

R. A. Rashwan

SOME COMMON FIXED POINT THEOREMS
IN PARANORMED SPACES

1. Introduction

In [1], [2], [4], [5], [7], the authors established the convergence of some sequences of iterates to a fixed point of a single mapping T under some contractive conditions in a normed space or in a Banach space. On the other hand, L. A. Khan [3] extended some of the above results to the case of a paranormed space using various contractive definitions of the mapping T .

In this paper we extend [3] to the case of two mappings S and T under generalized contractive conditions in a total paranormed space.

In the sequel, we shall assume that X is a paranormed space whose topology is generated by a total paranorm q which has the following properties (see [6], p. 52):

- (a) $q(x) \geq 0$, and $q(x) = 0$ iff $x = 0$,
- (b) $q(-x) = q(x)$,
- (c) $q(x + y) \leq q(x) + q(y)$,
- (d) if $\{a_n\}$ is a sequence of real or complex scalars with $a_n \rightarrow a$ and $\{x_n\}$ is a sequence in X with $x_n \rightarrow x$, then $q(a_n x_n - ax) \rightarrow 0$.

Note that a total paranormed space has a paranorm instead of a norm. The paranorm satisfies all the properties of a norm except the homogeneity property, i.e., $q(\lambda x) \neq \lambda q(x)$ for scalar λ and $x \in X$.

2. Main theorems

In this section we prove several common fixed point theorems in a total paranormed space X . We begin with the following theorem.

AMS, Subject classification (1980), Primary 47H10, Secondary 54H25.

Keywords: Paranormed spaces, contractive conditions, common fixed points, sequences of iterates.

THEOREM 2.1. Let $\{f_n\}$ and $\{g_n\}$ be sequences in a complete paranormed space X . Let u_n and v_n be solutions of the equations $u - Su = f_n$ and $v - Tv = g_n$, respectively, where S and T are mappings on a closed subset C of X into itself satisfying the condition

$$(I) \quad q(Sx - Ty) + a_1[q(x - Sx) + q(x - Ty)] + a_2[q(y - Ty) + q(y - Sx)] \\ \leq k \max\{q(x - y), q(x - Sx), q(y - Ty), q(x - Ty), q(y - Sx)\}$$

for all $x, y \in C$ and $0 < k - (a_1 + a_2) < 1$. If $q(f_n) \rightarrow 0$ and $q(g_n) \rightarrow 0$ as $n \rightarrow \infty$, then $\{u_n\}$ and $\{v_n\}$ converge to a unique solution of the equation $x = Sx = Tx$.

P r o o f. First, we show that at least one of the sequences $\{u_n\}$, $\{v_n\}$ is convergent. For $n, m \geq 1$ by using (I), we have

$$\begin{aligned} q(u_n - u_m) &\leq q(u_n - Su_n) + q(Su_n - Tu_m) + q(Tu_m - u_m) \leq q(f_n) + q(g_m) \\ &+ k \max\{q(u_n - u_m), q(u_n - Su_n), q(u_m - Tu_m), q(u_n - Tu_m), q(u_m - Su_n)\} \\ &- a_1[q(u_n - Su_n) + q(u_n - Tu_m)] - a_2[q(u_m - Tu_m) + q(u_m - Su_n)] \\ &\leq q(f_n) + q(g_m) + k \max\{q(u_n - u_m), q(f_n), q(g_m), q(u_n - u_m) \\ &+ q(g_m), q(u_n - u_m) + q(f_n)\} - a_1[q(f_n) + q(u_n - u_m) + q(g_m)] \\ &- a_2[q(g_m) + q(u_n - u_m) + q(f_n)]. \end{aligned}$$

Or equivalently,

$$q(u_n - u_m) \leq \frac{1 + k - a_1 - a_2}{1 - k + a_1 + a_2} [q(f_n) + q(g_m)]$$

which implies $\lim_{n, m \rightarrow \infty} q(u_n - u_m) = 0$. Therefore $\{u_n\}$ is a Cauchy sequence in C . But C is a closed subset of X . Then there exists some u in C such that $\lim_{n \rightarrow \infty} u_n = u$.

Next, we show that the sequences $\{u_n\}$, $\{v_n\}$ converge to the same limit u . Using (I), we have

$$\begin{aligned} q(u_n - v_n) &\leq q(u_n - Su_n) + q(Su_n - Tv_n) + q(Tv_n - v_n) \\ &\leq q(f_n) + q(g_n) \\ &+ k \max\{q(u_n - v_n), q(f_n), q(g_n), q(u_n - v_n) + q(g_n), q(u_n - v_n) + q(f_n)\} \\ &- a_1[q(f_n) + q(u_n - v_n) + q(g_n)] - a_2[q(g_n) + q(u_n - v_n) + q(f_n)] \end{aligned}$$

or

$$(1) \quad q(u_n - v_n) \leq \frac{1 + k - (a_1 + a_2)}{1 - k + a_1 + a_2} [q(f_n) + q(g_n)],$$

which implies $\lim_{n \rightarrow \infty} q(u_n - v_n) = 0$, whence $\lim_{n \rightarrow \infty} u_n = \lim_{n \rightarrow \infty} v_n = u$.

Now, using (I) again, one gets

$$(2) \quad q(u - Su) \leq q(u - v_n) + q(v_n - Tv_n) + q(Su - Tv_n) \leq q(u - v_n) + q(g_n) + k \max\{q(u - v_n), q(u - Su), q(g_n), q(u - v_n) + q(g_n), q(v_n - Su)\} - a_1[q(u - Su) + q(u - v_n) + q(g_n)] - a_2[q(g_n) + q(v_n - Su)].$$

Letting $n \rightarrow \infty$ in (2), we obtain $q(u - Su) \leq [k - (a_1 + a_2)]q(u - Su)$, since $0 < k - (a_1 + a_2) < 1$, and thus $u = Su$. Similarly $u = Tu$. Hence $u = Su = Tu$. The uniqueness of u follows easily from (I).

If we put $S = T$ and $a_1 = a_2 = 0$ in Theorem 2.1, we obtain the following corollary.

COROLLARY 2.1 ([3], Theorem 1). *Suppose that X is a complete paranormed space and that C is a closed convex subset of X . Let $T : C \rightarrow C$ be a mapping satisfying*

$$q(Tx - Ty) \leq k \max\{q(x - y), q(x - Tx), q(y - Ty), q(x - Ty), q(y - Tx)\},$$

for all $x, y \in C$, where $0 \leq k < 1$. For each $n \geq 1$, let a_n be a solution of equation $Tx - x = A_n$, where $A_n \in X$. If $\lim_{n \rightarrow \infty} A_n = 0$, then $\{a_n\}$ converges and its limit point is a unique solution of the equation $Tx = x$.

For any point $x_0 \in X$ and $0 < t < 1$, we shall consider the sequence $\{x_n\}$ associated with T as follows

$$(3) \quad x_{n+1} = (1 - t)x_n + tTx_n, \quad n \geq 0.$$

THEOREM 2.2 *Let S and T be mappings from a closed subset C of X into itself such that*

$$(II) \quad ST = TS,$$

$$(III) \quad q(Sx - Ty) \leq r \max\{cq(x - y), q(x - Sx), q(y - Ty), q(x - Ty), q(y - Sx)\} + s \max\{q(x - TSx), q(Sx - TSx), q(y - TSx), q(Ty - TSx)\},$$

for all $x, y \in C$ and $c, r, s \geq 0$ with $r + s < 1$.

If for some x_0 in C the sequence $\{x_n\}$ as in (3) associated with either S or T is convergent, then its limit is a common fixed point of S and T . Moreover, if $rc + s < 1$, then the common fixed point is unique.

Proof. Suppose first that $Tu = u$ for a point u in C . Then, putting $x = y = u$ in (III) and using (II), we easily see that $Su = u$. Similarly $Su = u$ implies $Tu = u$. Now let $\{x_n\}$ be a sequence (3) associated with S and such that $\lim_{n \rightarrow \infty} x_n = u$. From (3) we have $x_{n+1} - x_n = t(Sx_n - x_n)$, then $q(Sx_n - x_n) = q(\frac{1}{t}(x_{n+1} - x_n))$. It follows that $\lim_{n \rightarrow \infty} Sx_n = u$.

We now show that $\lim_{n \rightarrow \infty} TSx_n = u$. Taking $x = x_n$ and $y = Sx_n$ in (III), we have

$$\begin{aligned} q(Sx_n - TSx_n) &\leq r \max\{cq(x_n - Sx_n), q(x_n - Sx_n), \\ &\quad q(Sx_n - TSx_n), q(x_n - TSx_n), q(Sx_n - Sx_n)\} \\ &+ s \max\{q(x_n - TSx_n), q(Sx_n - TSx_n), q(Sx_n - TSx_n), q(TSx_n - TSx_n)\}, \end{aligned}$$

Letting $n \rightarrow \infty$, we have

$$q(u - \lim_{n \rightarrow \infty} TSx_n) \leq (r + s)q(u - \lim_{n \rightarrow \infty} TSx_n).$$

Since $r + s < 1$, then $\lim_{n \rightarrow \infty} TSx_n = u$. Using (III) again, one gets

$$\begin{aligned} (4) \quad q(Sx_n - Tu) &\leq r \max\{cq(x_n - u), q(x_n - Sx_n), q(u - Tu), q(x_n - Tu), q(u - Sx_n)\} \\ &+ s \max\{q(x_n - TSx_n), q(Sx_n - TSx_n), q(u - TSx_n), q(Tu - TSx_n)\}. \end{aligned}$$

Taking in (4) the limit as $n \rightarrow \infty$, we have $q(u - Tu) \leq (r + s)q(u - Tu)$, with $r + s < 0$, whence $Tu = u$, i.e., u is a fixed point of T . In view of our remark at the beginning of the proof, u is a fixed point of S as well. Hence u is a common fixed point of S and T .

If possible let v ($v \neq u$) be another fixed point of S and T . Then using (III), we have $q(u - v) = q(Su - Tv) \leq (rc + s)q(u - v)$. Since $rc + s < 1$, then $u = v$ follows.

If we put $S = T$ in Theorem 2.2, we obtain the following corollary.

COROLLARY 2.2 ([3], Theorem 2). *Let T be a mapping from a closed convex subset C of X into itself satisfying*

$$\begin{aligned} q(Tx - Ty) &\leq r \max\{cq(x - y), q(x - Tx), q(y - Ty), q(x - Ty), q(y - Tx)\} \\ &+ s \max\{q(x - T^2x), q(Tx - T^2x), q(y - T^2y), q(Ty - T^2y)\} \end{aligned}$$

for all $x, y \in C$ and $c, r, s \geq 0$ with $r + s < 1$. If for some $x_0 \in C$ and $0 < t < 1$ the sequence $\{x_n\}$ as in (3) converges to a point u in C , then u is a fixed point of T .

Now, we state the following theorem which can be proved similarly as Theorem 2.2.

THEOREM 2.3. *Let $S, T : C \rightarrow C$ be mappings satisfying at least one of the following conditions:*

- (IV) $q(Sx - Ty) \leq a \max\{cq(x - y), \frac{1}{2}[q(x - Sx) + q(y - Ty)]\} + b[q(x - Ty) + q(y - Sx)]$,
- (V) $q(Sx - Ty) \leq a \max\{cq(x - y), \frac{1}{2}[q(x - Ty) + q(y - Sx)]\} + b[q(x - Sx) + q(y - Ty)]$

for all x, y in C , where $a, b, c \geq 0$ with $a + 2b < 2$. If for some $x_0 \in C$ and $0 < t < 1$, the sequence $\{x_n\}$ defined as above, associated with either S or T , converges to u in C , then $u = Su = Tu$.

If we put $S = T$ in Theorem 2.3, we obtain the following result.

COROLLARY 2.3 ([3], Theorem 3). *Let $T : C \rightarrow C$ be a mapping satisfying at least one of the following conditions:*

(IV') $q(Tx - Ty) \leq a \max\{cq(x - y), \frac{1}{2}[q(x - Tx) + q(y - Ty)]\} + b[q(x - Ty) + q(y - Tx)],$

(V') $q(Tx - Ty) \leq a \max\{cq(x - y), \frac{1}{2}[q(x - Ty) + q(y - Tx)]\} + b[q(x - Tx) + q(y - Ty)]$

for all x, y in C , where $a, b, c \geq 0$ with $a + 2b < 2$. If for some $x_0 \in C$ and $0 < t < 1$ the sequence $\{x_n\}$ converges to u in C , then $u = Tu$.

Finally, we give an example of a paranormed space and two mappings which satisfy the contractive conditions of Theorem 2.1 and Theorem 2.2.

EXAMPLE. Let $X = R$, R being the set of real numbers, and q be the total paranorm defined by $q(x) = \frac{|x|}{1+|x|}$ for all $x \in R$. Let $C = [0, 1]$ and define $S, T : C \rightarrow C$ by

$$Sx = \begin{cases} 0, & 0 \leq x < 1, \\ \frac{1}{8}, & x = 1, \end{cases} \quad Tx = \begin{cases} 0, & 0 \leq x < 1, \\ \frac{1}{2}, & x = 1. \end{cases}$$

S and T satisfy the condition (II). Moreover, for $r = \frac{5}{7}$, $s = \frac{1}{4}$ and arbitrary $c \geq 0$, (III) is satisfied as follows.

(i) If $x = y = 1$, then $q(Sx - Ty) = q(\frac{3}{8}) = \frac{3}{11}$,

$$rq(y - Sx) + sq(y - Tx) = \frac{5}{7}q\left(\frac{7}{8}\right) + \frac{1}{4}q(1) = \frac{5}{7} \cdot \frac{7}{15} + \frac{1}{4} \cdot \frac{1}{2} = \frac{11}{24} > \frac{3}{11}.$$

(ii) If $0 \leq x, y < 1$, then (III) is trivially satisfied.

(iii) If $x = 1, 0 \leq y < 1$, then

$$q(Sx - Ty) = q\left(\frac{1}{8}\right) = \frac{1}{9},$$

$$rq(x - Ty) = \frac{5}{7}q(1) = \frac{5}{7} \cdot \frac{1}{2} = \frac{5}{14} > \frac{1}{9},$$

$$sq(x - Tx) = \frac{1}{4}q(1) = \frac{1}{8} > \frac{1}{9}.$$

(iv) If $0 \leq x < 1, y = 1$, then (III) holds (similarly as in (iii)).

Now, taking $k = \frac{5}{7}$, $a_1 = a_2 = 0$, we easily check that (I) holds in cases (i)–(iv). Note that 0 is the unique common fixed point of S and T .

Acknowledgement. I would like to express my thanks to the referee for their valuable comments and suggestions.

References

- [1] J. Achari, *Some theorems on fixed points in Banach spaces*, Math. Seminar. Kobe Univ., 4 (1976), 113-120.
- [2] R. Kannan, *Some results on fixed points-III*, Fund. Math., 70 (1971), 169-177.
- [3] L.A. Khan, *Extensions of some fixed point theorems of Kannan and Wong to paranormed spaces*, Punjab Univ. J. Math., 23 (1990), 77-82.
- [4] S. L. Singh, *A note on the convergence of sequences of iterates II*, J. Natur. Sci. Math., 17 (2) (1977), 15-17.
- [5] S. L. Singh, *A note on the convergence of sequences of iterates III*, Punjab Univ. J. Math., 14/15 (1981/82), 123-128.
- [6] A. Wilanski, *Functional Analysis*, Blaisdell, New York, 1964.
- [7] C. S. Wong, *Fixed points and characterizations of certain maps*, Pacific J. Math., 54 (1974), 305-312.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE
ASSIUT UNIVERSITY
ASSIUT, EGYPT

Received April 14, 1994.