) € {0,1}%. If
v = (01,v2,...,Vk) occurs in (v,v), then for u = (vy,...,vx) the sequences
(v,9) gy (u, and (9, )y, do not have common elements and

(v,0)p = (vvv)‘Pll(u)(ﬁv f’)wu(u)
while (v',v") g (., = (v', V') iff neither v nor & occurs in (v',v'),, for o' €
{0,1}* \ {v, 8}. .
Let — C F* x F* be the binary relation such that ¢ — 1 iff there

exists e = (ey,...,ex—1) € {0,1}¥~1 for which ¥ = ¢y} and the vertices
ey = (0,€e1,...,ex_1) and ey = (1,e1,...,€ex_1) are in different circuits
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of Bi[p]. Let = be the reflexive and transitive closure of —. Then = is a
partial order in F*.

The most interesting for applications is the family of feedback functions
which form the maximal elements of =. They correspond to the factors
which form the Hamiltonian circuits in By ([2]), so they are said to be the
Hamiltonian functions and the family of such functions is denoted by H*.

Beside H*, there exists another interesting family of feedback functions
— the minimal elements of =. They are called locally reducible feedback
functions as forming a “bridge” between the families #¥~! and F*, because
each circuit of the factor of a locally reducible feedback function may be
reduced to a circuit of Bx_y, [10]: The family of all locally reducible feedback
functions is denoted by LRF.

Yo Y1 Y2 ¥3 @
00 0 0 1 1
01 0 1 0 1
10 1 1 0 0 @.@
11 1 0 1 0 @
Table 2.1. The feedback functions Figure 2.3. The diagram of = in F?
from F2
Yo P1 Y2 ¥3 P4 P5 Pe P71 P8 P9 1o P11 P12 P13 P14 P15
000 0 0 0 0 0 0 O O 1 1 1 1 1 1 1 1
601 0 0 0 01 1.1 1 0 0 0 O 1 1 1 1
010 0 0 1t 1 0 0O 1 1 0 o0 1 1 0 0 1 1
011 0 1 0 1 0 1 0 1 O 1 O 1 0 1 0 1
10 1 1 1 1 1 1 1 1 0 0 O O O O O O
1001 1.1 1 0 0 O O 1 1 1 1 0 0 0 O
o1 1 0 o0 1 1 0 0 1 1 0 O 1 1 0 0
1T 1 0 1 6 1+ 01 0 1 0 1 O 1 0 1 0

Table 2.2. The feedback functions from F3.

For each feedback function ¢ € F* let us set L{p) = {$: ¢ > p}. We
shall study the partially ordered set (L{yp), > ).

2.3. THEOREM. Let ¢ € F*. The poset (L{p),= ) is an upper semilat-
tice.

Proof. For arbitrary functions ¢, and ¢, from L(yp), if o1 = ¢ x,
and @2 = @|x, then for each U C X; and for each V C X, we have
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Figure 2.4. The diagram of = in F3

v € L{p) and @y € L{yp). In particular ¢ x,nx, € L{p), therefore
Y1V =9Ix,nX,- =
The semilattice (E(go), = ) may be extended to a lattice as follows. Let
us set
L*(p) = {C(go), if (L(p),= ) is a lattice,
L{p)U {0}, otherwise,

where 0 denotes any object which is not a feedback function, and assume
that 0 = 0 and 0 = 9, if ¥ € L{p).

2.4. THEOREM. The poset (L*(p), = ) is a lattice.

Proof. If there exists i such that 3 5 ¢, and ¥ = @2, and if ¥ = ¢ x,
and ¢ = @) x, then ¢1 A p2 = Y} x,nx,- Otherwise we set p; Ay = 0. =

TS

Pll{10} #|1{00} Pi{11} Pli{o1}

T AL THAN

#|1{00,10} |1{10,11} #|1{00,11} #11{00,01} #l1{o1,11}

I N

®lI{00,10,11} ®|1{00,01,11}

Figure 2.5. The poset (C(gp), 4 ) for ¢ = p11.
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3. The independent splits relation

It is convenient to analyse the relation = with the help of a relation from
{0,1}*-1 x {0,1}*~1. This relation deals with the vertices of the factor of a
feedback function ¢ each of which may cause splitting one of the circuits of
Bi[p). Elements u and v of {0,1}*~! will be in the relation iff the change
of ¢ at u(g) and u(y) leaves the vertices v(g) and v(;) in the same circuit of
Bi[@){u}]- It allows us to generalize Corollary 2.2 for more arguments.

The independent splits relation for ¢ € F* is a binary relation @, C
{0,1}%=1 x {0,1}*~! such that for arbitrary elements u and v of {0,1}*~!
one of the following conditions holds:

(3.1) (u,u) € @y iff (w(0), %0))e = (%0)> %(1)) (1), U0) s
(3.2) if u # v then (u,v) € Q, iff (u,u) € Q, and (v,v) € @, and either
vy and v(y) do not occur in (u(), u(g)),, or the sequence (u(), %)),
has one of the form
(o) o)) = (20)5 90)) o ((0)» (1)) o (2(1)s 2(1) ) (1) (0) )
(o), 1oy ) = (%(0)> 2(1)) o (¥(1)5 2(0) Do ((0) s (1) Do (B(1) » U0 )0
(u0), wo))o = (%(0)s u(1))e(u(1), ¥0)) (U0, V1) Yo(¥(1)» (o) )
(o), wo))e = (%0)> ¥(1))e(¥(1) ¥(1) ) (¥(1) ¥(0) ) (V(0) » U(0) ) -

Note that if (u,v) € @, and the vertices u(o), u(1), v(0), (1) are in the
same circuit of Bi[p] then they have to keep the order as in Figure 3.1. The
condition (3.1) and Theorem 2.1 imply

(3.3) M, =0 iff pelRr
u(0) o e U(a) u(o) 8" e (1)
i j | ;
u(1)' o' V(a) Y(a)'w, ¢ (a)
Figure 3.1.

The full characterization of the independent splits relations needs the
confrontation them with the other relations, called the interlacing relations,
defined and investigated in [5,6,7].

The interlacing relation of ¢ € F* is the relation ®, C {0,1}*! x
{0, 1}*1 such that (z,y) € Q. iff the sequence (2(0), Z(0)) has one of the
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form:

(2(0),2(0))e = ((0), Y(0))o(H(0)» Z(1)) (2 (1) Y1) oY1) s Z(0) o
or
(2(0), Z(0))o = (2(0), ¥(1))o(¥(1)> Z(1)) (2 (1)> Y(0) o (¥(0)> Z(0) ) -
Such a relation is irreflexive and symmetric. The connections between
@, and &), are the best evident for the Hamiltonian functions: if w € H*
then

®w U ®w = {0, l}k_l X {0’ l}k_l’
while ®, N {0, = . In the general case we have

Qe U®y = TR{p} x TR{p},

with TR{p} = {e € {0,1}*! : (e,€) € ®,}. (We have TR{p} = 0 for
0 € LRF as well as TR{w} = {0,1}*"! for w € H*.)

The difference between the relations &), and @), can be noticed if we
observe the lines which join the vertices z(gy with z(;) as well as y(o) with
y(1): if they are crossing then (z,y) € @, otherwise (z,y) € . (If not all
of the vertices 7o), T(1), Y(0), Y(1) are in the same circuit then (z,y) € @,.)

~~~~~~~

.................

Figure 3.2.

3.1. THEOREM. Let ¢ € F*. For each X C {0,1}*~! we have
pix = ff XXX CQ,

Proof. For X = 0 the proof is a direct consequence of the definition
of the relation <. Let us assume that X # 0 and let {X;,...,Xnm} be
a partition of X which corresponds with the family {C;,...,Cy} of the
vertex disjoint circuits of By[p] such that for each z € X and for each

i€ {1,...,m}
(a) T € X; iff 2oy and z(;) are the vertices of C;.
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Necessity. Suppose that ¢y x = . Because of (a) each element z of X
satisfies the condition

(Z(0)» Z(0)) o = (Z(0)» T(1))o(Z(1)» Z(0)) 0>

which means that (z,z) € . From this and the definition of { X;,..., X, }
it follows that for every X € {X},..., X} and £ € X we have (z,%) € @,
ifze X\ f(_. Let X € {X1,...,Xm}. If | X| > 1 then for arbitrary elements
z and & of X we have

() Pyx = Pl{z.5} = Pz} — P

The above condition means that the following circuits (z(g), 1:(0))%”:'” and
(2(1)a$(1))w,,{,,,) of Bi[p|(z,z}] are vertex disjoint and either the vertex
Z(o) belongs to one of them and the vertex Z(;) belongs to none of them or
conversely. (Otherwise the relation Cnx = ¢ would not hold.) On the other

hand, there exists a circuit C € {C,...,Cn} in Bi[g] containing each of
the vertices: z(q), 2(1), Z(0), Z(1)- If (7, %) & @, then it would exist a € {0,1;
such that
(2(0)5 Z(0)) o = (Z(0)1 E(a))(E(a)s 2(1)) (2 (1), Z(2) ) (F(a) 2(0) ) -
Then
(2(0)s 2(0)) sy = (21)s Z(a))e(E(a)s Z(0))
(2(1)>2(1))enisy = (20)r F(a))o(E(a)r T(1))eo

and next

(2(0)> Z(0))enie.y = (2(1)s Z(@)e(E(a)> (1)) 0 (2(0)5 E(a))o(E(a) Z(0) ) -
The last equality disagree with the disjointness of the circuits

($(0)7$(0)>w"{_,,;) and (r(l),z(l))¢ll(”) of Bk[(p“{,vi}]. Thereby each pair of
elements of X is in {),.

Sufficiency. Suppose that X x X C @, and let X € {X,,...,X}. For
each z € X let us set X(z) = {£ € X : (z,%) € ®,}. If X(z) = {z} then
Py %(z) — ¥> because of Theorem 2.1. If |X(z)| > 1 then for # € X(z)\ {z}
we have

(2(0)> Z(0)) o = (2(0)» E(a))o(E(a)> Z(a))w(E(a), T(1))w(Z(1)> Z(0))
or

(2(0)»2(0)) e = (2(0), T(1)) (T (1) E(a))0(E(a)s Z(a) }o(Z(a) > T(0))o-
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Then

(I(O)v:’:(O))sp"(,) = (z(1),Z(0)) ¢

(za) z())eniey = (20)) Z(a))o(E(a) Z(@))o(E(a), T(1)) o
or

(20), Z(0))one) = (2(1)s Z(0))e(E(a)s Ea))o(E(a)s Z(0) o

(Z(1)> Z1))eyqey = (Z(0)1 T(1)) s

respectively. This means that ¢z} — ¢ and Qg(., = Oy \ ({(=,2) :
i € X(2)}U{(,z): % € X(z)}). It follows from the definition of = that
PIx = P .

3.2. COROLLARY. Let ¢ € F*. If X C {0,1}*! then pyx € LR* iff X
is @ mazimal set such that X x X C @©,. ]

3.3. COROLLARY. Let ¢ € F¥ and X C {0,1}F71. If oyx = ¢ then
®<pux C @@y- .

Theorem 3.1 gives an effective method to estabish all elements of the
family £(y) and it describes its structure determined by =.

3.4. EXAMPLE. For the feedback function ¢ = ¢;;, where ¢,; is defined
in Table 2.2, we obtain

(000, 000),, = 001,010, 101,011,111,110, 100, 000.

Then the matrix which represents the characteristic function of {0, has the
form
00 01 10 11
00
01
10
11

[y G S SN

1
0
1
1

— et ek ek

1
1
0
1

So, there exist two different maximal sets mentioned in Corollary 3.2, namely
{00, 10, 11} and {00,01, 11}. Then WII{OO,IO,II} = @0 but #)1{00,01,11} = ©6-
(Note that the relations @,, and @, are empty.) The poset (L{p),> ),
the subset of (F*,= ) is presented in Figure 2.5.

3.5. COROLLARY. Let ¢ € F*. The poset (L{p),=» ) is a lattice iff @,
is an equivalence relation. ]
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4. An isomorphism of the posets (L(y),> )
Let » € F*. We shall state all functions ¢ € F* for which the posets
(L{(p),= ) and (L(@),~ ) are isomorphic.

4.1. THEOREM. Let ¢ € F*. For every function T € F* the posets
(L{p),= ) and (L(r),= ) are isomorphic iff the relations @, and Q.
are isomorphic.

Proof. If £{p) = {¢} then the posets (L({p),= ) and (L(r),= ) are
isomorphic iff one of the equivalent conditions holds:
(a) L(r) = {7},
(b) T € LRF,

(c) ®p =0 =O-

The condition (c) means that the relations (), and ), are isomorphic.

If £{p) contains the functions different from ¢ then, according to The-
orem 3.1, each element of the family £(y) has the form ¢ x, where X is a
subset of {0,1}*! such that the relation (), restricted to X is an equiva-
lence relation.

Necessity. If the posets (L{p),= ) and (L(r),=) are isomorphic and
the transformation I: £{@) — L(r) is an isomorphism then for each X C
{0,1}¥~1 such that ¢y x € L(p) and @yx = ¢ there exists X C {0,1}*~!
satisfying the following conditions:

Tx =I(gyx) and 7>,
and for every £ € X it is true that
Plx — Pilx\{=}
and there exists & € X satisfying the conditions
Tixvz = Henxey) and 7 = 7yxy )

Then every transformation 7: {0,1}¥~! — {0,1}*~? such that i(z) = Z is an
isomorphism of the relations @, and ;.

Sufficiency. If i: {0,1}¥~1 — {0,1}*~1 is an isomorphism of the relations
®, and @, then for every X C {0,1}*~! such that ¢ x € L{y) the relation
®, restricted to X = {i(z) : z € X} is an equivalence relation. Therefore
Ty x € £(7) and 7 3 = 7 and it is sufficient to set

I(pyx) = X
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Then I is an isomorphism of the sets (L{p),= ) and (L(r),> ). .

4.2. COROLLARY. Let ¢ € F* and X C {0,1}*71. If oyx = ¢ then for
every function 7 € F*, for which there ezists an isomorphism i: {0,1}*~! —
{0,1}*-1 of the relations @, and ., the following conditions hold:
(@) mixy > 7,
(b) the relations @y, and Qr,,x, are isomorphic,
(¢) the posets (L{pyx),= ) and (L(Tjix)),~> ) are isomorphic. .

4.3. ExaMpPLE. For arbitrary function ¢ € F* the transformation
i:{0,1}*~1 = {0,1}*-! defined by the equality

z'(zl,.. -y-tk-l) = (2_71,.. .,5:,‘_1)
is an isomorphism of the relations (9, and (g, where
P(z1,22,...,2k) = (21,22, ..., Ek).
So, it transforms an arbitrary sequence (cj, ¢z, ..., ck,cx41) € {0,1}**!into
the sequence (¢1,¢3,. ..,k Ckt1). If cx41 = P(c1,¢2,...,¢k) then
Ek+1 =1 + ¢(C1,62,. ..,Ck) = ¢(El,62,.. .,Ck) = (p((_ll,éz,.. .,(_:k).

It means that the graphs Bi[p] and Bi[@] are isomorphic, so the relations
®, and @y are isomorphic too.

4.4. EXAMPLE. For arbitrary function ¢ € F* let us consider a function
@ such that

P(Z1,Z2y--yZk) = @(T1,Thy. -, T2)-

If (z1,22,.-+,Zk,Zk41) € {0,1}**! and zp4y = @(21,22,...,7x) then in
comparison with the condition (2.2) we have zx41 = z; + (0, 22, ..., 2%),
from where

(6) 21=9(0,22,...,2k) + Thy1.

We shall prove that the graphs Bi[yp] and Bg[@] are isomorphic. To this
purpose let us notice that each circuit of the graph Bj[y] represented by
the sequence of the vertices (v,v), determines the finite binary sequence
€1,...,¢p such that

(b) v= (cl,“'ack),
(¢) citk =¢(Ciy.. rCitk-1),fori € {1,...,p -k},

where p is a number of the elements of the sequence (v,v),. Now, let us
consider the sequence cp,...,c; and notice that it corresponds with the
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sequence (u,u), of the vertices of a certain circuit of Bi[@]. According to
the conditions (a) and (b) we have
(d)  ci = P(Civks Cith=1s--1Cix1)

Hence, the transformation i*: {0,1}* — {0, 1}* satisfying the condition

i*(ery. o ¢k) = (€pye vy Cpki1)
states an isomorphism of the graphs Bi[¢] and Bi[@]. It follows that the
transformation i: {0,1}*~! — {0,1}*~1 defined by the equality

(21,3 Th-1) = (Th=1,---,71)
states an isomorphism of the relations (), and ().

4.5. EXAMPLE. For k£ = 5 and the functions ¢ and ¢ defined as follows:

P(T1,...,25) = 1 + T2T324T5 + TZ3T4Ts
P(z1,..-,25) = @(x1,...,T5) + ToT324 + T3T4Ts,

we have
( (0001, 0001),
(0001,1111),
(1111,1111),
Wy = Wy = ﬁ (1111,0001),
(1111,1000),
(1000,1111),
\ (1000, 1000)

Ve

It means that the sets (£(p), = ) and (L(p),> ) are isomorphic.

N TN

Pl1{0001} Pl{1111} Pll{1000}  ¥|{0001} Pl{1111} P|1{1000}

NSNS/ NN/

¥|1{o001,1111} #ll{1111,1000} Pii{0001,1111}  PlI{1111,1000}
Figure 4.1. The sets (L(cp),—'» ) and (C((p),—'») from Example 4.5.
The above example shows that may exist feedback functions with the

same independent splits relation. We can state a transformation of a feed-
back function which preserves its independent splits relation.
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4.6. THEOREM. For each X C {0,1}*~1\ TR{¢} we have
@v’nx = ®¢ iff TR{‘PIIX} = TR{S"}’

Proof. The proof of the necessity is obvious. Let us suppose that
TR{¢yx} = TR{p}. If X is nonempty then there exists a nonempty subset
U of X such that ¢ = @)y. By Corollary 3.3 we obtain {0, C @, - On
the other hand we have yx = @yu, thereby @y, x € @y, - This implies,
because of TR{p| x} = TR{p}, the equality @, = @y, x - "
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