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METRIC SPACES OVER ORDERED FIELDS

1. Introduction

If F is an ordered field, an F-metric space is a set X together with
a metric p : X X X — F. This concept appears to be an interesting
generalization of the classical real metric space. An example of a nonclassi-
cal F-metric space is the hyperreal field *R studied in nonstandard analy-
sis [2,7,10,11,13,14]. Besides having mathematical interest, F-metric spaces
may have important applications. For example, nonstandard Hilbert spaces,
which are a specific class of F-metric spaces, have been recently applied to
studies in quantum field theory and statistical physics [1,4,6].

As one would expect, an F-metric space shares some of the properties
of a real metric space and does not share other properties. In this paper we
study some of these shared and unshared properties. Some of our proofs are
similar to the classical proofs. However, a general F-metric space does not
have two of the important properties of a real metric space. One of these
properties is first countability and the other is the Dedekind completeness
of R. Because of this, new techniques must be used for some proofs. It
turns out that for an F-metric space there exists a cardinal « such that the
intersection of a family, with cardinality less than a, of open sets is open.
In general, @ may be an uncountable cardinal so this results in a new type
of topological space that we call an a-topological space.

We begin with a study of a-topological spaces and the notion of conver-
gence in terms of a-nets. The dual concept of a-compactness is introduced
and properties of a-compact sets are studied. We next consider the comple-
tion of an ordered field. If F is an ordered field and F* is its set of positive
elements, an unbounded subset I of F'* is called cofinal. If I is a cofinal
set of smallest ordinality (3, then I is minimal cofinal and 3 is the cofinal-
ity of F. The I-completion F of F is constructed and it is shown that F
is an ordered field. We then study properties of an F-metric space where
F has uncountable cofinality. In general, it is shown that such spaces are
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non-metrizable, 0-dimensional and nonseparable. It is also shown that they
are compact only if they have finite cardinality.

The next to last section is devoted to I-complete F-metric spaces.
Generalizations of Cantor’s characterization of complete metric spaces and
the Baire category theorem are proved. A generalization of the uniform
boundedness principle and other corollaries of the generalized Baire cat-
egory theorem are given. The final section discusses some miscellaneous
results and presents some open problems.

2. a-Topologies

This section considers a special type of topology called an a-topology.
As we shall see in our later work, a metric space over an ordered field results
in an a-topology.

Let J be a topology on a set X and let a be an infinite cardinal. We call
J an a-topology if whenever A; € J, i € A, where card(A) < a, we have
(N A; € J. Thus, in an a-topology, the intersection of fewer than a open sets
is open. If J is an a-topology for X, we call (X, J) an a-topological space.
Of course, in an a-topological space the union of fewer than « closed sets
is closed. Notice that an Rg-topological space is just an ordinary topological
space, while for @ > Ry we have a restrictive condition. In the sequel, we
assume that our topological spaces are Hausdorff.

An o-directed set is a poset A such that A’ has an upper bound
whenever A’ C A with card(A’) < a. An a-net in X is a function f: A —
X where A is an a-directed set. Notice that an Ro-directed set is an ordinary
directed set and an Rp-net is an ordinary net. We usually denote an a-net
in X by (z;: ¢ € A) and use the usual net terminology for a-nets (3,9]. We
denote the set of neighbourhoods of a point z by M(z). Many of the proofs
in this section are similar to the standard proofs except that extra attention
must be given to a-conditions.

THEOREM 2.1. If A is a subset of an a-topological space, then = € A if
and only if there erists an a-net in A converging to z.

Proof. Suppose z € A and let {U;: i € A} = N(z). Direct A by i < j
if U; C Ui If A’ C A with card(A') < a, we have [, ,, Ui € 9(z). Hence
there exists a j € A such that ¢ < j for every i € A’ so A is an a-directed
set. Since z € A, U;[) A # 0 for every i € A. Choosing z; € U;[) A, we have
an a-net (z; : i € A)in A converging to z. Conversely, suppose (z;: I € A)
is an a-net in A and z; — z. Then z; is eventually in any neighbourhood of
z. Hence, any neighbourhood of z intersects A, so z € A. »

COROLLARY 2.2. A subset A of an a-topological space is closed if and
only if A contains the limits of all converging a-nets in A.
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COROLLARY 2.3. A subset A of an a-topological space is open if and only
if every a-net converging to a point in A is eventually in A.

COROLLARY 2.4. Let X and Y be a-topological spaces. Then f : X — Y
is continuous if and only if for every converging a-net z; — z we have

f(zi) = f(z).

Let A', A be a-directed sets and let u : A’ — A. Then u is finalizing if
for every ¢ € A, u(j) > i eventually. An a-subnet of an a-net (z;: i € A)
is an a-net (z4(;): j € A') where u : A’ — A is finalizing. A subset A’
of a poset A is cofinal if for every i € A there exists j € A’ such that
j > i. Notice that if A is an a-directed set and A’ is cofinal in A, then A’
is an a-directed set. If (z;: i € A) is an a-net and A’ C A is cofinal, then
(z;: j € A")is an a-subnet of (z; : ¢ € A). Indeed, define u: A" - A
by u(j) = j. Then u is finalizing and (z; : j € A') = (zyy): j € A").
As usual, z is a cluster point of an a-net z; if for every N € MN(z),
z; € N frequently. The proof of the next lemma is the same as the standard
proof.

LEMMA 2.5. (a) If an a-net z; is eventually in a set A then every a-
subnet of z; is eventually in A. (b) Every a-subnet of a converging a-net
converges to the same limit as the a-net. (c) If an a-net is eventually in a
set A, every cluster point of the a-net is in A.

THEOREM 2.6. A point z is a cluster point of an a-net z; in an a-
topological space if and only if x; has an a-subnet converging to .

Proof. If z is not a cluster point of z,, then there exists an N € N(z)
such that z; is not frequently in N. Hence, z; is eventually in N¢ and by
Lemma 2.5(a) so is every a-subnet of z;. Hence, no a-subnet of z; can
converge to z. Conversely, let z be a cluster point of (z;: i € A). Let

A ={(i,N): i€ A, z; € N € W(z)}

and define (¢, N) < (j,M)if i < jand M C N. To show that A’ is an
a-directed set, let {(j,N;): j € I'} be a subset of A’ with card(T') < a.
Let k' € A be an upper bound for {j : j € I'} and let M = (), N;.
Then M € M(z) and since z is a cluster point of z;, there exists a k € A
such that & > &’ and zx € M. Hence, (k,M) € A’ and (k, M) is an upper
bound for {(j,N;): j € T'}. Define u : A" — A by u(i, N) = i. To show
that u is finalizing, let j € A be given and let (k,M) € A’ satisfy k£ > j.
Then for (i, N) € A’ with (i,N) > (k,M) we have u(i, N) > j. Hence,
(24 ¢ i € A") is an a-subnet of (z; : 7 € A). To show that z,;) — z, let
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M € M(z). Then there exists an z;, j € A, such that z; € M. For ' € A’
with

= (i,N) > (j,M)
we have z,;y € M. m

Corresponding to the notion of an a-topology there is dual notion of
a-compactness. Let A C X where X is an a-topological space. We say
that A is a-compact if for any open cover A C |J;c 4 Ei, there is an open
subcover A C UJ;c 4 Ei, where A" € A and card(A’) < a. We call such
a subcover an a-subcover. Of course, an Rg-compact set is an ordinary
compact set. Notice that if card(4) < a, then A is a-compact. We now
show that a-compact sets have some of the usual properties of ordinary
compact sets.

THEOREM 2.7. If A and B are disjoint a-compact sets in an a-topological
space, then there ezist open sets U,V such that A C U, B C V, and
Unv=_90.

Proof. This is similar to the standard proof. m
COROLLARY 2.8. An a-compact subset of an a-topological space s closed.

The usual proof shows that a closed subset of an a-compact set is a-
compact and the continuous image of an a-compact set is a-compact. A fam-
ily of sets {A; : i € A} has the a-intersection property if ();c , Ai# 0
for every A’ C A with card(A’) < a. The proof of the next result is similar
to the standard proof.

THEOREM 2.9. A subset A of an a-topological space is a-compact if and
only if for any family of closed subsets {A; : i € A} of A with the «-
intersection property we have NA; # 0.

The next result gives a characterization of a-compactness.

THEOREM 2.10. A subset A of an a-topological space ts a-compact if and
only if every a-net in A has a subnet converging to a point in A.

Proof. Let A be a-compact and let (z;: i € A) be an a-net in A. For
each i € A, let T(:) = {z;: j>i}. Then {T'(i): i € A} is a family of
closed subsets of A with the a-intersection property. Indeed, let A’ C A with
card(A') < a and let k € A be an upper bound for A’. Then T'(k) C T(z) for
every i € A’ and T(k) # 0. By Theorem 2.9, ;¢ , T(:) # 0. If z € N T(2),
then z is a cluster point of z; so by Theorem 2.6 there exists an a-subnet of
z; converging to x. Conversely, suppose every a-net in A has an a-subnet
converging to a point in A. Let & be a family of closed subsets of A with
the a-intersection property. Let A be the family of sets of the form ﬂjEI‘ B;
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where B; € & and card(I') < a. Since a is an infinite cardinal, A is a
family of closed sets with the a-intersection property. For i,j € A, define
1t < jif j Ci. To show that A is an a-directed set, suppose A’ C A with
tard(A’') < @. Then k = ;¢ 1 € Aand i < k for all i € A’. For each
i € A, choose r; € i. Then (z;: i € A)is a net in A and by Theorem 2.6,
¢, has a cluster point € A. Since z is a cluster point of z;, z € T(7) for
every i € A. But T(i) C ¢ and therefore z € i for every i € A. It follows
that 2 € (1S. =

We conclude this section with some results concerning the cardinality of
neighbourhood bases and separability.

THEOREM 2.11. Let X be an a-topological space and let 3 be a cardinal
with B < «. If £ € X has the property that {z} is not open, then there does
not erist a neighbourhood basis of z with cardinality 3.

Proof. Suppose z has a neighbourhood basis {A; : i € T} where
card(I') = B < «. Since X is an a-topological space, A = [ 4; is a neigh-
bourhood of z. Since {z} is not open, there exists a y € A\ {z}. The
Hausdorff postulate implies the existence of an open set B such that z € B
and y ¢ B. Then AN B is a neighbourhood of z that is strictly contained in
every A, ¢ € I'. This is a contradiction so there is no neighbourhood basis
of ¢ with cardinality 5. =

COROLLARY 2.12. Let X be an a-topological space where o is uncount-
able. If there erists an x € X such that {z} is not open, then X is not first
countable.

For a cardinal 3, we say that an a-topological space X is J-separable
if there exists a set A C X such that card(A) < # and 4 = X. Of course,
Rg-separable is the usual notion of separable.

THEOREM 2.13. Let X be an a-topological space and let 3 be a cardinal
with § < a. Then X is B-separable if and only if card(X) < B and X is
discrete.

Proof. If card(X) < §, then clearly X is 3-separable. Conversely, sup-
pose X is (-separable and let {z; : i € I'}, card(I') < B, be dense in X.
Suppose there exists an £ € X such that z # z; for all i € I'. By the
Hausdorff postulate there exist open sets A;, i € I, such that 2 € A; and
r; € A;. Since 3 < «, the set A = [ A; is the neighbourhood of z and
r; € A for all 7 € T'. This contradicts the denseness of {z; : ¢ € I'}. Hence,
X = {z;: i € T} so card(X) < . Now any subset B C X has the form
B = U;er{zi} where I’ C T so card(I"') < B. Since singleton sets are closed
and 3 < «, B is closed. Hence, X is discrete. m
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COROLLARY 2.24. Let X be an a-topological space where o is uncount-
able. Then X is separable if and only if card(X ) < Ry and X 1is discrete.

3. Completion of ordered fields

Let F be an ordered field and let F'* be its set of positive elements. If
I C F* is a cofinal set of smallest ordinality 3, then I is minimal cofinal
and [ is the cofinality of F. When we consider F' as a topological space,
we always assume the topology is the order topology. For I C F* cofinal,
an /-sequence in a set S is a map ¢ — ¢; from [ into S. Notice that if
I is minimal cofinal with cardinality «, then I is an a-directed set and an
I-sequence is an a-net. In the sequel, I will always denote a cofinal subset
of Ft,

An I-sequence a; in F converges toa € F if for any ¢ € F'* there exists
an n(e) € I such that |a; — af < ¢ for every © > n(e¢). An [-sequence in F
is null if it converges to 0. An [-sequence a; in F is Cauchy if for every
£ € F't there exists an n(e) € I such that |a; — a;| < ¢ for every i,j > n(¢).
We say that F' is /-complete if every Cauchy /-sequence in F converges.
Denoting the set of null and Cauchy I-sequences by M and €, respectively,
it is clear that 91 C €. For (a;), (b;) € €, we define (a;) + (b;) = (a; + b;) and
(a;)(b;) = (a;b;). The proof of the following lemma is classical.

LEMMA 3.1. Under the above definitions of sum and product, € is a
commutative ring with unit and N is a mazrimal ideal in €.

Let F denote the quotient ring €/M. Since M is a maximal ideal, it is
well known that F is a field. We denote the elements of F' by @ = (a;) + M.
If a € F, we use the notation 7(a) = (a,a,...) + M. We define the set of

positive elements F C F by
F'={aeF:a#7(0),a=(a;)+ N, a; >0foralliel}.

The proof of the next theorem is similar to the proof of the classical imbed-
ding theorem of the rationals into the reals.

THEOREM 3.2. (a) The field F with positive cone F' is an ordered field.
(b) The map 7 : F — F is an order-preserving isomorphism of F into F.
(c) The range of T is dense in the order topology of F. (d) If @ = (a;)+M €
F, then lim 7(q;) = @.

It follows from Theorem 3.2 that we can assume that F is a dense subset
of F. Moreover, I is then a cofinal subset of F. The proof of the next result
is different than the usual proof for R since the latter uses the well-ordering
of N. A longer proof of the next result from a different viewpoint is given

in [12].



Metric spaces over ordered fields 171

THEOREM 3.3. The field F is I-complete.

Proof. Let @; be a Cauchy I-sequence in F. For any i € I there exists
an n(i/) € I such that n; > ¢ and p,q > n(7) implies that |a, — @,] < 1/1.
By the denseness of F in F, there exist a; € F such that |a; — @;| < 1/i
for every i € I. Let ¢ € F* and choose a j € I such that 1/ < ¢/3. If
P.q 2 n(j), then

- - - - 1 1 1
lap_aql5|ap‘ap|+|ap"aql+|aq"aq|<;+3+3<5-

Hence, (a;) € € and we define b= (ai)+ M.

We now prove that @; converges to b. Let £ € F'. Then there exists an
n € I such that 1/n < €/2. For i > n we have
1

lai—a< t<lc
PN T T T2
Also, from Theorem 3.2 (d), there exists an m € I such that |a;—b| < £/2
for all ¢ > m. Hence, if 7 > max(n, m) we have
€

2=E.I

la; - b| < [@; —aj| +]a; - b < g+

We call F the I-completion of F. One can show in the usual way
that the I-completion of F' is unique up to an isomorphism. That is, if E
is an ordered field for which there exists an order-preserving isomorphism
7 : F — E with dense range and if E is I-complete, then E and F are
isomorphic.

Ordered fields with various cofinalities can be constructed using the
methods of nonstandard analysis (2,7,10,11,13]. Of course R is a complete
ordered field with minimal cofinal set N. Thus, the cofinality of R is the first
infinite ordinal wy. The simplest nonstandard construction of the hyperreal
field *R proceeds as follows. Let 4 be a free ultrafilter on the power set of
N. Define *R = RN/ where addition, multiplication and order are defined
on *Rin the natural way. It is well-known that *R becomes an ordered field
with minimal cofinal set *N = N¥/{. The cofinality of *R, using this con-
struction, is the first uncountable ordinal w;. It can be shown that in this
model *R is not *N-complete [8]. Other nonstandard models for *R can be
constructed by replacing N with large index sets or by using more sophisti-
cated methods of model theory. In this way, models for *R with arbitrarily
large cofinality can be constructed. It can be shown that some of these mod-
els for *R are I-complete and others are not I-complete [8]. Other kinds of
completeness for *R are studied in {14].
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4. F-metric spaces
Let F be an ordered field and let X be a nonempty set. We call (X, p)
an F-metric space if p : X x X — F satisfies
(1) p(z,y) > 0,
(2) p(z,y)=0if and only if z = y,
(3) p(z,y) = p(y, 2),
(4) p(z,y) < p(z,2) + p(2,9).
For z € X, r € F*, the ball centered at z with radius r is

B(z,r)={y€ X : p(z,y) < r}.
We also define the corresponding closed ball by
B(z,r)={ye X : p(z,y) < 7}.

The family {B(z,r): r € F*, z € X} is a base for a topology on X.
Moreover, if I C F't is cofinal, then {B(z,1/i):i€ I, z € X} is a base for
this topology.

An I-sequence z; € X convergestoz € X if for any ¢ € F'* there exists
an n(e) € I such that ¢« > n implies p(z;,z) < €. Convergent I-sequeneces
determine the topology on X in the sense that A C X is closed if and only
if for every I-sequence z; € A such that z; - 2 € X we have z € A. An
I-sequence z; is Cauchy if for any ¢ € F* there exists an n(e) € I such
that 7,7 > n imply p(z;,z;) < €. We say that X is I-complete if every
Cauchy I-sequence in X converges. Of course, F itself is an F-metric space
with metric p(z,y) = |z — y| and these concepts of topology, convergent and
Cauchy I-sequences reduce to the usual concepts on F.

THEOREM 4.1. Let X be an F-metric space, let I be a minimal cofinal
subset of F* and let o = card([). (a) If card(A) < a and A; C X, i € A,
are closed, then | J A; is closed. (b) If card(A) < a and B; C X, i € A, are
open, then (| B; is open. (¢) If AC X and card(A) < «a, then A is closed.

Proof. (a) If J A; = X we are finished, so suppose z ¢ |J A;. Since A,
is closed, there exists an ¢; € F'* such that B(z,¢;)NA; =0, i € A. Since
card(A) < a, the set {e7!: i € A} is not cofinal and hence has an upper
bound. Thus, there exists an ¢ € F* such that ¢ < ¢; for all i € A. Then
B(z,¢) C B(z,¢;) for all i € A so B(z,e)[A;i = @ for all i € A. Hence,
B(z,e)n(|JAi) =0 so |J A; is closed. (b) and (c) follow from (a). m

Applying Theorem 4.1 we conclude that an F-metric space is an a-
topological space. Hence the work in Section 2 applies to this section as
well. Also, when I C F* is minimal cofinal, an I-sequence is an a-net. It
follows from the discussion in the last paragraph of Section 3 that there
exist non-discrete a-topological spaces for a vast set of cardinals a.
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Since R has countable cofinality, the interesting new F-metric spaces
are those in which F has uncountable cofinality. We now study some of the
properties of such F-metric spaces.

We can consider N as a subset of F. An element ¢ € F is infinitesimal
if |¢] < 1/n for every n € N. We denote the set of the infinitesimals by 971(0).
The proof of the following lemma is straightforward.

LEMMA 4.2. If F has uncountable cofinality, then 9(0) # {0} and F is
nonarchimedean.

Recall that a topological space is metrizable if its topology is generated
by a real-valued metric. The next result follows from Corollaries 2.12 and
2.14.

THEOREM 4.3. Let X be an F-metric space where F has uncoutable
cofinality. (a) If there ezists an € X such that {z} is not open, then X is
not first countable and hence X is not metrizable. (b) X is separable if and
only if card(X) < Ng and X is discrete.

For z € X and a € F*, we define
Ma(z) = {y € X: p(y,z) < ag, ¢ € M (0)}

where 9 (0) = 9MM(0) N F*. Recall that a topological space X is 0-dimen-
sional if there exists a neighborhood basis of clopen sets for every z € X.

THEOREM 4.4. Let X be an F-metric space where F has uncountable
cofinality. (a) M,(z) is clopen for every z € X, a € F*. (b) X is 0-
dimensional.

Proof. (a) Since
My(z) = | J{B(z,a¢) : € € MH(0)}

we conclude that 9,(z) is open. Suppose y &€ My(z). If ¢ € MH(0), we
shall show that B(y,ae)NIM,(z) = 0. Indeed if 2 € B(y,ac) N M,y(z), then

p(z,y) < p(z,2) + p(z,y) < agy + ac = a(e, +¢)

where ¢; € M*(0). Since € + ¢ € M¥(0), we have y € M,(z) which is a
contradiction. Hence, M,(z) is closed.

(b) Let a € F* and consider B(z,a). Then M,(z) C B(z,a) since if y €
M, (z) then there exists an ¢ € M*(0) such that p(y,z) < ae < a. Hence,
y € B(z,a). It follows from (a) that {9M,(z): a € F*} is a neighbourhood
basis at z of clopen sets. =

A subset A of an F-metric space is totally bounded if for any ¢ € F*
there exists a finite number of balls of radius ¢ that cover A. The next
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THEOREM 4.5. Let X be an F-metric space, where F has uncountable
cofinality. If A C X, then the following statements are equivalent. (a) A is
compact. (b) A is totally bounded. (c) card(A) < oco.

Proof. To show that (a) implies (b), let A be compact and ¢ € F* .
Since {B(z,¢): z € A} is an open cover of A, there exists a finite subcover
B(z;,e), z; € A, i =1,...,n. Hence, A is totally bounded. To show that
(b) implies (c), let A be totally bounded and suppose card(A) = oo. Then
there exists a subset B C A with card(B) = R,. Since A is totally bounded,
sois B. Let B = {y; : i € N}. Since F has uncountable cofinality, there
exists an ¢ € F* such that £ < p(yi,y;) for every i,7 € N with ¢ # j. Since
B is totally bounded, there exists an n € N such that B C |J_, B(z,,£/2).
Now B(z1,€/2) contains at most one ;. Indeed, if y;,y; € B(x1,€/2),1 # j,
then

p(¥i,¥;) < pyi, z1) + p(21,9;5) < % + % =€
which is a contradiction. Similarly, B(z;,¢/2) contains at most one y;.
Hence,

B ¢ |J B(zi,¢/2)
i=1

which is a contradiction. We conclude that card(A) < oo. That (c) implies
(a) is trivial. m

Although compact sets are trivial when F has uncountable cofinality, we
still have the notion of an a-compact set where a is the cardinality of a
minimal cofinal subset 7 C F'*. In this case, we call the set /-compact. We
say that a set A C X is I-bounded if for any ¢ € F'* there exists balls B;,
i € A, with card(A) < a such that A C |J;c 4 Bi.

THEOREM 4.6. Let A be I-compact. (a) Every I-sequence in A has a
cluster point in A. (b) A is I-bounded and I-complete.

Proof. (a) This follows from Theorems 2.6 and 2.10. (b) That A is
I-bounded is similar to the first part of the proof of Theorem 4.4. To show
that A is I-complete, let z; be a Cauchy I-sequence in A. By part (a), z;
has a cluster point z € A. For ¢ € F* there exists an n € I such that
p(zi,z;) < €/2 whenever ¢,j > n. Since z is a cluster point of z, there
exists a k > n such that p(zk,z) < £/2. Then ¢ > n implies that

£ £
p(Ii,l‘) < P(xi,lk) + p(Ik,I) < 5 + :-2' =€

Hence, z; — = so A is [-complete. m
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We do not know whether the converses of Theorem 4.6 hold. Following
the discussion in the last paragraph of Section 3, *R = RN/l has minimal
cofinal set *N. Assuming the continuum hypothesis, it can be shown that
card(*N) = X;. Unfortunately, subsets of *R that we would like to be *N-
compact are not. For example,

[0,1]={z€*R: 0<z <1}
is not *N-compact. Indeed, the family
{Mi(z): z€[0,1]NR}

forms an open cover of [0,1]. However, 9 (z) N M, (y) = @ for z,y € R,
z # y. Hence, there is no subcover of [0, 1]. In particular, there is no subcover
indexed by a set of cardinality Ry.

If I C F* is cofinal, an I-subsequence of an /-sequence (z;: i € I) is
an [-sequence of the form (z,(;) : ¢ € I) where u : I — I satisfies u(¢) > 1.
If i € I and 7 > ¢, then u(j) > 7 > i so u is finalizing. Thus, if I is minimal
cofinal, then an I-subsequence is a special case of an a-subnet. As usual, we
say that A C X is bounded if A is contained in some ball.

LEMMA 4.7. (a) A point z € X is a cluster point of an I-sequence z; if
and only if x; has an I-subsequence converging to z. (b) If every I-sequence
in A C X has an I-subsequence converging to a point in A, then A is closed
and bounded.

Proof. (a) Sufficiency is the same as the first part of the proof of The-
orem 2.6. For necessity, let  be a cluster point of z;. For i € I, there exists
a u(7) € I such that u(i) > i and z,;) € B(z,i7"). Then (z4;): i € I)is
an [-subsequence of z;. To show that z,(;y — z, consider a ball B(z,j™),
j € I. Then for ¢ > j, we have u(7) > ¢ > j. Hence,

T u(i) € B(.’L‘,i—l) g B(l‘,j—]).
(b) The proof of this is straightforward. m

THEOREM 4.8. Let (X,p) be an F-metric space, (Y,p') an F'-metric
space and let I C F* be minimal cofinal. If f : A — Y is continuous, where
A C X is I-compact, then f ts uniformly continuous.

Proof. Fix an ¢ € F'*. If z € A, there exists a 6(z) € F*t such
that p'(f(z), f(y)) < €/2 whenever y € A with p(z,y) < 6(z). Since
A C U,ea B(z,6(2)/2), by I-compactness there is a subcover A C
Jz,ea B(zi 6(2:)/2) where i € A with card(A) < card(I). Since I is min-
mal cofinal, there exists a § € F* such that § < 6(z;)/2 for all : € A. If



176 S. Gudder

z,y € A with p(z,y) < 6, then z € B(z;,6(z;)/2) for some i € A. Hence,

yZi) <
plz,zi) < =

< é(z;)
s0 1'(f(z), f(z:)) < €/2. Moreover,
p(20,9) < p(z0,2) + pl2,3) < 56(z1) +8
< %6(1:,-) + L5(20) = 8(20)

2
and hence p'(f(z;), f(y)) < €/2. We conclude that

PUI(). S) < PU) T(20) + () S < 5+ 5 = ¢

It is clear that an F-metric space is Hausdorff. Moreover, the classical
proof shows that an F-metric space is normal [5].

5. Complete F-metric spaces

We first discuss the completion of an F-metric space X. Let I C F* be
cofinal and let € be the set of Cauchy I-sequences in X. For (z;),(yi) € €
define the equivalence relation (z;) ~ (¥;) if p(zi,y;) — 0. Let X be the set
of equivaience classes relative to ~. For (z;),(y:) € €, since

p(zi,yi) L p(ziszi) + p(zj,y;) + p(y;, vi)
it follows that

(23, 9i) = P25, 9;)1 < pzis 25) + (Y5 9i)-
Hence, p(z:,yi) is a Cauchy I-sequence in F so p(:t,,y,) can be identified
with an element of F. If 2,7 € X, where (z;) € %, (y;) € -y, we define
#(Z,7) = (p(zi,vi)) € F. Moreover, we define 0 : X — X by a(z) =
(z,z,...). The proof of the following theorem is stralghtforward.

THEOREM 5.1. (_)?, p) is an I-complete F-metric space and 0 : X — X
has dense range in X and satisfies p(o(z),0(y)) = p(z,y) forall x,y € X.

We call (X,7) the I-completion of (X, p). As usual, (X,75) is unique
to within an isometry. The proof of the next result is simiar to the classical
proof.

TueorREM 5.2. (a) If f: X — X is uniformly continuous, then f has
a unique uniformly continuous extensiong: X — X. (b) If f: X — F is
uniformly continuous, then f has a unique uniformly continuous ertension
g: X — F.

An clement r € F* is a bound for a subset A of an F-metric space X
if p(z,y) < rforall z,ye A. If A; C X is an I-sequence of sets and there
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exists an I-sequence of bounds r; for the A;, i € I, such that r; — 0, we
write lim A; = 0. We call A; a nested I-sequence if A; C A, for j > i. The
next result generalizes Cantor’s characterization of complete metric spaces.

THEOREM 5.3. Let X be an F-metric space and let I C F* be minimal
cofinal. Then X is I-complete if and only if for any nested I-sequence of
nonempty closed sets A; C X with lim A; = 0, we have (| A; = {z} for
somez € X.

Proof. Assume X is I-complete and let A; C X, ¢ € I, satisfy the
conditions of the theorem. For each i € I, let z; € A;. If ¢ € F*, then there
exists an n € I such that r,, < ¢, where r,, is a bound for A,,. If 7, > n, then
z; € A; C A, and z; € A; C A,. Hence, p(z;,2;) < < € 50 z; is Cauchy.
Since X is I-complete, z; — z for some z € X. For each j € I, z; € A; for
i > j and since A; is closed, we have 2 € A;. Hence, z € [ A;. If y € [ A4j,
then p(z,y) < r; for every j € I. Since r; — 0, we have p(z,y)=0soy = z.
Therefore, (1 4; = {z}.

Conversely, assume that X has the stated nested closed sets property.
Let x; be a Cauchy I-sequence in X. For each i € I, let A; be the closure
of the set {z;: j > i}. Then A; is a nested I-sequence of nonempty closed
sets. Letting w = ord(I) we can write I = {i, : a < w} where each a is an
ordinal. Define an increasing cofinal sequence n, € I, @ < w, inductively as
follows. Suppose ng is increasing, ng > ig, and ng has been defined for all
ordinals § < a where a < w. Since I is minimal cofinal, there exists ann € I
such that n > ng for all 8 < a. Now letting n, = max{n,i,} completes the
inductive definition. We next define an increasing cofinal sequence m, € I,
a < w, such that my, > i, and p(z,,z,) < 1/n, whenever p,q > m,,
inductively as follows. Suppose mg has been defined for all 3 < a where
a < w. Since I is minimal cofinal, there exists an m € I such that m > mg
for all 8 < a. Moreover, since z; is Cauchy, there exists an 7 € I such that
p(Tp, z4) < 1/ny whenever p,q > r. Letting m, = max{m,r,i,} completes
the inductive definition.

We have thus constructed a nested sequence of nonempty closed sets
An, C X with bounds 1/n,, a < w. For ¢ € I, define B; = A,,, and
n; = n, where « is the smallest ordinal such that i < m,. Then B; is an
I-subsequence of 4; with bounds 1/n;, i € I. Since n; is a cofinal I-sequence,
we have lim B; = 0. By hypothesis, we conclude that () B; = {z} for some
z € X. Given ¢ € F*, there exists an : € I such that 1/n; < ¢ and there
exists a j € I such that A; C B;. Hence, if p > j, we have z, € A; C B;.
Since = € By, we have p(z,,7) < 1/n; < €. Hence, z; > z. »

For the sufficiency part of Theorem 5.3, we did not need the minimality
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CoRroOLLARY 5.4. If I C F* is cofinal and X 1s I-complete, then for any

nested I-sequence of nonempty closed sets A; C X withlim A; = 0, we have
NA; = {z} for somez € X.

We say that X has the /-ball property if for any set J C I with
card(J) < card(/) and any nested J-sequence of balls B;, j € .J, we have
N B; # 0. We now give an example of an I-complete F-metric space that
does not have the I-ball property. Let X = N and define the metric

( ) = 0 ifn=m
pm, M) = 14+ 1/ min(m,n) if n#m.

Then (X, p) is an R-metric space. Moreover, (X, p) is R-complete. Indeed,
if z;, 1 € R, is a Cauchy R-sequence, then there exists an n € R such that
p(zi,zj) < 1if ¢,57 > n. Hence, z; = z, for i > n so z; — z,. However,
(X, p) does not have the R-ball property. Indeed, N C R, card(N) < card(R),
B; = B(j+1,1+1/j),j7 € N, is a nested N-sequence of balls and yet
N B; = 0.

We now prove a generalization of the Baire category theorem.

THEOREM 5.5. Let X be an F-metric space, let I C F* be minimal

cofinal and suppose X is I-complete and has the I-ball property. If A C X
is a union |J;c; Ai of nowhere dense sets A; C X, then A° is dense in X.

Proof. We can assume that each A; is closed (otherwise, let B = |J 4;
and show that B¢ is dense in X and since B¢ C A€, then A€ is dense in X).
Let U be any nonempty open subset of X. We shall show that U n A¢ #
which gives the results. Letting w = ord(/), we can write A = {J, . Aa-
As in the proof of Theorem 5.3, there exists an increasing cofinal sequence
ng € I. a < w. Define a nested sequence of closed balls B, = B(z,,7.),

where 7, < 1/n4 and Ba C A N U inductively as follows. Since Aq is
nowhere dense, any ball B C U is not a subset of Ap so BNA§ is a nonempty
open set. Hence, there exists a closed ball Eo C B n A§ with g < 1/ne.
Suppose ﬁp is defined for every § < a where a < w. By the I-ball property,
there exists an z € ()., Bg. Since I is minimal cofinal, there exists a
6 € F* such that § < rg — p(z,zg) for all 8 < a. Hence, B(z,6) C ﬁg for
every 3 < a. Indeed, if y € B(z,0), then

p(y,z8) < p(y,z)+ p(z,25) < 6 + p(z,25) < 7p.

Since A, is nowhere dense, B(z,§) is not a subset of A, so B(z,6)N A is
a nonempty open set. Letting z, = z, there exists an 7, < 1/n4 such that

B(za,7a) C B(za,6)N AS.

This completes the inductive definition.
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Forie I, let ﬁ,- = Ec where a is the least ordinal such that : < n,. We
thus obtain a nested I-sequence of nonempty closed sets B; with lim B; = 0.
Bince X is I-complete, by Theorem 5.3 there exists an z € X such that
N B: = {z}. Then

z€Uﬂ<ﬂA;’> :Un(UA,-)C:UnAC. .

The usual Baire category theorem follows from Theorem 5.5. Just let
F =R, I = N, and note that the N-ball property holds trivially. The next
corollary is a generalization of the uniform boundedness principle.

COROLLARY 5.6. Suppose X is an F-metric space satisfying the hy-
pothese of Theorem 5.5, Y is a topological space and g : Y — F* U {0}
a continuous function. Let § be a family of continuous functions from X
into Y with the property that for each x € X, there erists an M, € F+ u{0}
such that (go f)(z) < M, for all f € §. Then there ezists a nonempty open
set AC X and an M € F* U {0} such that (9o f)(z) < M forall f€ F
and all z € A.

Proof. For f € Fand i € I, let A;y = (go f)"!([0,7]). Then A4, is
closed since [0,1] is closed and g o f is continuous. Let A4; be the closed set
ﬂfeﬁ A y. Now X = |J;c, A; because if z € X, then z € A; for all i > M.
By Theorem 5.5, not all A; are nowhere dense. Hence, some A,, = 4,,,n € I,
must contain a nonempty open set A. Then for all z € A and f € §, we
have (go f)(z) € [0,n]. Taking M = n, we have (go f)(z) < M forall f € F
andallz € A. m

COROLLARY 5.7. Let I C F*t be minimal cofinal. If X is an F-metric

space that has the I-ball property, card(X) = card(l), and singleton sets in
X are not open, then X is not I-complete.

Proof. We can write X = {z;: 7 € I}. Hence, X = |J;¢,{z:} where
{z;} is nowhere dense. If X were I-complete, this would contradict Theo-
rem 5.5. m

COROLLARY 5.8. Let *R = RN/U be the hyperreal field. Assuming the
continuum hypothesis, *R is not *N-complete.

Proof. We have card(*R) = card(*N) and *N C *R* is minimal cofinal.
Moreover, singleton sets in *R are not open. By the continuum hypothesis, if

card(J) < card(*N) = ¥,

then card(J) < Ro. Since balls in *R are internal sets, by R;-saturation [2,
3, 10, 11, 13], the intersection of a nested N-sequence of balls is nonempty.
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Hence, *R has the *N-ball property. The result now follows from Corol-
lary 5.7. m

COROLLARY 5.9. Let *R = RN/4 by the hyperreal field, and let *R be the
*N-completion of *R. Assuming the continuum hypothesis, card(*R) = R,.

Proof. Suppose card(*R) = card(*R) = ®,. If B!, i € N, is a nested
N-sequence of balls in *R, since *R is dense in *R, we can construct a
nested N-sequence of balls B; in *R such that B; C B]. As in the proof
of Corollary 5.8, # (\B; C () B!. Hence *R has the *N-ball property.
Since singleton sets in *R are not open, it follows from Corollary 5.7 that
*R is not complete. Since this is a contradiction, card(*K) > R;. Since

card(*R) < card(*R™V) = " = Ry

the result follows. m

6. Open problems

This section outlines some miscellaneous results and presents some open
problems. In Section 2, we have discussed a-topological spaces. Let X,,
r € T, be a-topological spaces and let X = II. X, be their Cartesian product.
The a-product topology J, on X is the topology with base sets of the
form U = II.U, where U, C X, are open and U, = X, except for r €
["C I’ with card(I") < a. It is easy to show that (X, J,) is an a-topological
space. Moreover, J, is the weakest a-topology on X such that the natural
projections p, : X — X,,r € T, are continuous. An open problem is whether
Tychonoff’s theorem holds in this context. That is, if X, is a-compact for
all 7 € T, is X a-compact?

In connection with Theorem 4.6 we have the following open problem.
Are the following statements equivalent? (a) A is I-compact, (b) Every I-
sequence in A has a cluster point in A, (c) A is I-bounded and I-complete,
(d) A is I-bounded and closed.

We define the complexification of an ordered field F' to be the set
F, = F x F with addition and multiplication given by

(a,0)+(¢c,d) = (a +¢,b+d),
(a,b)(c,d) = (ac — bd,ad + bc).

It is straightforward to show that F. is a field. As usual, we write (a,b) =
a + tb and define (a + ib)* = a — ib. We call F' a square root field if for
any a € Ft there exists a unique b € F* such that b = a. We then write
b=+a= al/?. For example, *R is a square root field. In the sequel, we
assume that F is a square root field. We then define the modulus of an
element of F, as |a + ib] = (a® + b?)!/2.
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An F.-normed space is a pair (X, || -||) where X is a linear space over
F.and ||-]] : X — F* U {0} has the usual properties of a norm. Defining
p(z,y) = ||z — y||, it is clear that an F.-normed space is an F-metric space.
A linear operator T : X — X is defined in the usual way, and the proof of
the following result is standard.

THEOREM 6.1. If T : X — X 1is a linear operator, then the following
statements are equivalent. (a) T is continuous. (b) T is continuous at 0.
(c) The set {||Tz|| : ||z|| < 1} is bounded. (d) There exists an M € F*t such
that ||Tz|| < M||z|| for allz € X.

If T satisfies condition (d) of Theorem 6.1, we say that T is bounded
and M is a bound. Unlike the standard case, a bounded operator need
not have a smallest bound. Moreover, a bounded operator need not have a
finite bound. That is, every bound M for T may satisfy M > n for every
n € N. As a consequence of Corollary 5.6, we have the following version of
the uniform boundedness principle.

THEOREM 6.2. Let I C F* be minimal cofinal, let X and Y be F,-normed
spaces and suppose X is I-complete and has the I-ball property. For every
ainaset A let T, : X — Y be a continuous linear operator. If for every
v € X, {T,z: a € A} is bounded, then there erists an M € F* such that
||[Toz|| < M||z|| for everya € A, z € X.

Proof. Applying Corollary 5.6, there exists an M' € F* such that
IT,z]| £ M' for all z in some ball B(y,8) and all a € A. If ||2]| < §, then

I(z+y)-yll <éso0
1 Tazll < ITa(z + )l + 1 Tayll < 2M°

for all @ € A. If = # 0, then ||6z/2||z|||| < 6. Hence, ||T,0z/2||z|||| < 2M'
for all @ € A. Letting M = 4M'/§ we have ||T,z|| < M||z|| for every a € A,
r€EX.

The usual consequences of the uniform boundedness theorem can now
be proved. As an open problem, do other important theorems of functional
analysis hold in this context? For example, what about a Hahn-Banach
theorem, an open mapping theorem and a closed graph theorem?

An F.-inner product space is a pair (X,(-,-)) where X is a linear
space over F, and (+,-) : X x X — F, has the usual properties of a complex
inner product. Defining the norm ||z]] = (z,z)!/2, we see that X is an
F.-normed space. It is straightforward to show that Schwarz’s inequality
{z,y)| < llzllllylf holds. If ||z — y|| € 9MN(0) we write z ~ y, and if a € F
satisfies |a] > n for all n € N we call a infinite. A linear operator T on X
is symmetric if (T'z,y) = (z,Ty) for all z,y € X.



182 S. Gudder

Let T be a linear operation on X with domain a subspace D(T) C X.
As usual, the point spectrum o,(T) of T is the set of A € F. such that
Al - T is not injective, and if (A\] —T)z =0, z # 0, A is an eigenvalue
with corresponding eigenvector z. Moreover, the continuous spectrum
o.(T) is the set of A € F,. such that A € o,(T), the range of Al — T is dense
in X but (M — T)~!is not bounded. The next result generalizes a theorem
in [6].

THEOREM 6.3. Let T be a linear operator on an F.-normed space X where
F has uncountable cofinality. If A € o.(T), then there exists an r € D(T)
with ||z|| = 1 such that Tz = Ar.

The vector z in Theorem 6.3 is called a (unit) ultraeigenvector of T’
corresponding to the ultraeigenvalue A. The next result also geucralizes
some theorems in [6].

TueoreM 6.4. Let T be a symmetric linear operator on an F.-inncr
product space X where I has uncountable cofinality. (a) o,(T)Uo (T) C I'
(b) If z, 2" are unit ultraeigenvectors corresponding to distinct ultraeigenvai
ues A\, N and if there exists an infinite a € F't such that

A= X|>a(||Tz — Az|| 4 ||Tz' = A'2'|])

then (z,z') = 0. (¢) If A, N are distinct ultraeigenvalues of T, then there
exist unit ultraeigenvectors z,z’ corresponding to A\, X' such that (z,z') = 0.

This last result generalizes a standard Hilbert space theorem. Are there
important Hilbert space theorems that carry over to an I-complete F_.-inner
product space? For example, what about the existence of an orthonormal
basis, the Riesz representation theorem, the spectral theorem?
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