Nicolae Soare

ON THE EXISTENCE OF THE LINEAR CONNECTIONS COMPATIBLE WITH SOME (f,g)-STRUCTURES

In this note we study the (f,g)-structures determined by a tensor field f of type (1.1) so that $f^{2v+3} - f = 0$ and a Riemannian structure g, satisfying a suplimentary condition.

The case of the (f,g)-structures with $f^3+f=0$ was studied by R. Miron and Gh. Atanasiu [5].

Using Obata's operators associated to the considered (f,g)-structures and Wilde's method of characterizing the set of solutions of a system of tensorial equations [10], are found all the linear (f,g)-connections and the groups of transformations of connections of the (f,g)-structures.

1. (f,g)-structures

Let M be a Riemannian manifold with the Riemannian metric g, $\mathcal{C}(M)$ the affin modul of the linear connections on M, $\mathcal{T}_s^r(M)$ - the modul of the tensors of type (r,s); for $\mathcal{T}_0^1(M)$ and $\mathcal{T}_1^0(M)$, are used the notations $\mathcal{X}(M)$ and $\mathcal{X}^*(M)$ respectively.

All the objects are of class C^{∞} .

DEFINITION 1.1. We call f-structure on M, a non-null field of tensors $f \in \mathcal{T}_1^1(M)$, of rank r, where r is a constant everywhere, so that

$$f^{2v+3}-f=0.$$

If M is a f(2v+3,-1)-manifold, that is M is an n-dimensional Riemannian manifold, equiped with a f-structure, then for

(1.1)
$$e = f^{2v+2}$$
, $m = I - f^{2v+2}$ (I denoting identity operator) we have [7]

(1.2)
$$fe = ef = f$$
, $fm = mf = 0$, $f^{2v+2}e = e$, $f^{2v+2}m = 0$,

(1.3)
$$e + m = I$$
, $em = me = 0$, $e^2 = e$, $m^2 = m$.

N. Soare

Thus the operators e and m are complementary projection operators on M.

The Riemannian structure g on M can be considered as $\mathcal{X}^*(M)$ -valued differential 1-form and we have $g: \mathcal{X}(M) \to \mathcal{X}^*(M), g(X) = g_X$, where $g_X(Y) = g(X,Y)$ for every $X,Y \in \mathcal{X}(M)$. If $f \in \mathcal{T}_1^1(M)$, then tf is the transpose of $f, {}^tf: \mathcal{X}^*(M) \to \mathcal{X}^*(M), {}^tf(h) = h \circ f$, for every $h \in \mathcal{X}^*(M)$.

DEFINITION 1.2. We call (f,g)-structure on M, a couple made up a f-structure and a Riemannian structure g so that

$$(1.4) tf^{v+1} \circ g \circ f^{v+1} = -g \circ e.$$

THEOREM 1.1. Let M be a paracompact differential manifold with a f-structure. Then, there is a (f,g)-structure.

Proof. In truth, if γ is a Riemannian metric, fixed on M, then

$$(1.5) g = \frac{1}{2} (\gamma - {}^t f^{v+1} \circ \gamma \circ f^{v+1} - \gamma \circ m - {}^t m \circ \gamma + 3^t m \circ \gamma \circ m)$$

verifies the condition (1.4).

PROPOSITION 1.1. For a (f,g)-structure on M and e,m defined by the equations (1.1) we have

(1.6)
$$g \circ f^{v+1} = -{}^{t} f^{v+1} \circ g, \quad g^{-1} \circ {}^{t} f^{v+1} = -f^{v+1} \circ g^{-1}$$
$$g \circ m = {}^{t} m \circ g, \qquad g^{-1} \circ {}^{t} m = m \circ g^{-1}.$$

PROPOSITION 1.2. $\omega = g \circ f^{v+1}$ is a differential 2-form on M.

DEFINITION 1.3. W call Obata operators associated to f-structure, the applications $A, A^* : \mathcal{T}_1^1(M) \to \mathcal{T}_1^1(M)$ defined by

(1.7)
$$A(w) = \frac{1}{2}(w - mw - wm + 3wmn - f^{v+1}wf^{v+1}),$$
$$A^*(w) = w - A(w).$$

We also consider the Obata operators [6] associated to g:

(1.8)
$$B(u) = \frac{1}{2}(u - g \circ {}^{t}u \circ g), \quad B(u) = \frac{1}{2}(u + g^{-1} \circ {}^{t}u \circ g).$$

We can demonstrate

PROPOSITION 1.3. For a (f,g)-structure on M and for A, A* and B, B* defined by (1.7) and (1.8) we have:

- 1) A and A^* are complementary projections on $\mathcal{T}_1^1(M)$.
- 2) B and B^* commute pairwise with A and A^* .

- 3) $A \circ B$ and $A^* \circ B^*$ are projections on $\mathcal{T}_1^1(M)$.
- 4) Ker $A^* \cap \ker B^* = \operatorname{Im}(A \circ B)$.

In truth, by simple calculation, we obtain the result 1).

The affirmation 2) is true, because, taking into account the relations (1.6), we have

$$\begin{split} (A \circ B - B \circ A)(u) &= \dots \\ &= \frac{1}{4} (m \circ g^{-1} \circ {}^t u \circ g - g^{-1} \circ {}^t m \circ {}^t u \circ g) + (g^{-1} \circ {}^t u \circ g \circ m - g^{-1} \circ {}^t u \circ {}^t m \circ g) \\ &\quad - 3 (m \circ g^{-1} \circ {}^t u \circ g \circ m - g^{-1} \circ {}^t m \circ {}^t u \circ {}^t m \circ g) \\ &\quad + (f^{v+1} \circ g^{-1} \circ {}^t u \circ g \circ f^{v+1} - g^{-1} \circ {}^t f^{v+1} \circ {}^t u \circ {}^t f^{v+1} \circ g) = 0, \end{split}$$

for every $u \in \mathcal{T}_1^1(M)$, or

$$A \circ B = B \circ A$$
.

Thus we have the relations

$$A \circ B^* = B^* \circ A,$$

$$A^* \circ B = B \circ A^*.$$

The above mentioned relations give us the possibility to formulate [10]:

PROPOSITION 1.4. The system of tensorial equations

(1.9)
$$A^*(u) = a, \quad B^*(u) = b$$

has a solution $u \in \mathcal{T}_1^1(M)$, if and only if

$$(1.10) A(a) = 0, B(b) = 0, A^*(b) = B^*(a).$$

If the conditions (1.10) are fulfilled, then the general solution of the system (1.9) is

$$u = a + A(b) + (A \circ B)(w) \quad \forall w \in T_1^1(M).$$

2. (f,g)-linear connections

In the following $\mathring{\nabla} \in \mathcal{C}(M)$ will be a linear connection fixed on M. Every tensor field $u \in \mathcal{T}_1^1(M)$ may be considered as a field of $\mathcal{X}(M)$ -valued differential 1-forms. So, if ∇ is a linear connection on M, then we note with D and \widetilde{D} the associated connections, acting on the $\mathcal{X}(M)$ -valued differential 1-forms and respectively on the differential 1-forms $g:\mathcal{X}(M) \to \mathcal{X}^*(M)$:

(2.1)
$$D_x u = \nabla_X u - u \nabla_X, \quad \forall X \in \mathcal{X}(M),$$

$$(2.2) \widetilde{D}_X g = {}^t \nabla_X \circ g - g \circ \nabla_X, \quad \forall X \in \mathcal{X}(M),$$

where

$$({}^t\nabla_X g)(Y,Z) = Xg(Y,Z) - g(\nabla_X Y,Z), \quad \forall X,Y,Z \in \mathcal{X}(M).$$

Definition 2.1. A linear connection ∇ on M is called (f,g)-linear connection if

(2.3)
$$D_X f = o, \quad \widetilde{D}_X g = 0, \quad \forall X \in \mathcal{X}(M).$$

Of course, for every (f, g)-linear connection, we have

(2.4)
$$D_X e = \nabla_X e - \epsilon \nabla_X = 0, \quad D_X m = \nabla_X m - m \nabla_X = 0,$$
$$D_X f^k = \nabla_X f^k - f^k \nabla_X = 0, \quad k \text{ natural number, } X \in \mathcal{X}(M).$$

We see that D and \widetilde{D} commute with the operators $A,A^*,B,B^*.$ We take

$$\nabla_X = \mathring{\nabla}_X + V_X,$$

 $X \in \mathcal{X}(M)$, $V \in \mathcal{T}_2^1(M)$, $V_XY = V(X,Y)$ and find the tensor field V so that ∇ satisfies the conditions (2.3).

abla will be a (f,g)-linear connection if and only if the field V verifies the system

$$V_X \circ f - f \circ V_X = -\mathring{D}_X f, \quad {}^tV_X \circ g + gV_X = \widetilde{\mathring{D}}_X g.$$

This system is equivalent with the system

(2.5)
$$A^{*}(V_{X}) = -\frac{1}{2}(f \circ \mathring{D}_{X}f + \mathring{D}_{X}m - 3m \circ \mathring{D}_{X}m)$$
$$B^{*}(V_{X}) = \frac{1}{2}g^{-1} \circ \widetilde{\mathring{D}}_{X}g.$$

Applying Proposition 1.4, it becomes evident that the system (2.5) has the solutions and the general solutions is

$$V_{X} = -\frac{1}{2}(f \circ \mathring{D}_{X}f + \mathring{D}_{X}m - 3m \circ \mathring{D}_{X}m) + \frac{1}{4}(\mathring{\mathring{D}}_{X}g - {}^{t}f^{v+1} \circ \mathring{\mathring{D}}_{X}g \circ f^{v+1})$$

$$(2.6)$$

$$-\mathring{\mathring{D}}_{X}g \circ m - {}^{t}m \circ \mathring{\mathring{D}}_{X}g + 3{}^{t}m \circ \mathring{\mathring{D}}_{X}g \circ m) + (A \circ B)(W_{X}),$$

where $W \in \mathcal{T}^{\frac{1}{2}}(M)$. Thus, we have

THEOREM 2.1. There are (f,g)-linear connections: one of them is

$$\nabla_X = \mathring{\nabla}_X + V_X$$

where $\mathring{\nabla}$ is an arbitrary linear connection, fixed on M, and V_X is given by (2.6), W being an arbitrary tensor field.

If $\mathring{\nabla}$ is the Levi-Civita connection of g, then we have $\tilde{\mathring{D}}_X g = 0$ and Theorem 2.1 becomes

Theorem 2.2. For every (f,g)-structure, the following linear connection

(2.8)
$$\dot{\nabla}_X = \dot{\nabla}_X - \frac{1}{2} (f \circ \mathring{D}_X f + \mathring{D}_X m - 3m \circ \mathring{D}_X m), \quad \forall X \in \mathcal{X}(M),$$

where $\mathring{\nabla}$ is the Levi-Civita connection of g, has the following characteristics:

- 1) $\overset{c}{\nabla}$ is dependent uniquely of f and g:
- 2) $\stackrel{\leftarrow}{\nabla}$ is a (f,g)-linear connection.

The linear connection $\overset{\circ}{\nabla}$ will be called the (f,g) canonic connection.

THEOREM 2.3. The set of all the (f,g)-linear connections is given by

(2.9)
$$\overline{\nabla}_X = \nabla_X + (A \circ B)(W_X), \quad W \in \mathcal{T}^{\frac{1}{2}}(M),$$

where ∇ is a (f,g)-linear connection, in particular $\nabla = \mathring{\nabla}$.

Observing that (2.9) can be considered as a transformation of (f,g)-linear connections, we have

Theorem 2.4. The set of the transformations of (f,g)-linear connections and the multiplications of the applications is an abelian group, noted with G(f,g), isomorph with the additiv group of the tensors $W \in \mathcal{T}^{\frac{1}{2}}(M)$, which have the characteristic

$$W_X \in \operatorname{Im}(A \circ B) = \operatorname{Ker} A^* \cap \operatorname{Ker} B^*, \quad X \in \mathcal{X}(M).$$

References

- [1] D. Demetropoulou-Psomopoulou, On iontegrability conditions of a structure satisfying $f^{2v+3} + f = 0$, Tensor, N.S. 42 (1985), 252-257.
- [2] D. Demetropoulou-Psomopoulou, Linear connections on manifolds admitting an f(2v+3,-1)-structure or an f(2v+3,1)-structure, Tensor, N.S. 47 (1988), 235-238.
- [3] S. Goldgerg and K. Yano, Globally framed f-manifolds, Ilinois Journal of Math., 15, No. 3(1971), 456-474.
- [4] S. Ishihara and K. Yano, On integrability conditions of a structure satisfying $f^3 + f = 0$, Quart. J. Math. 15 (1964), 217-222.
- [5] R. Miron et Gh. Atanasiu, Sur les (f,g)-connections linéaires et l'integrabilité des (f,g)-structures, Bull. Math. Soc. Sci. Math. R.S. Roumanie, (78) 30 (1986), 245-256.

N. Soare

- [6] M. Obata, Affine connections on manifolds with almost complex, quaternionic or Hermitian structure, Jap. Journ. Math., 26 (1956), 43-77.
- [7] A. Petrakis, Structure f qui satisfait la relation $f^{2v+3} f = 0$, Tensor, N.S., 41 (1984), 103-107.
- [8] N. Soare, Sur quelques f-connections linéaire, Riv. Mat. Univ. Parma (4) 14 (1988), 143-150.
- [9] P. Tamia-Dimopoulou, On direction dependent f-structures satisfying $f^s + f^t = 0$, Riv. Mat. Univ. Parma (4) 17 (1991), 279-293.
- [10] A. C. Wilde, Commutative Projection Operators, Atti Sem. Mat. Fis. Univ. Modena, 35 (1987), 167-172.

FACULTATEA DE MATEMATICA Str. Academiei 14 BUCUREȘTI, ROMANIA

Received May 4, 1994.