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METRIC SPACES OVER ORDERED FIELDS 

1. Introduction 
If F is an ordered field, an F-metr ic space is a set X together with 

a metric p : X x X —> F. This concept appears to be an interesting 
generalization of the classical real metric space. An example of a nonclassi-
cal F-metr ic space is the hyperreal field *R studied in nonstandard analy-
sis [2,7,10,11,13,14], Besides having mathematical interest, F-metric spaces 
may have important applications. For example, nonstandard Hilbert spaces, 
which are a specific class of F-metr ic spaces, have been recently applied to 
studies in quantum field theory and statistical physics [1,4,6]. 

As one would expect, an F-metr ic space shares some of the properties 
of a real metric space and does not share other properties. In this paper we 
study some of these shared and unshared properties. Some of our proofs are 
similar to the classical proofs. However, a general F-metric space does not 
have two of the important properties of a real metric space. One of these 
properties is first countability and the other is the Dedekind completeness 
of R . Because of this, new techniques must be used for some proofs. It 
turns out that for an F-metric space there exists a cardinal a such that the 
intersection of a family, with cardinality less than a , of open sets is open. 
In general, a may be an uncountable cardinal so this results in a new type 
of topological space that we call an a-topological space. 

We begin with a study of a-topological spaces and the notion of conver-
gence in terms of a-nets . The dual concept of a-compactness is introduced 
and properties of a-compact sets are studied. We next consider the comple-
tion of an ordered field. If F is an ordered field and F + is its set of positive 
elements, an unbounded subset I of F + is called cofinal. If / is a cofinal 
set of smallest ordinality /?, then I is minimal cofinal and 0 is the cofinal-
ity of F . The /-completion F of F is constructed and it is shown that F 
is an ordered field. We then study properties of an F-metric space where 
F has uncountable cofinality. In general, it is shown that such spaces are 
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non-metrizable, O-dimensionaJ and nonseparable. It is also shown that they 
are compact only if they have finite cardinality. 

The next to last section is devoted to /-complete F-metric spaces. 
Generalizations of Cantor's characterization of complete metric spaces and 
the Baire category theorem are proved. A generalization of the uniform 
boundedness principle and other corollaries of the generalized Baire cat-
egory theorem are given. The final section discusses some miscellaneous 
results and presents some open problems. 

2. a-Topologies 
This section considers a special type of topology called an a-topology. 

As we shall see in our later work, a metric space over an ordered field results 
in an a-topology. 

Let J be a topology on a set X and let a be an infinite cardinal. We call 
3 an a - topo logy if whenever Ai € i £ A, where card(zA) < a , we have 
Pi Ai € J- Thus, in an a-topology, the intersection of fewer than a open sets 
is open. If 3 is an a-topology for X, we call an a - topological space. 
Of course, in an a-topological space the union of fewer than a closed sets 
is closed. Notice that an No-topological space is just an ordinary topological 
space, while for a > Ho we have a restrictive condition. In the sequel, we 
assume that our topological spaces are Hausdorff. 

An a -directed set is a poset A such that A' has an upper bound 
whenever A' C A with card(zV) < a . An a - n e t in X is a function f : A —> 
X where A is an a-directed set. Notice that an No-directed set is an ordinary 
directed set and an No-net is an ordinary net. We usually denote an a-net 
in X by (x{ : i 6 A) and use the usual net terminology for a-nets [3,9]. We 
denote the set of neighbourhoods of a point x by 9t(x). Many of the proofs 
in this section are similar to the standard proofs except that extra attention 
must be given to a-conditions. 

T H E O R E M 2 . 1 . If A is a subset of an a-topological space, then x G A if 
and only if there exists an a-net in A converging to x. 

P r o o f . Suppose x € A and let {U{ : i € A} = 9t(x). Direct A by i < j 
if Uj C U{. If A' C A with card(zl ') < a , we have Ui € 9T(x). Hence 
there exists a j £ A such that i < j for every i G A' so A is an a-directed 
set. Since x 6 A, U{ f ) A ^ 0 for every i £ A• Choosing X{ G Uif] A, we have 
an a-net ( i ; : i £ A) in A converging to x. Conversely, suppose ( i i : I € A) 
is an a-net in A and X{ —• x. Then Xj is eventually in any neighbourhood of 
x. Hence, any neighbourhood of x intersects A, so x € A. m 

C O R O L L A R Y 2 . 2 . A subset A of an a-topological space is closed if and 
only if A contains the limits of all converging a-nets in A. 
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C O R O L L A R Y 2 . 3 . A subset A of an a-topological space is open if and only 
if every a-net converging to a point in A is eventually in A. 

C O R O L L A R Y 2 . 4 . Let X and Y be a-topological spaces. Then f : X —• Y 
is continuous if and only if for every converging a-net Xj —> x we have 
/(*.) - fix). 

Let A', A be a-directed sets and let u : A' A- Then u is finalizing if 
for every i G A, u{j) > i eventually. An a - subnet of an a-net (xj : i G A) 
is an a-net (£u( j ) : j G A') where u : A' —• A is finalizing. A subset A' 
of a poset A is cofinal if for every i £ A there exists j G A' such that 
j > i. Notice that if A is an a-directed set and A' is cofinal in A, then A' 
is an a-directed set. If (Xi : i G A) is an a-net and A' C A is cofinal, then 
(Xj : j G A1) is an a-subnet of (i,- : i G A)• Indeed, define u : A' —*• A 
by u(j) = j. Then u is finalizing and (x j : j G A') = ixu(j) '• j € A1)-
As usual, x is a c luster point of an a-net X{ if for every N € ^t(i), 
Xi £ N frequently. The proof of the next lemma is the same as the standard 
proof. 

L E M M A 2 . 5 . (a) If an a-net X{ is eventually in a set A then every a-
subnet of X{ is eventually in A. (b) Every a-subnet of a converging a-net 
converges to the same limit as the a-net. (c) If an a-net is eventually in a 
set A, every cluster point of the a-net is in A. 

T H E O R E M 2 . 6 . A point x is a cluster point of an a-net X{ in an a-
topological space if and only if x,- has an a-subnet converging to x. 

P r o o f . If x is not a cluster point of X{, then there exists an Â  6 
such that X{ is not frequently in N. Hence, Xi is eventually in Nc and by 
Lemma 2.5(a) so is every a-subnet of x, . Hence, no a-subnet of x, can 
converge to x. Conversely, let x be a cluster point of (x; : i G A). Let 

A' = {(i,N): i € A, Xi€N 6 9 t (x) } 

and define ( i , N ) < ( j , M ) if i < j and M C N. To show that A' is an 
a-directed set, let {(j, Nj) : j € T} be a subset of A1 with card(T) < a . 
Let k' 6 A be an upper bound for { j : j € T} and let M = Hjer^i-
Then M G 'Tl(x) and since x is a cluster point of x^, there exists a k G A 
such that k > k' and x* G M. Hence, ( k , M ) G A' and ( k , M ) is an upper 
bound for {(j, Nj) : j G T} . Define u : A' —• A by u(i,N) — i. To show 
that u is finalizing, let j G A be given and let ( k , M ) G A' satisfy k > j. 
Then for ( i , N ) G A' with ( i , N ) > ( k , M ) we have u(i,N) > j. Hence, 
[xu(i<) : i' G A') is an a-subnet of (x^ : z G A)- To show that xu(ji) -+ x, let 
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M G ^ ( x ) . Then there exists an Xj, j G A, such that xj G M. For i' G A' 
with 

i'= (i,N)>(j,M) 
we have Zu(Î<) G M. m 

Corresponding to the notion of an a-topology there is dual notion of 
a-compactness. Let A Ç X where X is an a-topological space. We say 
that A is a - c o m p a c t if for any open cover A Ç there is an open 
subcover A Ç where A' Ç A and card(zl') < a . We call such 
a subcover an a - subcover . Of course, an No-compact set is an ordinary 
compact set. Notice that if card(/l) < a , then A is a-compact. We now 
show that a-compact sets have some of the usual properties of ordinary 
compact sets. 

T H E O R E M 2 . 7 . If A and B are disjoint a-compact sets in an a-topological 
space, then there exist open sets U,V such that A Ç U, B Ç V, and 

U nv= 0. 

P r o o f . This is similar to the standard proof. • 

C O R O L L A R Y 2 . 8 . An a-compact subset of an a-topological space is closed. 
The usual proof shows that a closed subset of an a-compact set is a-

compact and the continuous image of an a-compact set is a-compact . A fam 
ily of sets {A, : i G A} has the a - intersection property if Dig^' ® 
for every A' Ç A with card(z\') < a . The proof of the next result is similar 
to the standard proof. 

T H E O R E M 2 . 9 . A subset A of an a-topological space is a-compact if and 
only if for any family of closed subsets {/l; : i 6 zA} of A with the a-
intersection property we have fl/1, 0. 

The next result gives a characterization of a-compactness. 

T H E O R E M 2 . 1 0 . A subset A of an a-topological space is a-compact if and 
only if every a-net in A has a subnet converging to a point in A. 

P r o o f . Let A be a-compact and let (x, : i Ç A) be an a-net in A. For 
each ?' 6 A, let T ( i ) = {xj : j > z}. Then {T(i) : i G A} is a family of 
closed subsets of A with the a-intersection property. Indeed, let A' Ç A with 
card(zA') < a and let k € Abe an upper bound for A'- Then T(k) Ç T(i) for 
every i G A' and T{k) / 0. By Theorem 2.9, F L , 6 4 T ( 0 ^ 0- I F X E 

then x is a cluster point of X{ so by Theorem 2.6 there exists an a-subnet of 
x, converging to x. Conversely, suppose every a-net in A has an a-subnet 
converging to a point in A. Let © be a family of closed subsets of A with 
the a-intersection property. Let A be the family of sets of the form Higr 
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where Bj G © and card(T) < o. Since a is an infinite cardinal, A is a 
family of closed sets with the «-intersection property. For i,j G A, define 
1 5: j if 3 Q i- To show that A is an a-directed set, suppose A' Q A with 
tard(zl') < a. Then k = fl^e^' 1 € A and i < k for all i G A'. For each 
i G A, choose x, € i. Then (a:, : i G A) is a net in A and by Theorem 2.6, 
e, has a cluster point r f l Since x is a cluster point of x,, x G T(i) for 
(every i G A• But T(i) C i and therefore x G i for every i G A• It follows 
that x G Pi©- • 

We conclude this section with some results concerning the cardinality of 
neighbourhood bases and separability. 

T H E O R E M 2 . 1 1 . Let X be an a-topological space and let (3 be a cardinal 
with P < a. If x G X has the property that { x } is not open, then there does 
not exist a neighbourhood basis of x with cardinality /?. 

P r o o f . Suppose x has a neighbourhood basis {^4, : i G T} where 
card(F) = /3 < a. Since X is an a-topological space, A = f] A{ is a neigh-
bourhood of x. Since { x } is not open, there exists a y G A \ { x } . The 
Hausdorff postulate implies the existence of an open set B such that x G B 
and y B. Then A fl B is a neighbourhood of x that is strictly contained in 
evory ¿ 6 T. This is a contradiction so there is no neighbourhood basis 
of x with cardinality (3. • 

C O R O L L A R Y 2 . 1 2 . Let X be an a-topological space where a is uncount-
able. If there exists an x G X such that { x } is not open, then X is not first 
countable. 

For a cardinal /?, we say that an a-topological space X is /^-separable 
if there exists a set A C X such that card(v4) < (3 and A = X. Of course, 
K0-separable is the usual notion of separable. 

T H E O R E M 2 . 1 3 . Let X be an a-topological space and let (3 be a cardinal 
with 0 < a. Then X is ¡3-separable if and only i/card(X) < f3 and X is 
discrete. 

P r o o f . If card(X) < (3, then clearly X is /3-separable. Conversely, sup-
pose X is /3-separable and let {x,- : i G T} , card(T) < /3, be dense in X. 
Suppose there exists an x G X such that x ^ x̂  for all i G T. By the 
Hausdorff postulate there exist open sets At, i G T, such that x G A{ and 
r,- ^ A{. Since (3 < a, the set A = f]A{ is the neighbourhood of x and 

A for all i G T. This contradicts the denseness of {x j : i G T}. Hence, 
X = {x , : i G T} so card(X) < (3. Now any subset B C X has the form 
B — U i e r ' { x ' } where T' C T so card(r') < /3. Since singleton sets are closed 
md 3 < a, B is closed. Hence, X is discrete. • 
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C O R O L L A R Y 2 . 2 4 . Let X be an a-topological space where a is uncount-
able. Then X is separable if and only i/card(A") < No and X is discrete. 

3. Completion of ordered fields 
Let F be an ordered field and let F+ be its set of positive elements. If 

I C F+ is a cofinal set of smallest ordinality /?, then I is minimal cofinal 
and ¡3 is the cofinality of F. When we consider F as a topological space, 
we always assume the topology is the order topology. For / C F+ cofinal, 
an / - sequence in a set S is a map i a; from I into S. Notice that if 
I is minimal cofinal with cardinality a , then I is an a-directed set and an 
/-sequence is an a-net. In the sequel, / will always denote a cofinal subset 
of F+. 

An /-sequence a; in F converges to a £ F if for any £ 6 F+ there exists 
an n(e) 6 I such that fa,- - a| < £ for every i > n(e). An /-sequence in F 
is null if it converges to 0. An /-sequence a; in F is Cauchy if for every 
£ 6 F+ there exists an n(e) £ / such that ¡aj - aj\ < £ for every i,j > n(e). 
We say that F is / - complete if every Cauchy /-sequence in F converges. 
Denoting the set of null and Cauchy /-sequences by 01 and <L, respectively, 
it is clear that 01 C For (a,) , (6,) € <£, we define (a^) + = (a, + 6j) and 
(a, )(6j) = (a{bi). The proof of the following lemma is classical. 

L E M M A 3 . 1 . Under the above definitions of sum and product, £ is a 
commutative ring with unit and 01 is a maximal ideal in <£. 

Let F denote the quotient ring <£/% Since is a maximal ideal, it is 
well known that F is a field. We denote the elements of F by a = (a,) + 01. 
If a € F, we use the notation r (a) = (a, a , . . . ) + 01. We define the set of 
positive elements F* C F by 

F* = {2 € F : a £ r (0) , a = (a,) + 01, a, > 0 for all i € /}. 

The proof of the next theorem is similar to the proof of the classical imbed-
ding theorem of the rationals into the reals. 

T H E O R E M 3 . 2 . (a) The field F with positive cone F* is an ordered field. 
(b) The map r : F —• F is an order-preserving isomorphism of F into F. 
(c) The range of r is dense in the order topology of F. (d) If a - (a{) + 01 € 
F , then lim r ( a j ) = a. 

It follows from Theorem 3.2 that we can assume that F is a dense subset 
of F. Moreover, / is then a cofinal subset of F. The proof of the next result 
is different than the usual proof for E since the latter uses the well-ordering 
of N. A longer proof of the next result from a different viewpoint is given 
in [12]. 
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THEOREM 3.3. The field F is I-complete. 

P r o o f . Let a, be a Cauchy /-sequence in F. For any i g / there exists 
an n(i) G / such that n, > i and p,q > n(i) implies that \ap - a , | < 1 ji. 
By the denseness of F in F, there exist â  G F such that |aj — Hj| < l/i 
for every i G I- Let e G F+ and choose a j G / such that l / j < e/3. If 
p, q > n(j), then 

\ap - o,! < | a p - Sp | + |ap - a , | + |a, - a J < ^ + \ + ^ < e. 
J J J 

Hence, (a,) G <£ and we define b — (a,) -(-
We now prove that Hj converges to b. Let e G F^. Then there exists an 

n G / such that 1/n < e/2. For i> n we have 

i - i 1 1 £ 
|a, - a< < 7 < - < 

i n 2 

Also, from Theorem 3.2 (d), there exists an m G I such that — 6| < e/2 
for all i > m. Hence, if j > max(n, m) we have 

|2j -b\< |a,- - a,-| + |aj - 6| < | + | = e. • 

We call F the / -complet ion of F. One can show in the usual way 
that the /-completion of F is unique up to an isomorphism. That is, if E 
is an ordered field for which there exists an order-preserving isomorphism 
T : F —» E with dense range and if E is /-complete, then E and F are 
isomorphic. 

Ordered fields with various cofinalities can be constructed using the 
methods of nonstandard analysis [2,7,10,11,13]. Of course R is a complete 
ordered field with minimal cofinal set N. Thus, the cofinality of E is the first 
infinite ordinal a;o- The simplest nonstandard construction of the hyperreal 
field *R proceeds as follows. Let 11 be a free ultrafilter on the power set of 
N. Define *R = R N / i i where addition, multiplication and order are defined 
on *R in the natural way. It is well-known that *R becomes an ordered field 
with minimal cofinal set *N = NN/H. The cofinality of *R, using this con-
struction, is the first uncountable ordinal It can be shown that in this 
model *R is not *N-complete [8]. Other nonstandard models for *R can be 
constructed by replacing N with large index sets or by using more sophisti-
cated methods of model theory. In this way, models for *R with arbitrarily 
large cofinality can be constructed. It can be shown that some of these mod-
els for *R are /-complete and others are not /-complete [8]. Other kinds of 
completeness for *R are studied in [14]. 
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4. F -metr ic spaces 
Let F be an ordered field and let X be a nonempty set. We call (X,p) 

an F-metric space if p : X x X —• F satisfies 

( 1 ) p ( x , y ) > 0 , 

(2 ) p(x, y) - 0 if and only if x = y, 

(3 ) p(x,y) = p(y,x), 

( 4 ) p(x,y) < p(x,z) + p(z,y). 

For x £ A ' , r £ F+, the ball centered at x w i th radius r is 

B(x,r) - {y £ X : p(x,y) < r}. 

We also define the corresponding closed ball by 

B(x,r) = {y £ X : p(x,y) < r } . 

The family { B ( x , r ) : r £ F + , x £ X} is a base for a topology on X. 

Moreover, if I C F+ is cofinal, then {B(x, 1/i) : i £ I , x £ X} is a base for 
this topology. 

An /-sequence xi £ X converges to x £ X if for any e £ F + there exists 
an n(s) £ I such that i > n implies p(xi,x) < e. Convergent /-sequeneces 
determine the topology on X in the sense that A C X is closed if and only 
if for every /-sequence Xj £ A such that X; —• x £ X we have x £ A. An 
/-sequence x, is Cauchy if for any s £ F+ there exists an n ( e ) £ I such 
that i,j > n imply p(xi,xj) < e. We say that X is / -complete if every 
Cauchy /-sequence in X converges. Of course, F itself is an F-metr ic space 
with metric p(x, y) = |x — y| and these concepts of topology, convergent and 
Cauchy /-sequences reduce to the usual concepts on F . 

THEOREM 4.1. Let X be an F-metric space, let I be a minimal cofinal 

subset of F+ and let a = card(/) . ( a ) // ca rd (A ) < a and Ai C X, i £ A, 

are closed, then |J A{ is closed, ( b ) If card ( z l ) < <* and B{ C X, i £ A, are 

open, then Bi is open, ( c ) If A C X and card(v4) < a, then A is closed. 

P r o o f , ( a ) If [J A{ = X we are finished, so suppose x £ |J A{. Since Ai 

is closed, there exists an e, £ F+ such that i? (x , P| = 0, i £ A• Since 
card(z\) < a , the set { e " 1 : i £ z i } is not cofinal and hence has an upper 
bound. Thus, there exists an e £ F+ such that £ < £i for all i £ A• Then 
B(x,e) C B(x,£i) for all i 6 A so 5 ( x , e ) f | ^ l , = 0 for all i £ A• Hence, 
B ( X , £ ) n ( (J Ai) = 0 so (J Ai is closed, ( b ) and ( c ) follow from (a ) . • 

Applying Theorem 4.1 we conclude that an F-metric space is an a-
topological space. Hence the work in Section 2 applies to this section as 
well. Also, when / C F + is minimal cofinal, an /-sequence is an a-net. It 
follows from the discussion in the last paragraph of Section 3 that there 
exist non-discrete a-topological spaces for a vast set of cardinals a . 
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Since R has countable cofinality, the interesting new F-metric spaces 
are those in which F has uncountable cofinality. We now study some of the 
properties of such F-metric spaces. 

We can consider N as a subset of F. An element e G F is infinitesimal 
if |e| < 1/n for every n G N. We denote the set of the infinitesimals by 97t(0). 
The proof of the following lemma is straightforward. 

LEMMA 4.2. If F has uncountable cofinality, then 971(0) ^ {0} and F is 
nonarchimedean. 

Recall that a topological space is metrizable if its topology is generated 
by a real-valued metric. The next result follows from Corollaries 2.12 and 
2 . 1 4 . 

THEOREM 4.3. Let X be an F-metric space where F has uncoutable 
cofinality. (a) If there exists an x G X such that {a;} is not open, then X is 
not first countable and hence X is not metrizable. (b) X is separable if and 
only if card(X) < No and X is discrete. 

For x 6 X and a G F + , we define 

ma(z) = {y G X : p(y,x) <ae, e G 2H+(0)} 

where 271+(0) = 071(0) D F+ . Recall that a topological space X is 0-dimen-
sional if there exists a neighborhood basis of clopen sets for every x G X. 

THEOREM 4.4. Let X be an F-metric space where F has uncountable 
cofinality. (a) 27ta(x) is clopen for every x G X, a G F+. (b) X is 0-
dimensional. 

P r o o f , (a) Since 

VJla(x) = ( J{ f l (x ,ae ) : £ 6 97t+(0)} 

we conclude that 27ia(x) is open. Suppose y £ 9Jla(x). If £ € 97t+(0), we 
shall show that B(y, ae) D 9J\a{x) = 0. Indeed if z G B(y, as) D D7ta(x), then 

P(x, y) < p(x, z) + p(z, y) < aei + ae = a^ + e) 
where ^ 6 27i+(0). Since £\ + £ G 97t+(0), we have y G 97ta(z) which is a 
contradiction. Hence, 97ta(i) is closed. 

(b) Let a G F+ and consider B(x,a). Then V3la(x) C B(x, a) since if y G 
Wla(x) then there exists an £ G 97l+(0) such that p(y,x) < a£ < a. Hence, 
y G B(x,a). It follows from (a) that {97la(z) : o € F + } i s a neighbourhood 
basis at x of clopen sets. • 

A subset A of an F-metric space is totally bounded if for any £ G F+ 

there exists a finite number of balls of radius £ that cover A. The next 
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result shows that compactness is not a useful concept if F has uncountable 
cofinality. 

T H E O R E M 4 . 5 . Let X be an F-metric space, where F has uncountable 
cofinality. If A C X, then the following statements are equivalent, (a) A is 
compact, (b) A is totally bounded, (c) card(A) < oo. 

P r o o f . To show that (a) implies (b), let A be compact and e £ F+. 
Since { 5 ( x , f ) : x G A] is an open cover of A, there exists a finite subcover 
B(xi,e), X{ G A, i = 1 , . . . , n. Hence, A is totally bounded. To show that 
(b) implies (c), let A be totally bounded and suppose card(/l) = oo. Then 
there exists a subset B C A with card(B) = No- Since A is totally bounded, 
so is B. Let B = {y, : i G N}. Since F has uncountable cofinality, there 
exists an e G F+ such that e < p{yi,yj) for every i,j G N with i ^ j. Since 
B is totally bounded, there exists a n n f N such that B C Ui^j B(xue/2). 
Now B(xi,£r/2) contains at most one yj. Indeed, if yi,yj G B(xi,e/2), i ^ j, 
then 

£ £ 
p(yi,yj) < />(y.-,®i) + p{x\,yj) < 2 + 2 = £ 

which is a contradiction. Similarly, B ( x i , e f 2 ) contains at most one y y 

Hence, 
n 

B^\jB(xi,s/2) 
»=1 

which is a contradiction. We conclude that card(4) < 00. That (c) implies 
(a) is trivial. • 

Although compact sets are trivial when F has uncountable cofinality, we 
still have the notion of an a-compact set where a is the cardinality of a 
minimal cofinal subset I C F + . In this case, we call the set / - compact . We 
say that a set A C X is / -bounded if for any £ € F+ there exists balls Bi, 
i G A, with card(zi) < a such that A C Uie^ 

T H E O R E M 4.6. Let A be I-compact, (a) Every I-sequence in A has a 
cluster point in A. (b) A is I-bounded and I-complete. 

P r o o f , (a) This follows from Theorems 2.6 and 2.10. (b) That A is 
/-bounded is similar to the first part of the proof of Theorem 4.4. To show 
that A is /-complete, let Xi be a Cauchy /-sequence in A. By part (a), x, 
has a cluster point x 6 A. For £ G F+ there exists an n G / such that 
p(x{,xj) < e/2 whenever i,j > n. Since x is a cluster point of Xi, there 
exists a k > n such that x) < £¡2. Then i > n implies that 

p(xi, x) < p(xi,xk) -(- p{x,t, x) < | + | = e. 

Hence, x, —• x so A is /-complete. • 
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We do not know whether the converses of Theorem 4.6 hold. Following 
the discussion in the last paragraph of Section 3, *R = R N / i l has minimal 
cofinal set *N. Assuming the continuum hypothesis, it can be shown that 
card(*N) = Hi. Unfortunately, subsets of *R that we would like to be *N-
compact are not. For example, 

[ 0 , 1 ] = { z € *R : 0 < x < 1} 

is not "N-compact. Indeed, the family 

{9Jti(x) : x G [0,1] fl R} 

forms an open cover of [0,1]. However, 2Jti(x) fl 97ti(j/) = 0 for x,y G K, 
x ^ y. Hence, there is no subcover of [0,1]. In particular, there is no subcover 
indexed by a set of cardinality Ho-

If I C F+ is cofinal, an / - subsequence of an /-sequence (Xi : i G / ) is 
an /-sequence of the form (zu(;) : i G / ) where u : I —* I satisfies u(i) > i. 
If i G / and j > i, then u(j) > j > i so u is finalizing. Thus, if I is minimal 
cofinal, then an /-subsequence is a special case of an a-subnet. As usual, we 
say that A C X is bounded if A is contained in some ball. 

L e m m a 4 . 7 . (a) A point x 6 X is a cluster point of an I-sequence Xi if 
and only if x, has an I-subsequence converging to x. (b) If every I-sequence 
in A C X has an I-subsequence converging to a point in A, then A is closed 
and bounded. 

P r o o f , (a) Sufficiency is the same as the first part of the proof of The-
orem 2.6. For necessity, let x be a cluster point of X{. For i 6 / , there exists 
a u(i) € I such that u(i) > i and xu(,) £ B(x,i~l). Then (zu(,) : i G I ) is 
an /-subsequence of X{. To show that xu(,) —• x, consider a ball B(x,j~1), 
j € /• Then for i > j, we have u(i) > i > j. Hence, 

xu{t) e B(x,rl) c B{x,rx)-

(b) The proof of this is straightforward. • 

T h e o r e m 4 . 8 . Let (X,p) be an F-metric space, (Y,p') an F'-metric 
space and let I C F+ be minimal cofinal. If f : A Y is continuous, where 
A C X is I-compact, then f is uniformly continuous. 

P r o o f . Fix an £ € F'+. If x e A, there exists a 6(x) G F+ such 
that p'(f(x),f(y)) < e/2 whenever y G A with p(x,y) < ¿(x). Since 
/i c U by /-compactness there is a subcover A C 
Jx eA B(xi->6(xi)/2) where i G A with card(4) < card(/). Since / is min-
mal cofinal, there exists a <5 G F+ such that 6 < 6(xi)/2 for all i G A• If 
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x,y £ A with p(x,y) < 6, then x 6 B{x{, 6(x,) /2) for some i 6 A- Hence, 

p(x ,x . ) < < 6(xt) 

so f . ' ( f ( x ) , f(x{)) < e/2. Moreover , 

P(xi,y) < p{xi,x) + p(x,y) < 4- 6 

< ¿¿(x , ) + \b{xi) = 6(xi) 

and hence p'(f(xi),f(y)) < e /2. We conclude that 

/>'(/(*), f ( y ) ) < p'(f{x), f ( x t ) ) + p ' ( / ( x , ) , f ( y ) ) <£ + i = e . . 

It is clear that an F-metric space is Hausdorff. Moreover, the classical 
proof shows that an F-metric space is normal [5]. 

5. C o m p l e t e F-metr ic spaces 
We first discuss the completion of an F-metric space A'. Let I C F+ bo 

cofinal and let (£ be the set of Cauchy /-sequences in X. For (xi),{yt) f . i 
define the equivalence relation (x,) ~ (yi) if p(x, , r/i) —> 0. Let X be the set 
of equivalence classes relative to For € i , since 

p{xi,yi) < p(xi,Xj) + p{x3,yj) + p(yj,yi) 

it follows that 

Ip(xi,Vi) ~ p { x j , y j ) | < p{xi,2Tj) + p ( y j , y , ) . 

Hence, p(xi,yi) is a Cauchy /-sequence in F so p(x{,yi) can be icientiiied 
with an element of F. If x, y € X, where (x,) 6 x, (y,) € y, wo define 
/>(x, y) = (p(x,, j/,)) € F. Moreover, we define a : X —>• X by <7(.i;) = 
(x, x , . ..). The proof of the following theorem is straightforward. 

T H E O R E M 5 . 1 . ( X , p ) is an I-complete F-metric space and a : X —* X 

has dense range in X and satisfies p ( a ( x ) , a ( y ) ) = p(x,y) for all x,y 6 X . 

We call ( X , p ) the / - c o m p l e t i o n of ( X , p ) . As usual, ( X , p ) is unique 
to within an isometry. The proof of the next result is sirniar to ttio classical 
proof. 

T H E O R E M 5 . 2 . ( A ) If f : X X is uniformly continuous, then f has 

a unique uniformly continuous extension g : X —• X . ( b ) If f : X —» F is 

uniformly continuous, then f has a unique uniformly continuous extension 

g -.X ->F. 

An clement r € F+ is a bound for a subset A of an F-metric space A' 
if p{x, y) < r for all x, y £ A. If A, C X is an /-sequence of sets and there 
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exists an /-sequence of bounds r, for the A{, i £ / , such that r, —• 0, we 
write lim Ai = 0. We call Ai a nested I-sequence if Aj C Ai for j > i. The 
next result generalizes Cantor's characterization of complete metric spaces. 

THEOREM 5.3. Let X be an F-metric space and let I C F+ be minimal 
cofinal. Then X is I-complete if and only if for any nested I-sequence of 
nonempty closed sets Ai C X with lim Ai = 0, we have H ^ i = i 1 } for 

some x £ X. 

P r o o f . Assume X is /-complete and let Ai C X, i £ / , satisfy the 
conditions of the theorem. For each i £ / , let i j £ Ai. If £ € F+, then there 
exists an 7i G / such that r„ < e, where rn is a bound for An. lii,j > n, then 
Xi £ Ai C An and xj £ Aj C An. Hence, p(xi,ij) < rn < e so Xi is Cauchy. 
Since X is /-complete, i , —• x for some x £ X. For each j £ I, x, £ Aj for 
i > j and since Aj is closed, we have x 6 Aj. Hence, x € f ] Aj. If y G H 
then p(x, y) < Tj for every j € I. Since Tj 0, we have p(x, y) = 0 so y = x. 
Therefore, H ^ j = {a:}-

Conversely, assume that X has the stated nested closed sets property. 
Let xt be a Cauchy /-sequence in X. For each i £ / , let Ai be the closure 
of the set {xj : j > ¿}. Then Ai is a nested /-sequence of nonempty closed 
sets. Letting ui — ord( / ) we can write I = {i'a : a < a;} where each a is an 
ordinal. Define an increasing cofinal sequence na £ / , a < u>, inductively as 
follows. Suppose np is increasing, np > ip, and np has been defined for all 
ordinals (3 < a where a < u>. Since I is minimal cofinal, there exists an n € / 
such that n > np for all ¡3 < a. Now letting na = max{n, i a } completes the 
inductive definition. We next define an increasing cofinal sequence m a £ / , 
a < u>, such that ma > ia and p(xp,xq) < 1 ¡na whenever p,q > ma, 
inductively as follows. Suppose mp has been defined for all ¡3 < a where 
a < u>. Since / is minimal cofinal, there exists an m 6 / such that m > mp 
for all ¡3 < a. Moreover, since Xi is Cauchy, there exists an r £ I such that 
p(xp,xq) < 1 /na whenever p,q> r. Letting ma = max{m,r , t a } completes 
the inductive definition. 

We have thus constructed a nested sequence of nonempty closed sets 
Ama C X with bounds 1 /na, a < w. For i £ I , define Bi = Ama and 
n, = na where a is the smallest ordinal such that i < ma. Then Bi is an 
/-subsequence of Ai with bounds 1/rij, i £ / . Since n^ is a cofinal /-sequence, 
we have lim Bi = 0. By hypothesis, we conclude that (")/?{ = { i } for some 
x £ X. Given e £ F+, there exists an i £ / such that l / n ; < e and there 
exists a. j £ I such that Aj C Bi. Hence, if p > j, we have xp £ Aj C Bi. 
Since x £ Bi, we have p(xp,x) < 1 /n j < e. Hence, a:, —> x. m 

For the sufficiency part of Theorem 5.3, we did not need the minimality 
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COROLLARY 5.4. If I C F+ is cofinal and X is I-complete, then for any 

nested I-sequence of nonempty closed sets Ai C A' with lim = 0, we have 

f)At = {x} for some x £ X. 

We say that A' has the / -bal l p roper ty if for any set J C / with 
ca rd (J ) < card(7) and any nested ./-sequence of balls Bj, j € ./, we have 
D Bj 0. We now give an example of an /-complete F-metric space that 
does not have the /-ball property. Let A' = N and define the metric 

Then (X,p) is an R-metr ic space. Moreover, (X,p) is R-complete. Indeed, 
if Xi, i € R , is a Cauchy R-sequence, then there exists an n 6 R such that 
p(xi,xj) < 1 if i,j > n. Hence, z , = xn for i > n so Xi —• xn. However, 
(A ' , p ) does not have the R-bal l property. Indeed, N C R , card (N) < ca rd (R j , 
Bj = B(j + 1 , 1 + l / j ) , j € N, is a nested N-sequence of balls and yet 

We now prove a generalization of the Baire category theorem. 

THEOREM 5.5. Let X be an F-metric space, let I C F+ be minimal 

cofinal and suppose X is I-complete and has the I-ball property. If A C X 

is a union Ujg/ °f nowhere dense sets A{ C X, then Ac is dense in X. 

P r o o f . We can assume that each A , is closed (otherwise, let B — (J A{ 

and show that Bc is dense in X and since Bc C Ac, then Ac is dense in X). 

Let U be any nonempty open subset of X. We shall show that U fl Ac ^ 0 

which gives the results. Lett ing u = ord (/ ) , we can write A = | J 0 < U , A a . 

As in the proof of Theorem 5.3, there exists an increasing cofinal sequence 

nQ G /. a < ui. Define a nested sequence of closed balls Ba = B(xQ,ra), 

where rQ < 1 /na and Ba C Aca fl U inductively as follows. Since AQ is 

nowhere dense, any ball B C U is not a subset of Ao so BDAQ is a nonempty 

open set. Hence, there exists a closed ball Bo C B fl AQ with ro < 

Suppose Bp is defined for every (3 < a where a < u. By the /-ball property, 

there exists an x G D/3<or ^P- Since I is minimal cofinal, there exists a 

6 e F+ such that 6 < r@ - p(x,xp) for all (3 < a. Hence, B(x,6) C Bp for 

every ¡3 < a . Indeed, if y € B(x,6), then 

Since Aa is nowhere dense, B(x,S) is not a subset of Aa so B(x,6) 0 Aca is 
a nonempty open set. Lett ing xa = x, there exists an r „ < 1 jnQ such that 

1 + 1/ min(m, n) if n ^ m. 

if n = m 

0 ^ = 0 . 

p(y,xp) < p{y,x) + p(x,xp) < 6 + p(x,xp) < rp. 

B(xa,ra) C B(xa,6)nAca. 

This completes the inductive definition. 
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For i £ / , let 5 , = Ba where a is the least ordinal such tha t i < na. We 
thus obtain a nested /-sequence of nonempty closed sets Bi with lim Bi = 0. 
Since A' is / -complete , by Theorem 5.3 there exists an x £ X such tha t 

= {*}. Then 

* € U n ( f l ^ ) = u n (LM«') =UnAc.u 

The usual Baire category theorem follows from Theorem 5.5. Jus t let 
F = R, / = N, and note tha t the N-ball property holds trivially. T h e next 
corollary is a generalization of the uniform boundedness principle. 

C O R O L L A R Y 5 . 6 . Suppose X is an F-metric space satisfying the hy-
pothese of Theorem 5.5, Y is a topological space and g : Y F+ U {0} 
a continuous function. Let $ be a family of continuous functions from X 
into )r with the property that for each x £ X , there exists an Mx £ F+ U{0} 
such that (go f ) ( x ) < Mx for all / £ J- Then there exists a nonempty open 
set A C A' and an M € F+ U {0} such that (g o f ) ( x ) < M for all f £ $ 
and all x 6 A. 

P r o o f . For / 6 J and i £ I , let AitJ = (p o / ) _ 1 ( [ 0 , ¿]). Then A{J is 
closed since [0, z] is closed and g o f is continuous. Let Ai be the closed set 

A, j . Now X = | J , e / Ai because if £ 6 A", then x 6 A{ for all i > Mx. 
By Theorem 5.5, not all A{ are nowhere dense. Hence, some An = An,n 6 / , 
must contain a nonempty open set A. Then for all x £ A and / G we 
have {go f ) ( x ) £ [0, n\. Taking M — n, we have (go f ) ( x ) < M for all / £ J 
and all x £ A. • 

C O R O L L A R Y 5 . 7 . Let I C F+ be minimal cofinal. If X is an F-metric 
spacc that has the I-ball property, c a r d ( X ) = ca rd ( / ) , and singleton sets in 
X are not open, then X is not I-complete. 

P r o o f . We can write X = {x, : i £ / } . Hence, X = U i G / { x i } where 
{x,} is nowhere dense. If X were / -complete , this would contradict Theo-
rem 5.5. • 

C O R O L L A R Y 5 . 8 . Let *R = R N / i l be the hyperreal field. Assuming the 
continuum hypothesis, *R is not *N-complete. 

P r o o f . We have card(*R) = card(*N) and *N C * R + is minimal cofinal. 
Moreover, singleton sets in *R are not open. By the continuum hypothesis, if 

c a r d ( J ) < card(*N) = Kj 

then c a r d ( J ) < Ko- Since balls in *R are internal sets, by ^ - s a t u r a t i o n ['2, 
3, 10, 11, 13], the intersection of a nested N-sequence of balls is nonempty. 
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Hence, *R has the *N-ball property. The result now follows from Corol-
lary 5.7. • 

C O R O L L A R Y 5 . 9 . Let *R = R N / i l by the hyperreal field, and let *R be the 
*N-completion of* R. Assuming the continuum hypothesis, card(*R) = Ki. 

P r o o f . Suppose card( 'R) = card(*R) = Hj. If B[, i G N, is a nested 
N-sequence of balls in *R, since *R is dense in *R, we can construct a 
nested N-sequence of balls /?; in *R such that Bi C B\. As in the proof 
of Corollary 5.8, 0 ¿ Q f l Bi• H e n c e h a s t h e "N-baJl property. 
Since singleton sets in *R are not open, it follows from Corollary 5.7 that 
*R is not complete. Since this is a contradiction, card(*R) > Ki. Since 

card(*R) < card(*R*N) = N*1 = N2 

the result follows. • 

6. Open problems 
This section outlines some miscellaneous results and presents some open 

problems. In Section 2, we have discussed a-topological spaces. Let XT, 
T G T, be a-topological spaces and let X — I I r X r be their Cartesian product. 
The a -product topology 3a on X is the topology with base sets of the 
form U = II rU r where Ur C XT are open and UT = XT except for r e 
T'C T with card(T') < a . It is easy to show that {X,Za) is an a-topological 
space. Moreover, is the weakest a-topology on X such that the natural 
projections p r : X —• Xr, r G T, are continuous. An open problem is whether 
Tychonoff's theorem holds in this context. That is, if XT is a-compact for 
all r G T, is A' a-compact? 

In connection with Theorem 4.6 we have the following open problem. 
Are the following statements equivalent? (a) A is /-compact, (b) Every /-
sequence in A has a cluster point in A, (c) A is /-bounded and /-complete, 
(d) A is /-bounded and closed. 

We define the complexifícation of an ordered field F to be the set 
Fc = F X F with addition and multiplication given by 

(a, b) + (c, d) = (a + c,b+d), 
(a, b)(c, d) = (ac - bd, ad -f be). 

It is straightforward to show that Fc is a field. As usual, we write (a, b) = 
a + ib and define (a + ib)* — a - ib. We call F a square root field if for 
any a G F+ there exists a unique b G F+ such that b2 = a. We then write 
b = y/a = a 1 / 2 . For example, *R is a square root field. In the sequel, we 
assume that F is a square root field. We then define the modulus of an 
element of Fc as |a + ib\ = (a2 + b2)1!2. 
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An F - -normed space is a pair ( X , || • ||) where X is a linear space over 
F c and || • || : X —»• F + U {0} has the usual properties of a norm. Defining 
p(x,y) = ||x — 2/||, it is clear that an Fc-normed space is an F-metric space. 
A linear operator T : X —> X is defined in the usual way, and the proof of 
the following result is standard. 

THEOREM 6.1. If T : X -+ X is a linear operator, then the following 
statements are equivalent, (a) T is continuous, (b) T is continuous at 0. 
(c) The set {||Tx|| : ||x|| < 1} is bounded, (d) There exists an M 6 F + such 
that ||Tx|| < M\\x\\ for all x € X. 

If T satisfies condition (d) of Theorem 6.1, we say that T is bounded 
and M is a bound. Unlike the standard case, a bounded operator need 
not have a smallest bound. Moreover, a bounded operator need not have a 
finite bound. That is, every bound M for T may satisfy M > n for every 
h G N. As a consequence of Corollary 5.6, we have the following version of 
the uniform boundedness principle. 

THEOREM 6.2. Let I C F + be minimal cofinal, let X andY be Fc-normed 
spaces and suppose X is I-complete and has the I-ball property. For every 
a in a set A, let Ta : X —> Y be a continuous linear operator. If for every 
x 6 A', {Tax : a £ A} is bounded, then there exists an M € F + such that 
j|Tax11 < M||x|| for every a £ A, x € X. 

P r o o f . Applying Corollary 5.6, there exists an M' G F + such that 
||Tu2|| < M' for all z in some ball B{y,6) and all a € A. If ||z|| < 6, then 
IK- + y) - 2/11 <S so 

\\Taz\\<\\Ta(z + y)\\ + \\Tay\\<2M' 

for all a € A. If x ? 0, then ||6i/2||x|||| < 6. Hence, ||roix/2||x|||| < 2M' 
for all a 6 A. Letting M — AM'/b we have UTaiH < M||i|| for every a £ A, 
x e X. m 

The usual consequences of the uniform boundedness theorem can now 
be proved. As an open problem, do other important theorems of functional 
analysis hold in this context? For example, what about a Hahn-Banach 
theorem, an open mapping theorem and a closed graph theorem? 

An F c - inner product space is a pair (X, (•,•)) where X is a linear 
space over F c and (•, •) : X x X —• F c has the usual properties of a complex 
inner product. Defining the norm ||x|| = (x,x) 1/ 2 , we see that X is an 
Fc-normed space. It is straightforward to show that Schwarz's inequality 
|(x,j/)| < \\x\\\\y\\ holds. If ||x - 2/|| G 2H(0) we write x « y, and if a 6 F 
satisfies |a| > n for all n € N we call a infinite. A linear operator T on X 
is s y m m e t r i c if ( T x , y) — (x, Ty) for all x, y G X. 
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Let T be a linear operation on A' with domain a subspace T)(T) C A'. 
As usual, the point spec trum aP(T) of T is the set of A £ Fc such that 
XI — T is not injective, and if (XI — T)x = 0, x / 0, A is an e igenvalue 
with corresponding e igenvector x. Moreover, the continuous s p e c t r u m 
crc[T) is the set of A G Fc such that A ̂  crp(T), the range of XI - T is dense 
in A' but (XI - T)~l is not bounded. The next result generalizes a theorem 
in [6]. 

THEOREM 6.3. Let T be a linear operator on an Fc-normed space X where 
F has uncountable cofinality. If X £ ac(T), then there exists an x € D(T) 
with ||z|| = 1 such that Tx ss Xx. 

The vector x in Theorem 6.3 is called a (unit) ultraeigenvector of T 
corresponding to the ultraeigenvalue A. The next result also generalizes 
some theorems in [6]. 

THEOREM 6.4. Let T be a symmetric linear operator on an Fc-iuner 
product space X where F has uncountable cofinality. (a) op(T)U crc(T) C /' 
(b) If x,x' are unit ultraeigenvectors corresponding to distinct ultraeigenvai 
ues A, A' and if there exists an infinite a 6 F+ such that 

|A - A'| > a{\\Tx - Ax|| + | |Tx' - AV| | ) 

then ( x . x ' ) « 0. (c) If X, X' are distinct ultraeigenvalues o f T , then there 
exist unit ultraeigenvectors x,x' corresponding to A, A' such that (x,x') ~ 0. 

This last result generalizes a standard Hilbert space theorem. Are there 
important Hilbert space theorems that carry over to an /-complete Fc-inner 
product space? For example, what about the existence of an orthonormal 
basis, the Riesz representation theorem, the spectral theorem? 
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