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Introduction 
Let us mention that probabilistic metric spaces were introduced by Men-

ger [3, 4, 5]. In Menger's theory the concept of distance is considered to be 
statistical or probabilistic, rather than deterministic: that is to say, given 
any two points p and q of a metric space, rather than consider a single non-
negative real number d(p,q) as a measure of the distance between p and 
q, a distribution function Fpq(x) is introduced which gives the probabilistic 
interpretation as the distance between p and q is less than x(x > 0). For 
detailed discussions of probabilstic metric spaces and their applications we 
refer to Onicescu [6] and Schweizer [7,8]. 

Let (A', d) denote complete metric space and T: X —• X. Matkowski and 
Benedykt-Matkowski proved the following theorems: 

T H E O R E M 1 [2]. Let G : [0,oo) -»• [0,oo) fulfil the following conditions: 
g is nondecreasing in [0, oo), lim gn(t) = 0 for every t > 0, and d(Tx, Ty) < 
g(d(x, y)) for every x, y G X. 

Then T has a unique fixed point xo and lim d(Tnx, Xo) = 0 for every 
i a . 

T H E O R E M 2 [1]. Let g : [0, oo) [0,oo) fulfil the following conditions: 

1° g is nondecreasing, 
2° lim gn(t) = 0fort>0. 

Suppose that there exists a function n : X —• N such that for every 
x e X and y G X 

d(Tn^x,Tn^y) < g(d(x,y)). 
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Then T has exactly one fixed point zo € X and l i m T n ( i ) = Xo for every 
x e x. 

(Here gn as well its Tk denotes the fc-th iteration of g and T, respectively). 
Theorem 1 is an extension the well-known Banach contraction-mapping the-
orem. 

The main purpose of this paper is to prove the counterparts of the above 
results for probabilistic metric spaces which reads as follows. 

T H E O R E M 3 . Let (E,F,A) be a complete PM-Menger space, where A 
is a continuous function satisfying A{x,x) > x for each x £ [0,1], and T 
a mapping of E into itself. Let g : [0,oo) —• [0,oo) fulfiles the following 
conditions'. 

1° g is nondecreasing in [0,oo), 
2° l i m g n ( t ) = oo for every t > 0, 
3° F'TpTqix) > FPq(g{x)) for x > 0, and for every p,q 6 E. 

The T has a unique fixed point po and lim FT«PPO(X) = 1 for every p £ E, 
and x > 0. 

T H E O R E M 4 . Let (E,F,A) be a complete PM-Menger space, where A 
is a continuous function satisfying A(x,x) > x for each x G [0,1], and t 
is mapping of E into itself. Let g : [0,oo) —• [0,oo) fulfiles the following 
conditions: 

1° g is nondecreasing in [0,oc), 
2° lim gn(t) = oo for every t > 0. 

Suppose that there exists a function n : E N such that for every 
x,y e E 

Ft„(p)pTn(q)q{x) > Fpq(g(x)), for every x > 0. 
Then T has exactly one fixed point u £ E and Tnp —• u for every p G E. 

The proofs will be in section 3. 

1. Basic definitions and some auxiliary results 

Let R denote the reals and R+ = {x € R : x > 0}. 

D E F I N I T I O N 1. A mapping F: R R+ is called a distribution function 
if it is nondecreasing, left-continiuous with i n f F = 0 and s u p . F = 1. 

We will denote by L the set of all distribution functions. 

D E F I N I T I O N 2 . A probabilistic metrix space {PM-space) is on ordered 
pair ( E , F ) , where E is an abstract set of elements and F i s a mapping of 
E X E into L. We shall denote the distribution function F[p,q) by Fpq and 
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Fpq(x) will represent the value of Fpq at x G R. The function Fpq, p,q G E, 
lire assumed to satisfy the following conditions: 

JPM-I) FPg(x) = 1 for all x > 0, if and only if p = q, 
(PM-II ) Fpq{ 0) = 0, 

for all p,q,r G E. 

R e m a r k . Definition 2 suggests tha t Fpq(x) may be interpreted as prob-
ability of the event tha t the distance between p and q is less than x. 

D E F I N I T I O N 3. A mapping A : [0,1] x [0,1] ->• [0,1] is a A-norm if it 

(A-I) A(a, 1) = a, A ( 0 , 0 ) = 0, 
( A - I I ) A(a,b) - A(b,a), 
(\d-III) A{c, d) > A(a, b) for c > a, d > b, 
(zi-IV) A(A(a, b), c) = A(a, A(b, c)). 

Let B denote the set of all zi-norms, partially ordered by A\ < A<i if 
arid only if Ai(a,b) < A2(a,b) for all a, b £ [0,1] and AI,A2 € B. 

D E F I N I T I O N 4 . A Menger space is a triplet (E,F,A), where ( E , F ) is 
FM-space and A G B satisfies the following triangle inequality: 

(PM- IV~) Fpr{x + y)> A(Fpq(x), Fqr(y)) 

for all p,q,r £ E and for all x > 0, y > 0. 

The concept of a neighborhood in a PM-space was introduced by Schwei-
zer and Sklar [9]. If p G E, and f i , a are positive reals, then an ( /^(^-neigh-
borhood of p, denoted by Up(n,(r), is defined by 

T h e following result is due to Schweizer and Sklar [9]. 

T H E O R E M 5 . If (E,F,A) is a Menger space and A is continuous then 
(E,F,A) is a Hausdorff space with the topology induced by the familly 
{UP(FX, a) : p G E , y. > 0, a > 0} of neighborhoods. 

Note tha t the above topology satisfies the first axiom of countability. In 
this topology a sequence {p n } in E converges to a p £ E ( p n —• p) if and 
anly if for every /z > 0 and a > 0, there exists an integer M( /x ,a ) such tha t 
fn G UP(P,(T), i.e., FppN(FJ.) > 1 - A whenever n > M(/i ,<j) . The sequence 
{pn} will be called fundamenta l in E if for each /i > 0,CT > 0, there is an 
nteger M(FI,<R) such tha t FPNPM(P) > 1 — A whenever n,m > M(FI,A). In 
inalogy with the completion concept of metric spaces, a Menger space E 

(PM-III ) 
(PM-IV) 

satisfies 

Up(fx,a)={qeE:Fpq(ti)>l-a). 
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will be called complete if each fundamental sequence in E converges to an 
element in E. 

The following theorem is easy to prove and it establishes a connection 
between metric spaces and Menger spaces. 

T H E O R E M 6 . If (E,d) is a metric space then the metric d induces a 
mapping F : E X E —• L, defined by Fpq(x) = H(x - d(p, q)), x £ R, where 
H(x) = 0 if x < 0 and H(x) = 1 if x > 0. Further, the triple (E,F,A) is 
a Menger space with A(a,b) = min{a,6}. This space is complete if (E,d) is 
complete. 

The space ( E , F , A ) so obtained will be called induced Menger space. 

R e m a r k . Metric spaces are special cases of Menger spaces with 
A(x,x) > x for all x £ [0,1]. 

2. Banach contraction-mapping theorem on PM-spaces 
We first introduce the notion of a contraction mapping on a PM-space. 

D E F I N I T I O N 5 . A mapping T of a PM-space ( E , F ) into itself will be 
called a contraction mapping if and only if there exists a constant k, with 
0 < k < 1, such that for each p,q £ E, 

(*) FTpTq{kx) > Fpq(x) for all x > 0. 

Expression (*) may be interpreted as follows; the probability that the 
distance between the image points Tp, Tq is less than kx is at least equal to 
the probability that the distance between p, q is less than x. 

T H E O R E M 7 [ 1 0 ] . Let (E, F, A) be a complete Menger space, where A is 
a continuous function satisfying A(x,x) > x for each x £ [ 0 , 1 ] . If T is any 
contraction mapping from E into itself, then there is a unique p 6 E such 
that Tp — p. Moreover, Tnq -* p for each q £ E. 

Now we state and prove the well-known Banach contraction-mapping 
theorem; this proof uses the notion of a probabilistic metric. 

T H E O R E M 8 . Let (E,d) be a complete metric space and let T : E —>• E 
satisfy the following condition: there exists a constant k, 0 < k < 1, such 
that d(Tp,Tq) < kd(p,q) for allp,q 6 E. Then T has a unique fixed point 
p G E and Tnq —> p for each q £ E. 

P r o o f , li F : E X E —> L is the mapping induced by the metric d, thei* 
from Theorem 6 it follows that (E , F, A) is a complete Menger space, where 
A(a, b) = min{a, 6}. Observe that T is a contraction from E into itself. Since 
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for each x > 0 

FTpTq(kx) = H(kx - d(Tp,Tq)) > H(kx - kd(p,q)) = 

= H{x - d(p,q)) = Fpq(x), 

The conclusion follows now from Theorem 7. 

3. Proofs of the present theorems 

P o o f o f T h e o r e m 3. We first prove the uniqueness. Suppose p q 

and Tp = p, Tq = q. Then by ( P M — 1), there exists an x > 0 and an a, 

with 0 < a < 1, such that Fpq(x) = a. However, for each positive integer n, 
we have by 3° 

a = Fpq(x) = F T « p T » q { x ) > FTpTg(9n(x)). 

Since Fpq(gn(x)) —• 1 as n —> oo, it follows that a = 1. This contradicts the 
choice of a, and therefore, the fixed point is unique. To prove the existence 
of the fixed point, consider an arbitrary q G E, and define pn = Tnq, 

n = 1 , 2 , . . . We show that the sequence { p n } is fundamental in E. Let /x, a 

be positive reals. Then for m > n and puting k = m - n we have 

F p . P M > ¿ ( F ^ ^ i f i k - ' ^ F ^ M k - l ) * " 1 ) ) > 

> A(FPiq(d), FPn+lPMk - I ) * " 1 ) ) , where d = 

and 

F P n + l P M k ~ 1 )k~l) > A i F ^ ^ k - ^ F ^ M k - 2 ) * " 1 ) ) > 

> ¿ ( F ^ i g ^ i n k - ^ F ^ M k - 2 )A; - 1 ) ) > 

> A ( F P i q ( d ) , F p n + 2 Pm 

Hence and by the associativity of A, and the hypothesis A(x,x) > x, we 
have 

[**) FPnPm(n) > A ( F P i q ( d ) , A ( F P i q ( d ) , F P n + , P M k - 2 ) * - 1 ) ) ) = 

= A ( A ( F P i q ( d ) , F P i q ( d ) ) , F P n „ P M k - 2)k~1))) > 

> A ( F P i q ( d ) , F P n „ P M k - 2 ) k ~ 1 ) ) . 

Using the induction argument we obtain from ( * * ) 

> A i F ^ g ^ k - ' ) ) . 

Therefore, if we choose N such that 

F P „ V m { 9 n { n k - l ) ) > \ - c , 
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FPnPm(n) > 1 - a for all m > n > N. 
Hence {/>„} is a fundamental sequence in E. Since ( E , F , A ) is a complete 
PM-space, there is a p G E such that pn —• p, that is Tnq —• p. We 
shall show that Tnq —• Tp also. Let Utp(p,p) be any neighborhood of Tp. 
Then pn —* p implies the existence of an integer N = N ( f i , a ) such that 
Pn G U p (ß ,a ) for ail n > TV. However 

FTPnTP(fi) > Fp%p{g{y)) > F p M > 1 - for all n > ^ 

that is Tnq Tp. Therefore we conclude that Tp = p. This proves the 
existence part of Theorem 3. 

P r o o f of T h e o r e m 4. Let us define: Sp = T n ^ p for p £ E. Then 

Fspsq(x) > Fpq(g(x)) for a n y p,q £ E a n d x > 0. 

According to Th. 3 there is u G E such that 5 ( u ) = u. One can easily verify 
that u is a unique fixed point of T and Tnq —> u, for any q E E. 
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