

Czesław Bylka

FIXED POINT THEOREMS OF MATKOWSKI
ON PROBABILISTIC METRIC SPACES¹

Introduction

Let us mention that probabilistic metric spaces were introduced by Menger [3, 4, 5]. In Menger's theory the concept of distance is considered to be statistical or probabilistic, rather than deterministic: that is to say, given any two points p and q of a metric space, rather than consider a single non-negative real number $d(p, q)$ as a measure of the distance between p and q , a distribution function $F_{pq}(x)$ is introduced which gives the probabilistic interpretation as the distance between p and q is less than x ($x > 0$). For detailed discussions of probabilistic metric spaces and their applications we refer to Onicescu [6] and Schweizer [7,8].

Let (X, d) denote complete metric space and $T: X \rightarrow X$. Matkowski and Benedykt-Matkowski proved the following theorems:

THEOREM 1 [2]. *Let $G: [0, \infty) \rightarrow [0, \infty)$ fulfil the following conditions: g is nondecreasing in $[0, \infty)$, $\lim g^n(t) = 0$ for every $t > 0$, and $d(Tx, Ty) \leq g(d(x, y))$ for every $x, y \in X$.*

Then T has a unique fixed point x_0 and $\lim d(T^n x, x_0) = 0$ for every $x \in X$.

THEOREM 2 [1]. *Let $g: [0, \infty) \rightarrow [0, \infty)$ fulfil the following conditions:*

1⁰ g is nondecreasing,

2⁰ $\lim g^n(t) = 0$ for $t > 0$.

Suppose that there exists a function $n: X \rightarrow N$ such that for every $x \in X$ and $y \in X$

$$d(T^{n(x)} x, T^{n(y)} y) \leq g(d(x, y)).$$

¹Research supported by Polish Ministry of Education 61-253/94/BW.

Then T has exactly one fixed point $x_0 \in X$ and $\lim T^n(x) = x_0$ for every $x \in X$.

(Here g^n as well as T^k denotes the k -th iteration of g and T , respectively). Theorem 1 is an extension the well-known Banach contraction-mapping theorem.

The main purpose of this paper is to prove the counterparts of the above results for probabilistic metric spaces which reads as follows.

THEOREM 3. *Let (E, F, Δ) be a complete PM-Menger space, where Δ is a continuous function satisfying $\Delta(x, x) \geq x$ for each $x \in [0, 1]$, and T a mapping of E into itself. Let $g : [0, \infty) \rightarrow [0, \infty)$ fulfills the following conditions:*

- 1⁰ *g is nondecreasing in $[0, \infty)$,*
- 2⁰ *$\lim g^n(t) = \infty$ for every $t > 0$,*
- 3⁰ *$F_{TpTq}(x) \geq F_{pq}(g(x))$ for $x > 0$, and for every $p, q \in E$.*

The T has a unique fixed point p_0 and $\lim F_{T^n p p_0}(x) = 1$ for every $p \in E$, and $x > 0$.

THEOREM 4. *Let (E, F, Δ) be a complete PM-Menger space, where Δ is a continuous function satisfying $\Delta(x, x) \geq x$ for each $x \in [0, 1]$, and t is mapping of E into itself. Let $g : [0, \infty) \rightarrow [0, \infty)$ fulfills the following conditions:*

- 1⁰ *g is nondecreasing in $[0, \infty)$,*
- 2⁰ *$\lim g^n(t) = \infty$ for every $t > 0$.*

Suppose that there exists a function $n : E \rightarrow N$ such that for every $x, y \in E$

$$F_{T^n(p) p T^n(q) q}(x) \geq F_{pq}(g(x)), \quad \text{for every } x > 0.$$

Then T has exactly one fixed point $u \in E$ and $T^n p \rightarrow u$ for every $p \in E$.

The proofs will be in section 3.

1. Basic definitions and some auxiliary results

Let R denote the reals and $R^+ = \{x \in R : x \geq 0\}$.

DEFINITION 1. A mapping $F : R \rightarrow R^+$ is called a distribution function if it is nondecreasing, left-continuous with $\inf F = 0$ and $\sup F = 1$.

We will denote by L the set of all distribution functions.

DEFINITION 2. A probabilistic metric space (PM-space) is on ordered pair (E, F) , where E is an abstract set of elements and F is a mapping of $E \times E$ into L . We shall denote the distribution function $F(p, q)$ by F_{pq} and

$F_{pq}(x)$ will represent the value of F_{pq} at $x \in R$. The function F_{pq} , $p, q \in E$, are assumed to satisfy the following conditions:

- (PM-I) $F_{pq}(x) = 1$ for all $x > 0$, if and only if $p = q$,
- (PM-II) $F_{pq}(0) = 0$,
- (PM-III) $F_{pq} = F_{qp}$,
- (PM-IV) if $F_{pq}(x) = 1$ and $F_{qr}(y) = 1$, then $F_{pr}(x + y) = 1$,

for all $p, q, r \in E$.

Remark. Definition 2 suggests that $F_{pq}(x)$ may be interpreted as probability of the event that the distance between p and q is less than x .

DEFINITION 3. A mapping $\Delta : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is a Δ -norm if it satisfies

- (Δ -I) $\Delta(a, 1) = a$, $\Delta(0, 0) = 0$,
- (Δ -II) $\Delta(a, b) = \Delta(b, a)$,
- (Δ -III) $\Delta(c, d) \geq \Delta(a, b)$ for $c \geq a$, $d \geq b$,
- (Δ -IV) $\Delta(\Delta(a, b), c) = \Delta(a, \Delta(b, c))$.

Let B denote the set of all Δ -norms, partially ordered by $\Delta_1 \leq \Delta_2$ if and only if $\Delta_1(a, b) \leq \Delta_2(a, b)$ for all $a, b \in [0, 1]$ and $\Delta_1, \Delta_2 \in B$.

DEFINITION 4. A *Menger space* is a triplet (E, F, Δ) , where (E, F) is *PM*-space and $\Delta \in B$ satisfies the following triangle inequality:

- (PM-IV \sim) $F_{pr}(x + y) \geq \Delta(F_{pq}(x), F_{qr}(y))$

for all $p, q, r \in E$ and for all $x \geq 0, y \geq 0$.

The concept of a neighborhood in a *PM*-space was introduced by Schweizer and Sklar [9]. If $p \in E$, and μ, σ are positive reals, then an (μ, σ) -neighborhood of p , denoted by $U_p(\mu, \sigma)$, is defined by

$$U_p(\mu, \sigma) = \{q \in E : F_{pq}(\mu) > 1 - \sigma\}.$$

The following result is due to Schweizer and Sklar [9].

THEOREM 5. If (E, F, Δ) is a Menger space and Δ is continuous then (E, F, Δ) is a Hausdorff space with the topology induced by the family $\{U_p(\mu, \sigma) : p \in E, \mu > 0, \sigma > 0\}$ of neighborhoods.

Note that the above topology satisfies the first axiom of countability. In this topology a sequence $\{p_n\}$ in E converges to a $p \in E$ ($p_n \rightarrow p$) if and only if for every $\mu > 0$ and $\sigma > 0$, there exists an integer $M(\mu, \sigma)$ such that $p_n \in U_p(\mu, \sigma)$, i.e., $F_{pp_n}(\mu) > 1 - \sigma$ whenever $n \geq M(\mu, \sigma)$. The sequence $\{p_n\}$ will be called fundamental in E if for each $\mu > 0, \sigma > 0$, there is an integer $M(\mu, \sigma)$ such that $F_{p_n p_m}(\mu) > 1 - \sigma$ whenever $n, m \geq M(\mu, \sigma)$. In analogy with the completion concept of metric spaces, a Menger space E

will be called complete if each fundamental sequence in E converges to an element in E .

The following theorem is easy to prove and it establishes a connection between metric spaces and Menger spaces.

THEOREM 6. *If (E, d) is a metric space then the metric d induces a mapping $F: E \times E \rightarrow L$, defined by $F_{pq}(x) = H(x - d(p, q))$, $x \in R$, where $H(x) = 0$ if $x \leq 0$ and $H(x) = 1$ if $x > 0$. Further, the triple (E, F, Δ) is a Menger space with $\Delta(a, b) = \min\{a, b\}$. This space is complete if (E, d) is complete.*

The space (E, F, Δ) so obtained will be called *induced Menger space*.

Remark. Metric spaces are special cases of Menger spaces with $\Delta(x, x) \geq x$ for all $x \in [0, 1]$.

2. Banach contraction-mapping theorem on *PM*-spaces

We first introduce the notion of a contraction mapping on a *PM*-space.

DEFINITION 5. A mapping T of a *PM*-space (E, F) into itself will be called a *contraction mapping* if and only if there exists a constant k , with $0 < k < 1$, such that for each $p, q \in E$,

$$(*) \quad F_{T_p T_q}(kx) \geq F_{pq}(x) \quad \text{for all } x > 0.$$

Expression $(*)$ may be interpreted as follows; the probability that the distance between the image points T_p, T_q is less than kx is at least equal to the probability that the distance between p, q is less than x .

THEOREM 7 [10]. *Let (E, F, Δ) be a complete Menger space, where Δ is a continuous function satisfying $\Delta(x, x) \geq x$ for each $x \in [0, 1]$. If T is any contraction mapping from E into itself, then there is a unique $p \in E$ such that $Tp = p$. Moreover, $T^n q \rightarrow p$ for each $q \in E$.*

Now we state and prove the well-known Banach contraction-mapping theorem; this proof uses the notion of a probabilistic metric.

THEOREM 8. *Let (E, d) be a complete metric space and let $T: E \rightarrow E$ satisfy the following condition: there exists a constant k , $0 < k < 1$, such that $d(Tp, Tq) \leq kd(p, q)$ for all $p, q \in E$. Then T has a unique fixed point $p \in E$ and $T^n q \rightarrow p$ for each $q \in E$.*

Proof. If $F: E \times E \rightarrow L$ is the mapping induced by the metric d , then from Theorem 6 it follows that (E, F, Δ) is a complete Menger space, where $\Delta(a, b) = \min\{a, b\}$. Observe that T is a contraction from E into itself. Since

for each $x > 0$

$$\begin{aligned} F_{TpTq}(kx) &= H(kx - d(Tp, Tq)) \geq H(kx - kd(p, q)) = \\ &= H(x - d(p, q)) = F_{pq}(x), \end{aligned}$$

The conclusion follows now from Theorem 7.

3. Proofs of the present theorems

Proof of Theorem 3. We first prove the uniqueness. Suppose $p \neq q$ and $Tp = p$, $Tq = q$. Then by $(PM - 1)$, there exists an $x > 0$ and an a , with $0 \leq a < 1$, such that $F_{pq}(x) = a$. However, for each positive integer n , we have by 3⁰

$$a = F_{pq}(x) = F_{T^n p T^n q}(x) \geq F_{TpTq}(g^n(x)).$$

Since $F_{pq}(g^n(x)) \rightarrow 1$ as $n \rightarrow \infty$, it follows that $a = 1$. This contradicts the choice of a , and therefore, the fixed point is unique. To prove the existence of the fixed point, consider an arbitrary $q \in E$, and define $p_n = T^n q$, $n = 1, 2, \dots$. We show that the sequence $\{p_n\}$ is fundamental in E . Let μ, σ be positive reals. Then for $m > n$ and putting $k = m - n$ we have

$$\begin{aligned} F_{p_n p_m}(\mu) &\geq \Delta(F_{p_n p_{n+1}}(\mu k^{-1}), F_{p_{n+1} p_m}(\mu(k-1)k^{-1})) \geq \\ &\geq \Delta(F_{p_1 q}(d), F_{p_{n+1} p_m}(\mu(k-1)k^{-1})), \text{ where } d = g^n(\mu k^{-1}), \end{aligned}$$

and

$$\begin{aligned} F_{p_{n+1} p_m}(\mu(k-1)k^{-1}) &\geq \Delta(F_{p_{n+1} p_{n+2}}(\mu k^{-1}), F_{p_{n+2} p_m}(\mu(k-2)k^{-1})) \geq \\ &\geq \Delta(F_{p_1 q}(g^{n+1}(\mu k^{-1})), F_{p_{n+2} p_m}(\mu(k-2)k^{-1})) \geq \\ &\geq \Delta(F_{p_1 q}(d), F_{p_{n+2} p_m}(\mu(k-2)k^{-1})). \end{aligned}$$

Hence and by the associativity of Δ , and the hypothesis $\Delta(x, x) \geq x$, we have

$$\begin{aligned} (**) \quad F_{p_n p_m}(\mu) &\geq \Delta(F_{p_1 q}(d), \Delta(F_{p_1 q}(d), F_{p_{n+2} p_m}(\mu(k-2)k^{-1}))) = \\ &= \Delta(\Delta(F_{p_1 q}(d), F_{p_1 q}(d)), F_{p_{n+2} p_m}(\mu(k-2)k^{-1})) \geq \\ &\geq \Delta(F_{p_1 q}(d), F_{p_{n+2} p_m}(\mu(k-2)k^{-1})). \end{aligned}$$

Using the induction argument we obtain from $(**)$

$$\begin{aligned} F_{p_n p_m}(\mu) &\geq \Delta(F_{p_1 q}(d), \Delta(F_{p_{n+k-2} p_{n+k-1}}(\mu k^{-1}), F_{p_{m-1} p_m}(\mu k^{-1}))) \geq \\ &\geq \Delta(F_{p_1 q}(d), \Delta(F_{p_1 q}(g^{n+k-2}(\mu k^{-1})), F_{p_1 q}(g^{m-1}(\mu k^{-1})))) \geq \\ &\geq \Delta(F_{p_1 q}(g^n(\mu k^{-1}))). \end{aligned}$$

Therefore, if we choose N such that

$$F_{p_n p_m}(g^n(\mu k^{-1})) > 1 - \sigma,$$

$$F_{p_n p_m}(\mu) > 1 - \sigma \quad \text{for all } m > n \geq N.$$

Hence $\{p_n\}$ is a fundamental sequence in E . Since (E, F, Δ) is a complete PM -space, there is a $p \in E$ such that $p_n \rightarrow p$, that is $T^n q \rightarrow p$. We shall show that $T^n q \rightarrow Tp$ also. Let $U_{Tp}(\mu, \sigma)$ be any neighborhood of Tp . Then $p_n \rightarrow p$ implies the existence of an integer $N = N(\mu, \sigma)$ such that $p_n \in U_p(\mu, \sigma)$ for all $n \geq N$. However

$$F_{Tp_n Tp}(\mu) \geq F_{p_n p}(g(\mu)) \geq F_{p_n p}(\mu) > 1 - \sigma \quad \text{for all } n \geq N$$

that is $T^n q \rightarrow Tp$. Therefore we conclude that $Tp = p$. This proves the existence part of Theorem 3.

Proof of Theorem 4. Let us define: $Sp = T^{n(p)} p$ for $p \in E$. Then

$$F_{Sp Sq}(x) \geq F_{pq}(g(x)) \quad \text{for any } p, q \in E \quad \text{and } x > 0.$$

According to Th. 3 there is $u \in E$ such that $S(u) = u$. One can easily verify that u is a unique fixed point of T and $T^n q \rightarrow u$, for any $q \in E$.

References

- [1] Z. Benedykt J. Matkowski, *Remarks on some fixed point theorem*, Demonstratio Math. 14 (1981), 227–232.
- [2] J. Matkowski, *Integrable solutions of functional equation*, Dissertationes Math. 127, p. 8.
- [3] K. Menger, *Probabilistic geometry*, Proc. Nat. Acad. Sci., USA, 37 (1951), 226–220.
- [4] K. Menger, *Statistical metrics*, ibid. 28 (1942), 535–537.
- [5] K. Menger, *Untersuchungen über allgemeine Metrik*, Math. Ann. 100 (1928), 75–163.
- [6] O. Onicescu, *Numbers et Systems Aleatoires*, Editions de l'Acad. de la R.P. Roumaine, 1964, Bucarest.
- [7] B. Schweizer, *Probabilistic metric spaces — the first 25 years*, The N.Y. Statistician, 19 (1967), 3–6.
- [8] B. Schweizer, *Probabilistic metric spaces*, Probabilistic methods in applied mathematics, (B.A.T. Bharucha – Reid, ed.), vol. 4, Acad Press, New York, 1973.
- [9] B. Schweizer and A. Sklar, *Statistical metric spaces*, Pacific J. Math. 10 (1960), 313–334.
- [10] V. M. Sehgal and A. T. Bharucha-Reid, *Fixed points of contraction mappings on probabilistic metric spaces*, Math. Systems Theory 6, 2 (1972), 97–102.

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF POZNAN
Piotrowo 3a
60-965 POZNAŃ, POLAND

Received May 16, 1994.