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FIXED POINT THEOREMS OF MATKOWSKI
ON PROBABILISTIC METRIC SPACES!

Introduction

Let us mention that probabilistic metric spaces were introduced by Men-
ger (3, 4, 5]. In Menger’s theory the concept of distance is considered to be
statistical or probabilistic, rather than deterministic: that is to say, given
any two points p and ¢q of a metric space, rather than consider a single non-
negative real number d(p,q) as a measure of the distance between p and
g, a distribution function F,,(z) is introduced which gives the probabilistic
interpretation as the distance between p and q is less than z(z > 0). For
detailed discussions of probabilstic metric spaces and their applications we
refer to Onicescu [6] and Schweizer [7,8].

Let (X, d) denote complete metric space and T: X — X. Matkowski and
Benedykt-Matkowski proved the following theorems:

THEOREM 1 [2]. Let G : [0,00) — [0,00) fulfil the following conditions:
g is nondecreasing in [0,00), lim g™(t) = 0 for everyt > 0, and d(Tz,Ty) <
g(d(z,y)) for every z,y € X.

Then T has a unique fixed point zo and limd(T"z,z¢) = 0 for every
r€eX.

THEOREM 2 [1]. Let g : [0,00) — [0, 00) fulfil the following conditions:
19 g is nondecreasing,
20 lim g™(t) = 0 for t > 0.
Suppose that there ezists a function n : X — N such that for every
reXandye X
ATz, T"Vy) < g(d(x,y))-
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Then T has ezactly one fized point zo € X and limT"(z) = zq for every
reX.

(Here g™ as well as T* denotes the k-th iteration of g and T, respectively).
Th.orem 1 is an extension the well-known Banach contraction-mapping the-

orem.
The main purpose of this paper is to prove the counterparts of the above

results for probabilistic metric spaces which reads as follows.

THEOREM 3. Let (E, F,A) be a complete PM-Menger space, where A
is a continuous function satisfying A(z,z) > z for each z € [0,1], and T
a mapping of E into itself. Let g : [0,00) — [0,00) fulfiles the following
conditions:

1° g is nondecreasing in [0, 00),

20 lim g™(t) = oo for every t > 0,

3% Prpre(z) 2 Fye(g(z)) for z > 0, and for every p,q € E.

The T has a unique fized point pg and lim Frapp () = 1 for everyp € E,
and z > 0.

THEOREM 4. Let (E, F,A) be a complete PM -Menger space, where A
is a continuous function satisfying A(z,z) > z for each z € [0,1], and ¢
is mapping of E into itself. Let g : [0,00) — [0,00) fulfiles the following
conditions:

1° g is nondecreasing in [0, 00),

20 lim g™(t) = oo for every t > 0.

Suppose that there ezxists a function n : E — N such that for every
z,ye FE

Fraw)pra@g(T) 2 Fpe(g(z)), for every z > 0.
Then T has ezactly one fized point u € E and T"p — u for everyp € E.

The proofs will be in section 3.

1. Basic definitions and some auxiliary results

Let R denote the reals and Rt = {z € R:z > 0}.

DEFINITION 1. A mapping F: R — R* is called a distribution function
if it is nondecreasing, left-continiuous with inf ¥ = 0 and sup F = 1.

We will denote by L the set of all distribution functions.

DEFINITION 2. A probabilistic metrix space (PM-space) is on ordered
pair (E, F), where E is an abstract set of elements and Fis a mapping of
E x E into L. We shall denote the distribution function F(p,q) by F,, and
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F,,(z) will represent the value of Fy,, at € R. The function Fy,, p,q € E,
are assumed to satisfy the following conditions:

(PM-]) Fyy(z) =1forall z > 0, if and only if p=gq,
(PM-II)  F,,(0) =0,

(PM-III)  Fpy = Fyp,

(PM-1V) if Fpg(z) = 1 and Fy,(y) = 1, then F, (2 +y) = 1,
for all p,q,r € E.

Remark. Definition 2 suggests that Fpo(z) may be interpreted as prob-
ability of the event that the distance between p and ¢ is less than z.

DEFINITION 3. A mapping A : [0,1] X [0,1] — [0,1] is a A-norm if it
satisfies
(4-) Ae,l)=a, A(0,0)=0,
(A'II) A(avb) = A(bva)’
(A-III) A(e,d) > A(a,b) for ¢ > a, d > b,
(A1V) A(A(a,8),¢) = Aa, A(b,c).

Let B denote the set of all A-norms, partially ordered by A; < A, if
and only if Ay(a,b) < Ay(a,b) for all a,b€ [0,1] and 4,,A4; € B.

DEFINITION 4. A Menger space is a triplet (E, F, A), where (E, F) is
PM-space and A € B satisfies the following triangle inequality:

(PM-IV™)  Fpr(z + y) 2 A(Fpg(), For(y))
for all p,q,7 € E and for all z > 0,y > 0.

The concept of a neighborhood in a PM-space was introduced by Schwei-
zer and Sklar [9]. If p € E, and p, 0 are positive reals, then an (u,o)-neigh-
borhood of p, denoted by Up(p,0), is defined by

Up(y0) = {q € E: Fpo(p) > 1 -0}

The following result is due to Schweizer and Sklar [9].

THEOREM 5. If (E, F, A) is a Menger space and A is continuous then
(E,F,A) is a Hausdorff space with the topology induced by the familly
{Up(p,0):p€ E ,u>0, 0 >0} of neighborhoods.

Note that the above topology satisfies the first axiom of countability. In
this topology a sequence {p,} in E converges to a p € E (p, — p) if and
only if for every p > 0 and o > 0, there exists an integer M(u,0) such that
bn € Up(p,0),i.e., Fpp () > 1 — 0 whenever n > M(u,0). The sequence
{pn} will be called fundamental in E if for each p > 0,0 > 0, there is an
nteger M(u, o) such that F, , (u) > 1 — o whenever n,m > M(g,0). In
inalogy with the completion concept of metric spaces, a Menger space F
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will be called complete if each fundamental sequence in E converges to an
element in E.

The following theorem is easy to prove and it establishes a connection
between metric spaces and Menger spaces.

THEOREM 6. If (E,d) is a metric space then the metric d induces a
mapping F: E x E — L, defined by Fpo(z) = H(z — d(p,q)), = € R, where
H(z)=0ifz <0and H(z) =1 ifz > 0. Further, the triple (E,F, A) is
a Menger space with A(a,b) = min{a,b}. This space is complete if (E,d) is
complete.

The space (E, F, A) so obtained will be called induced Menger space.

Remark. Metric spaces are special cases of Menger spaces with
A(z,z) > z for all z € [0,1].

2. Banach contraction-mapping theorem on PM-spaces
We first introduce the notion of a contraction mapping on a PM-space.

DEFINITION 5. A mapping T of a PM-space (E, F) into itself will be
called a contraction mapping if and only if there exists a constant &, with
0 < k < 1, such that for each p,q € F,

(%) Frpre(kz) > Fpe(z) forallz > 0.

Expression (*) may be interpreted as follows; the probability that the
distance between the image points Ty, T, is less than kz is at least equal to
the probability that the distance between p, ¢ is less than z.

THEOREM 7 [10]. Let (E, F, A) be a complete Menger space, where A is
a continuous function satisfying A(z,z) > z for each z € [0,1]. If T is any
contraction mapping from E into itself, then there is a unique p € E such
that Tp = p. Moreover, T"q — p for each g€ F.

Now we state and prove the well-known Banach contraction-mapping
theorem; this proof uses the notion of a probabilistic metric.

THEOREM 8. Let (E,d) be a complete metric space and let T : E — E
satisfy the following condition: there exists a constant k,0 < k < 1, such
that d(Tp,Tq) < kd(p,q) for all p,q € E. Then T has a unique fized point
p€ E and T"q — p for each q € E.

Proof If F: Ex E — L is the mapping induced by the metric d, thern
from Theorem 6 it follows that (E, F; A) is a complete Menger space, where
A(a,b) = min{a,b}. Observe that T is a contraction from F into itself. Since
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for each z > 0
Frpre(kz) = H(kz — d(Tp,Tq)) > H(kz - kd(p,q)) =
= H(z — d(p,q)) = Fye(z),
The conclusion follows now from Theorem 7.

3. Proofs of the present theorems

Poof of Theorem 3. We first prove the uniqueness. Suppose p # ¢
and Tp = p, Tq = ¢q. Then by (PM — 1), there exists an z > 0 and an a,
with 0 < a < 1, such that F,,(z) = a. However, for each positive integer n,
we have by 3°

a = Fpo(z) = Freprno(2) 2 Frprge(9™())-
Since Fpq(g™(z)) — 1 as » — o0, it follows that a = 1. This contradicts the
choice of a, and therefore, the fixed point is unique. To prove the existence
of the fixed point, consider an arbitrary ¢ € FE, and define p, = T"g,
n =1,2,... We show that the sequence {p,} is fundamental in E. Let u,o
be positive reals. Then for m > n and puting k = m — n we have

Fpupm (1) 2 A(Fpupuss (1 71), Fppyip (u(k = 1)E7Y)) 2
2 A(FPHI(d)7 Fp..+1p...(l‘(k - l)k_l))’ where d = gn(/‘k_l)v
and
P sipm (k= 1)E7Y) 2 A(Fpp 1 pu g (BETY), By p (0(k — 2)k71)) 2
> A(Fpyo(g"t 0k ™)), Fpo sapm (1(k = 2)k71)) >
2 A(Fplq(d)a Fot2pm (n(k - 2)k-l))-

Hence and by the associativity of A, and the hypothesis A(z,z) > z, we
have

(%) Foppn (1) 2 A(Fpyq(d), A(Fpyo(d), Fy, yapn (K — 2)k71))) =
= A(A(Fpyq(d), Fpio(d)), Fpp yzpm ((k = 2)E71))) 2
> A(Fpyq(d), Fy, yopn (u(k = 2)k71)).
Using the induction argument we obtain from (##)
Fopm (1) 2 A(Fp,4(d), A(Fp..“-:pu“-x(l‘k—l )s Fom—1pm (l‘k_l ) >
> A(Fpyo(d), A(Fpg(g™+ =2 (uk™1)), Fpq(g™~H (1k™1)))) 2
> A(Fp,q(g™(1k™1)).
['herefore, if we choose N such that
Fpnpm(gn(l‘k—l)) >1-o,
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Fppn(p)>1—0 forallm>n>N.

Hence {p,} is a fundamental sequence in E. Since (E, F,A)is a complete
PM-space, there is a p € E such that p, — p, that is T"q — p. We
shall show that T"q — Tp also. Let Ur,(u,0) be any neighborhood of Tp.
Then p, — p implies the existence of an integer N = N(u,0) such that
pn € Uy(u,0) for all n > N. However

Frop,1p(8) 2 Fp,p(9(1)) 2 Fpp(p) > 1 -0 foralln2> N

that is T"¢ — Tp. Therefore we conclude that Tp = p. This proves the
existence part of Theorem 3.

Proof of Theorem 4. Let us define: Sp=T™P)pfor pe E. Then
Fspsq(z) 2 Fpe(g(z)) forany p,ge E and =z >0.

According to Th. 3 there is u € E such that S(u) = u. One can easily verify
that u is a unique fixed point of T' and T"q — wu, for any ¢ € E.
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