

Janusz Januszewski

ON-LINE COVERING OF THE UNIT SQUARE
BY A SEQUENCE OF CONVEX BODIES

We say that a sequence Q_1, Q_2, \dots of sets of Euclidean d -space E^d permits a covering of a set $S \subset E^d$ if there are rigid motions $\sigma_1, \sigma_2, \dots$ such that S is contained in the union of sets $\sigma_i Q_i$, where $i = 1, 2, \dots$. Groemer [2] proved that every sequence of convex bodies of E^d of diameters at most 1 and of total volume at least $(2^d - 1)d^d$ for $d > 3$ (and at least 6 for $d = 2$) permits a covering of the unit cube I^d .

The on-line covering by convex bodies is considered in [3]. The on-line covering restriction means that we learn every Q_i with $i > 1$ only after the motion σ_{i-1} has been provided. This kind of restriction has been introduced for packing by Lassak and Zhang [4] who considered the on-line version of the well known potato-sack problem of Auerbach, Banach, Mazur and Ulam [1]. In this paper we improve the estimate of 28 (see [3]) for the total area of a sequence of planar convex bodies that permits an on-line covering of I^2 to 15.

THEOREM. *Every sequence of planar convex bodies of diameters at most 1 whose total area is at least 15 permits an on-line covering of the unit square. If the bodies are rectangles, then the total area of 7.5 is sufficient for the covering.*

The problem of an on-line covering by planar convex bodies reduces to the problem of an on-line covering by rectangles thanks to the Radziszewski's theorem (see [5]) that every planar convex body P contains a rectangle R whose area $|R|$ is at least $\frac{1}{2}|P|$.

Let Q_1, Q_2, \dots be an arbitrary sequence of rectangles of sides at most 1. A rectangle S_i of sides s_i, h_i , where $h_i \in \{2^{-1}, 2^{-2}, \dots\}$ and $0 < s_i \leq 2h_i$

Research supported in part by Komitet Badań Naukowych (Committee of Scientific Research), grant number 2 2005 92 03.

AMS Classification: 52C15.

Key words: on-line covering, convex body.

is called *a standard rectangle*. Observe that every rectangle Q_i contains a standard rectangle S_i such that $|S_i| \geq \frac{1}{2}|Q_i|$. We will cover the unit square by the corresponding sequence of standard rectangles.

If $h_i < \frac{1}{8}$, then S_i is called *a small standard rectangle*. If $h_i \geq \frac{1}{8}$, then S_i is called *a large standard rectangle*. For an on-line covering of I^2 by small standard rectangles a modification of the method from [3] is used. Small rectangles will be used for covering the unit square successively from the "bottom". Large standard rectangles will be put by another method starting from the "top" of I^2 .

Let $A_k = \{(x, y) : 0 \leq x \leq d_k, h_{k-1} \leq y \leq h_k\}$, where $d = d_1 > \dots > d_n > 0$ and $0 = h_0 < \dots < h_n = h$. The set $\bigcup_{k=1}^n A_k$ is denoted by A_{dh} . Below we describe a method of covering of A_{dh} by arbitrary sequences B_1, B_2, \dots of small standard rectangles. We call it *the auxiliary method*.

For every $i = 2, 3, \dots$ we find the greatest number b_i not greater than h such that every point of A_{dh} with the second coordinate smaller than b_i is covered by rectangles $\sigma_1 B_1, \dots, \sigma_{i-1} B_{i-1}$. We start with $b_1 = 0$.

We find a motion σ_i such that

$$\sigma_i B_i = \{(x, y) : \alpha_i \leq x \leq \alpha_i + s_i \text{ and } \beta_i \leq y \leq \beta_i + h_i\},$$

where

- 1) β_i is the greatest multiple of $\frac{1}{3}h_i$ not exceeding b_i ;
- 2) α_i is the greatest number such that the set $\{(x, y) \in A_{dh} : 0 \leq x < \alpha_i, y = \beta_i + h_i\}$ is covered by rectangles preceding B_i .

We stop the covering process if $b_i = h$ for an index i .

LEMMA. *A sequence B_1, B_2, \dots of small standard rectangles permits an on-line covering of A_{dh} if the total area of this sequence is at least $3|A_{dh}| + \frac{1}{4}h + \frac{3}{16}d$.*

P r o o f. Every rectangle $\sigma_i B_i$ covers for the first time a region containing the rectangle $\{(x, y) : \alpha_i < x \leq \alpha_i + s_i, \beta_i + \frac{2}{3}h_i < y \leq \beta_i + h_i\}$. Thus, rectangles $\sigma_1 B_1, \dots, \sigma_k B_k$ cover a region of area at least $\frac{1}{3} \sum_{i=1}^k |B_i|$, for every index k .

Since $s_i \leq \frac{1}{8}$ and $h_i \leq \frac{1}{16}$, every rectangle $\sigma_i B_i$ is contained in the set $A_{dh}^* = \bigcup_{k=1}^n (A_k \cup D_k \cup C_k)$, where

$$D_1 = \{(x, y) : d_1 < x < d_1 + \frac{1}{8}, 0 \leq y \leq h_k + \frac{1}{16}\},$$

$$D_k = \{(x, y) : d_k < x < d_k + \frac{1}{8}, h_{k-1} + \frac{1}{16} \leq y \leq h_k + \frac{1}{16}\}$$

for $k = 2, \dots, n$, and

$$C_k = \{(x, y) : d_k - d_{k-1} < x < d_k, h_k \leq y \leq h_k + \frac{1}{16}\}$$

for $k = 1, \dots, n$. Here $d_{n+1} = 0$.

Observe that $|A_{dh}^*| = |A_{dh}| + \frac{1}{8}(h + \frac{1}{16}) + \frac{1}{16}d$. If a point of the set $G = \{(x, y) : d_n \leq x < d_n + \frac{1}{8}, h_n \leq y \leq h_n + \frac{1}{16}\}$ is covered by a rectangle $\sigma_i B_i$, then the set A_{dh} is covered as well. Consequently, every sequence B_1, B_2, \dots of total area at least $3|A_{dh}^*|/|G|$ permits a covering of A_{dh} . This number is precisely

$$(1) \quad 3\left(|A_{dh}| + \frac{1}{8}h + \frac{1}{16}d\right).$$

This estimate can be slightly improved. Denote by $\text{Int}(S)$ the interior of S . Observe that if a point of the set

$$D_h = \bigcup_{k=1}^n \{(x, y) \in D_k : d_k + \frac{1}{16} \leq x < d_k + \frac{1}{8}\} \setminus G$$

is covered by $\text{Int}(\sigma_i B_i)$, then from the inequality $s_i \leq 2h_i$ we conclude that $h_i = \frac{1}{16}$. If some two rectangles from the sequence $\sigma_1 B_1, \sigma_2 B_2, \dots$ have non-empty intersections with $\text{Int}(D_h)$, then they have disjoint interiors. We assume in (1) that D_h is covered by rectangles of total area $3|D_h|$. But the sum of the areas of the rectangles from the sequence $\sigma_1 B_1, \sigma_2 B_2, \dots$ which have non-empty intersections with $\text{Int}(D_h)$ is not greater than $|D_h|$. The estimate (1) remains true if we subtract $2|D_h| = \frac{1}{8}h$ from it.

We conclude that we can cover A_{dh} by every sequence of rectangles B_1, B_2, \dots of total area at least $3|A_{dh}| + \frac{1}{4}h + \frac{3}{16}d$.

Now we describe an on-line method of covering of I^2 by a sequence S_1, S_2, \dots of standard rectangles.

If S_i is a small standard rectangle, then let $S_i = B_i$, $T_i = \emptyset$. If S_i is a large standard rectangle, then let $S_i = T_i$, $B_i = \emptyset$. We put every rectangle $B_i \neq \emptyset$ according to the auxiliary method applied to the set $I^2 \setminus \bigcup_{j < i} \sigma_j T_j$. If $B_i = \emptyset$, it is not used for the covering.

We put every rectangle $T_i \neq \emptyset$ in the following way. If $i \geq 2$, then denote by t_i the smallest non-negative number such that all points of I^2 with the second coordinate greater than t_i are covered by rectangles $\sigma_1 T_1, \dots, \sigma_{i-1} T_{i-1}$. If $i = 1$, then let $t_1 = 1$.

We find a motion σ_i such that

$$\sigma_i T_i = \{(x, y) : \gamma_i - s_i \leq x \leq \gamma_i, \delta_i - h_i \leq y \leq \delta_i\},$$

where the numbers γ_i, δ_i fulfil the following two conditions :

1) if $h_i = \frac{1}{8}$ or $\frac{1}{4}$, then δ_i is the smallest multiple of h_i not smaller than t_i ; if $h_i = \frac{1}{2}$, then δ_i is the smallest number amongst $\frac{1}{2}, \frac{3}{4}, 1$ which is not smaller than t_i ;

2) γ_i is the smallest number such that the set $\{(x, y) \in I^2 : \gamma_i < x \leq 1, m \leq y \leq \delta_i\}$ is contained in $\bigcup_{i < j} \sigma_j S_j$, where $m = \max(b_i, \delta_i - h_i)$.

We stop the covering process by standard rectangles when the unit square is totally covered.

Proof of Theorem. We cover I^2 by the corresponding sequence of standard rectangles. The reader can easily check that

$$\frac{\sum_{j=1}^k |T_j|}{|(\bigcup_{j=1}^k \sigma_j T_j) \cap I^2|} < 3$$

for every index k . In the Lemma we suppose that for covering a region of area p by rectangles B_i the total area of rectangles used for the covering is not smaller than $3p$. This means that it is sufficient to consider the following case.

Assume that i is the smallest index such that the set T_i is non-empty and assume that $b_i \geq \frac{7}{8}$. Denote by $\frac{1}{2}s$ the sum of areas of all rectangles $\sigma_j T_j$ used for the covering. If $s \geq 1$, then I^2 is covered. Thus assume that $0 \leq s < 1$. If $A_{dh} = I^2$ in Lemma, then we can assume that the sum of areas of rectangles B_j used for the covering is $3|I^2| + \frac{1}{4} + \frac{3}{16}(1-s)$.

From this and from the inequality $|Q_i| \leq 2|S_i|$, we conclude that I^2 can be on-line covered by every sequence Q_1, Q_2, \dots of the total area greater than or equal to

$$2\left(\frac{1}{2}s + 3|I^2| + \frac{1}{4} + \frac{3}{16}(1-s)\right) \leq 2\left(\frac{1}{2} + 3 + \frac{1}{4}\right) = 7.5.$$

Consequently, the unit square can be on-line covered by every sequence of planar convex bodies of sides at most 1 whose total area is at least 15.

References

- [1] H. Auerbach, S. Banach, S. Mazur and S. Ulam, *Problem 10.1*, in *The Scottish Book*, ed. by R. D. Mauldin, Birkhauser, Boston, 1981, p. 74.
- [2] H. Groemer, *Covering and packing properties of bounded sequences of convex sets*, *Mathematika* 29 (1982), 18–31.
- [3] J. Januszewski, M. Lassak, *On-line covering by boxes and by convex bodies*, *Bull. Pol. Acad. Sci. Math.* 42, No. 1 (1994), 69–76.
- [4] M. Lassak, J. Zhang, *An on-line potato-sack theorem*, *Discrete Comput. Geom.* 6 (1991), 1–7.
- [5] K. Radziszewski, *Sur une probleme extrimal relatif aux figures inscrites et circonscrites aux figures convexes*, *Ann. Univ. Mariae Curie-Sklodowska, Sect. A* 6 (1952), 5–18.

INSTITUTE OF MATHEMATICS AND PHYSICS
 ACADEMY OF AGRICULTURE AND TECHNOLOGY
 Kaliskiego 7
 85-796 BYDGOSZCZ, POLAND

Received May 6, 1994.