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THE CONTROLLED (n,fc)-NETS OF SHIFT-REGISTERS 

1. Introduction 
The fc-shift-registers have been widely used in technics (automatic regu-

lation, radar, coding theory, cryptology, computer technics and many others) 
for more than forty years. Although the monographs [1, 9] related to this 
topic have been published, this theory is not complete. 

In some applications (especially in coding theory and cryptology) the 
nets of shift-registers (sequential, parallel or mixed) rather than singular 
ones have been used [11, 12, 14]. The sequential nets of fc-shift-registers 
have been studied by many authors [2, 3, 4, 5, 10, 13, 15]. Szuster [15] 
has adopted an algebraical method of [9] to tlje study of sequential nets of 
¿-shift-registers. 

The theory of parallel and parallelly-sequential nets of shift-registers is in 
the initial stage of development. Only few papers related to singular classes 
of such nets have been published [6, 7, 8]. 

The aim of this paper is to introduce a new class MSTV^ ((k = 
(ki,..., km)) of the controlled (n,£)-nets of shift-registers (briefly (n ,k ) -
nets). This class covers over the deterministic as well as the nondeterministic 
(n,£)-nets. The subclas AiSTZ'-, of AfSlZ^ will be distinguished and briefly 
characterized. Every (n,k)-net Nn % of this subclass determines the sequen-
tial (l ,£)-nets N3 - ( j = 1 ,2 , . . , ,n) , also deterministic or nondeterministic, 

1, k 
such that each N3 computes an infinite sequence Tj over an alphabet A 1 tk 
and ( T i , . . . , Tn) is a computation of the (n, A:)-net Nn 

Every (n, £)-net N % can be characterized by the set of all its computa-
tions which are the n-tuples ( 7 \ , . . . , Tn) of infinite sequences, each over an 
alphabet A. 

A necessary and sufficient condition for a nonempty set EC (/ l^)" 
to be the computation set of any (n, £)-net of AiSTZ£ will be formulated. 
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The periodicity problem of the computation sets will be investigated too. 
A class QMSH£ of the graph controlled (n,A:)-nets of shift-registers will 

be also introduced. The relationship between the classes of computat ion sets 
of the (n,k)-nets of MSTV^ and QNS1Z1- will be established. 

2. Pre l iminar i e s 
The set of all positive integers will be denoted by N . For a nonempty 

finite alphabet A and a number k > 1 the elements of (Ak)n will be writ ten 
in the form x = ( x i , . . . , x „ ) , y = ( y i , . . . , y „ ) and z = (zu...,zn). 

The set of all infinite sequences over A will be denoted by Au and its ele-
ments (resp. subsets) by upper case Latin letters T, U, V, W 
(resp. E, F). 

For n > 1, {A")n will denote the n-th Cartesian product of A". The 
elements (resp. subsets) of (A")n will be denoted by upper case boldface 
Latin letters. 

The symbols A%d and (A%d)n will denote the subsets of Aw and {Au)n 

of all periodic sequences. 
For T = t\, ¿2, • • • € Au and 1 < i < j, T[i,j] will denote the restricted se-

quence t(,.. .,tj and T[i, oo) — the infinite sequence i , , <¿+1,... For brevity 
we shall write T[i'] instead of T[i, ¿]. 

For T = ( T i , . . . , Tn)e (A")n, and 1< i < j, T [ i , ; ] will denote the vector 
(Ti[i,jj, ..., Tn[i,j]) and T[i,oo] — the infinite sequence (Ti[z,oo], . . . , 
Tn[i, oo]); T[i] will denote T[t,t']. 

Let us introduce at the end some auxiliary notions. 
A sequence T — ¿ i , ^ , - - - € Aw is said to be almost periodic iff there 

exist the numbers j,p € N such tha t 

V(t > p) (tl+] = t,). 

If the above equality holds for p = 1 then T is said to be periodic and 
, . . . , tj, with the minimal j , is said to be its period. In this case T will be 

denoted by ( i j , . . . , ij)oo- On the other hand T is said to be aperiodic if it 
is not almost periodic. A notion of almost periodicity can be analogously 
introduced for the sequences of (A")n. 

3. B a s i c def in i t ions 
Let ki,..., km, n be the arbi t rary positive integers and k — (ki,..., km). 
Every controlled (n,k)-net of shift-registers Nn£ (briefly (n ,£ ) -ne t ) is 

a triple (A,$,<!>), where <£ = { i f 1 , . . . , } (m > 1) and every (1< 
i < m) is a nonempty set consisting of the total functions of Ak> into A 
(the feedback functions of N n g) and 9 is a control. A control is a part ial 
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function of ((Ak> ) n U . . .U(>1*» ) n ) x N into 2<*i' )"u-u(*mm)" - { 0 } such tha t 
f o r a l l kt,kj 6 { k u . . . , k m } , X! 6 ( A k ' ) n , x 6 a n d p > 1 , if ( x j , 1) € 

(x ,p ) € D9 then we have1: tf(xi,l) C 2 ( V > " , V(x,p) C 2<*?'>" and 
additionally the power condition holds: 

( 1 ) k i < k j + p . 

The vectors Xi and x as above are called the states of Nn £ at the moment 
1 and p, respectively. 

If the control is a function of ((A*1 ) n U . . . U (Akm )n)xN into ( i f 1 ) " U 
. . ) n then Nn £ is said to be deterministic, otherwise a nondetermin-
istic o n e . 

Let JTslil denote a subclass oiNSlZ £ of all (n, fc)-nets such tha t their 

controls are the total functions of N into 2(*i 1 ) n u - u *™ m )" - {0}. 

The classes AfSlZ£, N S l z \ will be denoted simply by AfSTZ^, AfSTZ^ 

and their elements will be called the sequential &-nets. 
The deterministic subclasses of the classes mentioned above will be de-

noted by the same symbols which are preceeded by the letter V. 
VVj\iSTZ'k will denote a subclass of VNSTl£ of all deterministic ( n , k ) -

nets with the periodic controls. 
Let us look on the (n,k)-nets as on the technical objects. 
Every (n ,£) -net Nn% of AfSIZ^ consists of n memories M j , . . . , Mn, 

each with k cells (k = max{A:i , . . . , km}), where symbols of a nonempty 
alphabet A can be stored. As has been said, a net Nn £ is equipped with the 

nonempty sets , . . . , of feedback functions and with a control 9 . Let 
us suppose tha t the control 9 assigns to a s ta te x = ( x i , . . . , x n ) € (Akt )n 

and a moment p > 1 a nonempty subset of vectors of ) n which will be 
used to obtain the new states (or a unique s ta te in a deterministic case) of 
N £ at the moment p + 1. The content of all cells of every memory Mq, 
1 < q < n, is moved one place leftward and simultaneously the value <pq(xq) 
is inserted in the last cell of Mg, where (ipj,.. .,<pn) is one of the vectors 
of ip(x,p). A vector y = ( y i , . . . , y n ) G (i4 f c ' )n whose all components are 
inserted in the last kj cells of the memories Mi,..., M n is a s ta te of Nn £ 
at the moment p + 1, where ( y , p + 1) € D y . 

But it is possible to give another characterization of the (n, £)-nets. If we 
add the r ight -hand side infinite tape % to every memory M,, 1 < i < n, and 
note on it the initial s ta te of Mj and the elements of the alphabet A which 

1 D f denotes the domain of & 
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appear in the last cell of M, in the successive moments, then the content of 
T\ x . . . x Tn is said to be a computation of Nn 

Now let us define (inductively) a computation T = (7 i , . . . ,Tn) e (.Au')n 

of a (n,ib)-net Nnj = (A, { i f 1 , . . € AfSTZ^ as follows: 

(1) For arbitrary x € (Ak<)n (1< i < n), if (x,l) £ D* then we put 
T [l,ki] = x; 

(2) Let us suppose that T[l ,p] for some p > k{ has been defined; if 

[p - k j + 1 , p ] , p - kj + 1) C 2 ( * ' ' r 

for some 1 < j < m then we put 

Tg\p+l} = <pi,(Tq\p-kj + l,p}) 

for all 1< q < n, where (y?^, . . . , tpi„) is a n y vector of 

— kj + l ,p] ,p — kj + 1). 

The set of all computations of Nn £, called its computation set, will be de-
noted by C(Nn a). 

Let us see few examples illustrating the above notions. 

E X A M P L E 3.1. Let us define two deterministic ( I , (2,3))-nets ( I = 1,2) 

^.,(2,3) = ({0,1}, { 4 ^ } , ^ ) € VATS%I3), 

where i f = {<¿>1,(̂ 2} and — {<̂ 3, <̂ 4}» follows: 

X Vi(x) < ^ 2 ( X ) y v>s(y) v>4(y) 
0 0 0 1 0 0 0 0 1 
0 1 0 1 0 0 1 0 1 

1 0 1 0 0 1 0 1 0 
1 1 1 0 0 1 1 0 1 

1 0 0 1 0 
1 0 1 1 0 
1 1 0 0 1 

1 1 1 1 0 

The controls $1 and are defined as follows: 

HE O^LI 

otherwise 
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for all Xi € {0, l}2 , y i 6 {0, l}3 , x2 € {0, l}2 x {0, l}2 , y 2 € {0, l} 3 x {0, l} 3 

and p > 0, where ¿"¿(y,) iff the last elements of all sequences of y^ are equal 
to 0 and Äj(x,-) iff the last elements of all sequences of x, are equal to 1. 

Then all computations of both (i, (2,3))-nets are almost periodic. For 
example, one of the computations of ^1,(2,3) has the form 001110(01)oo and 
°f ^2,(2,3) — (00(001010011100)00, OO(dlÖllllllOll)oo)-

E X A M P L E 3.2. Let us define a deterministic sequential (3,2)-net ^ 3 , 2 ) = 
({0,1}, {#1, # 2 }, where are the same as in Example 3.1; the control 

is the aperiodic sequence of the form: 

All computations of N3i2 are aperiodic as well. 

E X A M P L E 3.3. Let us define the nondeterministic (2,(2,3))-net ^ 2 , ( 2 , 3 ) = 

({0,1}, € NS1Zj2 3 ) as follows: i>2 ,$3 a r e the same as in Ex-
ample 3.1; the control #2 is a function of N into _ {0} such 
that: 

!P2(4p+ 1) = V4>}, 92{4p+2) = {(¥>1,¥>2),(V>2,¥>i)}, 

!?2(4p + 3) = {((?4, V3),(V3, V»3>>, ^ 2 ( 4 p + 4) = {(<P2,<PI),(<PI,<P2)}, 
for all p > 0. One can easily verify that C(iV2i(2,3)) is infinite. 

At the beginning a necessary and sufficient condition for a nonempty set 
E Ç (AU J)n to be the computation set of any (n,k)-net of AfSTZ7^ will be 
given. 

Then three aspects of the synthesis problem will be considered. 

T H E O R E M 4 . 1 . A nonempty set EC ( Y 4 U ' ) N is the computation set of any 
(n,k)-net of AiSH^ i f f there exists a sequence k{l,ki2,... G ...A:m}w 

satisfying the power condition (1) of Section 3 such that 

4. Synthesis problem of the (n,fc)-nets 
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(1) For every y£ (v4FC'I)N there exists a sequence X G E such that 

y = X [ l , * i l ] ; 
(2 ) ( V X 6 E ) ( V Y € E ) ( V j > l ) ( X [ j , j + - 1] = Y [ j , j + ktj - 1] => 

=> SucEX[j,j + hi, - 1] = SucEY[j,j + kt> - 1]) 

where 5uc E X [p , q] = { Z [ q + 1] : Z 6 E & Z[p, q] = X[p, q}}\ 

(3) ( V X g E ) ( V Y e E ) ( V j > 1 ) ( X [ j , j + hi, - 1] = Y [ j , j + kt, - 1] 
=• X [ l , j + kij - l ] Y [ j + Ar,-., oo] € E ) . 

THEOREM 4.2. A nonempty set E C ( A " ) " is the computation set of any 

(n, k)-net of ATSW± iff there exists a sequence k^ ,ki2,... £ , ... km}" 

satisfying the power condition (1) of Section 3 such that the conditions (1) 
and (2 ) of Theorem 4 .1 and the following one are satisfied: 

( 4 ) ( V X G E ) ( V Y 6 E ) ( V j > l ) ( X [ j , j + k{j - 1] = Y [ j , j + kt> - 1] => 

(\SucE(X[jJ + kt) - 1]| = \SucEY{jJ + ki. - 1]|), 

where |F| denotes the cardinality of F . 

COROLLARY 4.1. For arbitrary vector k and n £ N the following inclu-

sion holds: 

c{ITsnnk) c c{Nswi), 

where C(ArSTZ^) and C(AfSTZ2) denote the classes of the computation sets 

of all the (ji,k)-nets of AfSTZ^ and MSTZ1-, respectively. 

R e m a r k 4.1. The proofs of necessity of both above theorems arc obvi-
ous. For the proof of sufficiency we have to verify if the conditions ( 1) (;»> ol 
Theorem 4.1 (or the condition (1) , (2 ) , (4 ) of Theorem 4.2) are satisfied. Hut 
this verification is ineffective even in the case when all components of the 
sequences of E are defined by means of recursive functions. In the majority 
of cases a construction of respective (n, fc)-nets is also ineffective. Therefore 
we omit the proofs of both theorems. The solution of the synthesis prob-
lems which will be formulated below allows to construct (effectively) the 
(n,k)-nets with the prescribed properties. 

Let us state three synthesis problems SP£ and SP^'1 for ¿=1,2, as fol-
lows: 

SPFor a finite set E C ( j4pd )n whose elements are defined by means of 

their periods we have to decide if there exists a (n,k)-net Nn £ G VAfS'Rj 

such that E=C(-/Vn Jj). 

SP1-1: For a finite set E C ( i4pd )n whose elements are defined by means 

of their periods and a set = { « f j 1 , . . . , } we have to decide if there 

exists a (n, fc)-net Nn^ = (A, i>, 9) € VMSTl'l such that E = C{Nn 
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SPr'2: For a finite set E C (Apd)n whose elements are defined by means 
of their periods and a function 

: N - f U . . . ,U(<f£ r ) n 

we have to decide if there exists a (n, £)-net N ¡- = (A, { ^ f 1 , . . . , € 

VMSnl such that E = C ( N n ~ ) . 
If the answer on the above problems is positive then a construction of 

respective ( n , k ) - nets should be done. 
To prove the decidability of the problems S P ^ and SP 1 - 1 (i = 1,2) we 

have to verify if the conditions (1 ) , (2 ) , (3) of the Theorem 4.1 (or the 
conditions (1) , (2) , (4 ) of Theorem 4.2) are satisfied. The effectiveness 
af this verification follows from the fact that E C (A^d)n is finite and its 
slements are defined by means of their periods. 

The same synthesis problems for the class of sequential nets of shift-
registers have been solved by the author [5]. Therefore we omit the solution 
of the above problems. 

5. Per iodic i ty problems for t h e (n ,£) -nets 
The following periodicity problems PP£ and PP% for the class 

W M S T L £ of the deterministic (n,£)-nets with the periodic controls will 
be considered: 

PPj- - How can the feedback functions of a (n, £)-net Nn % € VVNS'R£ 
be like for all its computations to be periodic; 

~PP\: We have to decide if for arbitrary (n, k)-net J V n i € WNSU^ all 
its computations are periodic. 

Only the problem PPwith k — (fci), will be solved. The general prob-
lem PP^ we leave as open. On the other hand it will be shown that PP£ is 
decidable. 

LEMMA 5.1. Let = (A, ..., be an arbitrary (N, k)-net 
of VVNS'R-Then all its computations are almost periodic with the period 
length less than or equal to 

q = j2 I ^ t - I ^ T -
i=i 

Proof is obvious. 

R e m a r k 5.1. If the controls of the (n,£)-nets are aperiodic then in 
majori ty of casses their computations are aperiodic as well. But there are 
the (n , fc)-nets of VMSTZj^ with aperiodic controls such that all their com-
putations are almost periodic. 
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E X A M P L E 5.1. Let us define a (3,(2))-net N H 2 ) = ( { 0 , 1 } , w i t h 
= {1^1,(^2} where 

X <^2(x) 
0 0 0 0 
0 1 1 0 
1 0 0 0 
1 1 1 1 

and with the control which is an aperiodic sequence of the form: 

(<PU<P2,<Pl),(<P2,<Pl,<P2),(<P2,<Pl,<t>2), • • • 

One can easily verify that all computations of ^3,(2) are almost periodic 
with the period length of 1. 

L E M M A 5.2. Let Nn<(k) = (A,$k,V) be a (n,(k))-net of T>MSTZ^k), with 
a periodic control. Then all computations of are periodic iff the fol-
lowing condition is satisfied: 

(1) For every function <p € $k we have: 

(*) <p(at2...tk)^<p(bt2...tk) 

for all <2 • • • tk € Ak~1, a,b € A and a ^ b. 

P r o o f . Let Nn^k) — be a (n, (fc))-net with the periodic con-
trol and E = C(Nn^k))- Then determines an existence of a unique 
sequence (k) = ^j) U — 1 , 2 , . . . , n) of the sequential (1, (A:))-nets 
such that 

where Rg(9j) denotes the range of 

Obviously we have 
n 

= U 
i=1 

and E = Ei x . . . x En, where Ej=C(N( for 1 < j < n. 
As it has been shown in [3] Ej C A^d iff the condition (*) holds for all 

functions <p € Then E C iff the condition (*) is satisfied for the 
whole set $ k . m 

R e m a r k 5.2. For arbitrary (n, £)-net 7Vnjf = (A, { i » * 1 , . . . , },!?) G 

V V N S r i l the previous condition (1) has the form: 
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£. 
(2) For every 1 < j < m and a function ¡p G the following condition 

holds 

(**) ¥>(<**) t 
for all x 6 Ak>, a,b € A and a / b. 

The condition (2) does not imply the periodicity of all computations of 
the (n,k)-nets (see Example 3.1). On the other hand there are the ( n , k ) -
nets having only periodic computations for which the condition (2) is not 
satisfied. 

E X A M P L E 5 . 2 . Let us define a sequential (2,4)-net 

^1,(2,4) = ({0,1}, <s VÄTSK (2 i4 ), 
as follows: 

= {V1.V2} and = 
y>i(x) = 0, y>2(x) = 1 for all x € {0, l}2 , 

v>:»(y) = 0, v>4(y) = 1 
for y € {0000,0001,0010,0011,0100,0101,0110,0111}, 

<p3(z) = 1, </?4(z) = 0 for the remaining z £ {0, l}4 

1) = <px, <P(2) = !P(3p 4 3) = <p3, tf (3p + 4) = <¿>4, !?(3p + 5) = <¿>3, 

for all p > 0. It is easy to see that there exists a ( l , (4)) -net ^1,(4) = 
({0, with !?i(3p + i) = !f(3p + i + 3), p > 0 and i = 1 ,2 ,3 , 
such that E = C^TVi,^)) C C(7V1((4)) = E j . As is periodic and for all 
functions of # \ the condition (2) holds then Ei consists of only periodic 
sequences. Although the control is almost periodic with the nonempty 
tail and for the functions y î > V2 the condition (2) is not satisfied but all 
computations of ^1,(2,4) are periodic, because E C E j . 

R e m a r k 5.3. Example 5.2 inspires a method of construction of a 
VMSV,^. subclass of the (n,£)-nets with almost periodic controls and for 
which the condition (2) of Remark 5.2 is not satisfied but having only peri-
odic computations. 

Let us solve at the end the problem PPj^. 

L E M M A 5.3. The problem PP} is decidable for the class WNSH£ 

P r o o f . Let N n £ = },!P) be an arbitrary (n ,£)-net of 

PVAfSTZji. As all computations of Nn ¡r are almost periodic with the period 
length less than or equal to q, where 

m 

1=1 
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then we are able to define a g-register Rq = (j4',7t) such that C(Nn C 
C(Rq). We define a function tt : ( A q ) n —• An as follows: 

?r(X[i, i+q-l] = X[i + q] for all X 6 E and i > 1. 

Then we verify if for all xG ( / l 7 _ 1 ) n , a ,b€ An (a ^ b) such that (ax)<= 
Dv, (bx)€ D„ we have 

7r(ax) / ;r(bx) 
As the above verification is effective therefore PP£ is decidable. • 

6. T h e graph control led (n, £)-nets of shift registers 
By a graph controlled (n,k)-net of shift registers (briefly (n,k)-gnet) we 

mean a triple GNn % — (A,$, G1-) where 

(1) <? = { i f 1 , . . . , } is the set of functions as previously; 
(2) G£ is a directed labelled graph such that 

(2.1) the set V of its vertices is equal to 
(2.2) an edge going from a vertex <P{' to a vertex is labelled by 

an n - tuple of the indexes of feedback functions of . 

C~ is said to be a transition graph of G N n Sometimes the transition 

graphs will be identified with (n,k)-gnets. 
To obtain the infinite computations of such nets we restrict ourselves to 

the cases when the transition graphs are the cycles or the rooted infinite 
trees. Additionally for such graphs the following power condition must be 
satisfied: 

PC': for every walk of G£ of the form 

(3) € {ku...,km} for all j > 
1) the following conditions hold: 

(3.1) if G7- is a rooted infinite tree then we have: < fc,-, + p for 
all p > 1; 

(3.2) if G^ is a cycle then we have: = k{p + 1 or = k{p+1 + 1 
or kj = kip for all p > 1. 

An (n,k)-gnet GN £ is said to be deterministic iff every vertex of its 
transition graph has a unique outcoming edge. Otherwise G N % is said to 
be nondeterministic. 

An infinite sequence X = ( T j , . . . , T n ) G (Au ' )n is said to be a computa-
tion of an (71, A:)-gnet GNn £ = ( A , G£) iff there exists a walk of the form 
(3) such that for every p > 1 and 1< q < n we have: 

Tq[P + kj>\ = <T>^(Tq(P,P+ kjP - 1]). 
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The set of all computations of GNn ¡r will be denoted, as previously, by 
C(GJVnj). 

EXAMPLE 6.1. Let us consider a (3, (2,3))-gnet GN3^2,3) which is defined 
by means of its transition graph which is shown in Figure 1, where 
and <P\ in Example 3.1 have been defined. It is obvious that all computations 
of GN3i(2,3) a r e almost periodic. 

Fig. 1. Transition graph of Example 6.1 

EXAMPLE 6.2. Let (J7V2I(3) be a deterministic (2,(3))-gnet such that its 
transition graph which is a binary infinite tree of the form: 

(4) The set of vertices of is equal to = V3» V4} where 
tfiz and <¿54 are the same as in Example 3.1 and <p\, <¿>2 are defined as 
follows: 

<Pi(x) = i - 1 for all x G {0 , l } 3 and t = 1 , 2 ; 

(5) The edges going to the left and right sons of the root are labelled by 
(1,3) and (2,4); 

(6) If an edge incoming to an arbitrary vertex is labelled by (p, q) then 
the eges outcoming to the left and right sons are labelled by (p© l ,g ) 
and (p, q(B 1), respectively where © is an addition modulo 4. 

One can easily show that for GN2^3) there exists an equivalent (n, fc)-net 

N U 3 ) o i j j m l 

Let QAiSTZ1^ denote the class of all graph controlled (n, fc)-gnets and 

TAfSTZ1^, OAfSU^-the subclasses of QMSTl£ of the (n,k)-nets such that 
their transition graphs are the rooted trees and the cycles. C(QAfSTZ£), 
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C{TATS1V£), C(CAfSTlj-) denote the classes of the computat ion sets of (n , k)-
g n e t s of GAfSIll, TNSTl2 a n d CAfSTZrespectively. 

The following theorem shows the relationship between the classes of com-
puta t ion sets. 

T H E O R E M 6 . 1 . For arbitrary numbers ki, . . . , km, n 6 N the following 
relations hold: 

c ( T N s n i ) c c ( M s n ^ ) 

^(CiCAfsn^) c ciJisiQ)). 

P r o o f . The first inclusion is obvious. To prove the second one let us 
observe that the controls of the (n ,£)-gnets of CAiSTZ^ are the finite sets of 
periodic sequences (because the computations can star t from an arbi t rary 
vertex of a transition graph) whereas the controls of (n, £)-nets of AfSTZg 
are the unique sequences, which can be even aperiodic. • 

Final r e m a r k s 
This paper is the initial stage of developments on the class A f S T V - of 

the (n ,£) -ne ts . Only basic properties of the computat ion sets of such nets 
have been given. Many problems, such as equivalence and complexity, remain 
open. It would be also interesting to study a subclass of the binary (n, fc)-nets 
with the linear feedback functions. 

The next author ' s paper will be devoted to a slightly different class of 
the nets. Adding the identity functions, it is easy to design the nets of this 
class which realize the Hamiltonian circuits. 

References 

[1] S. W. G o l o m b , Shift-register sequences, Aecean Park Press, Laguna Hills, Califor-
nia 1982 (Revised edition). 

[2] W. A. G o l u n k o v Ju. V., Shift-register realization of microprogram basses (In Rus-
sian), Kybernetica No 12-13 (1976), 33-39. 

[3] Z. G r o d z k i , The controlled shift-registers, Elektron. Informationsverarbeit. Kyber-
netik 11 (1975), 142-150. 

[4] Z. G r o d z k i , The controlled iterative systems (deterministic and nondeterministic,) 
(In Polish), Prace Inst. Mat-Fiz-Chem, Ser. A, 2 (1981), 1-142. 

[5] Z. G r o d z k i , Synthesis problem for deterministic controlled (k,m)-shift-registers, 
Demonstrate Math. 20 (1987), 547-559. 

[6] Z. G r o d z k i and J. M e z n i k , Nets of time variant parallel controlled shift-registers, 
Kniznice Odborn. Ved. Spisu Vysoke. U£eni Tech. v Bine B-119 (1988), 205-209. 

[7] Z. G r o d z k i , M i k u l a S e k , Nets of parallel controlled shift-registers, ibid., 219-226. 
[8] Z. G r o d z k i and P. S i w a k , Relational nets of parallel shift-registers. Found. Control 

Engrg. 2 (1981), 61-75. 



The controlled {n,k)-nets of shift-registers 141 

[9] R. L i d l and H. N i e d e r r e i t e r , Introduction to finite fields an their applications, 
Cambridge Univ. Press, Cambridge 1986. 

[10] D. G. M a r t i t a s , A. C. A r v i l i a s and A. C. B o a n a s , Phase shift-analysis of linear 
feedback shift-registers structures generating pseudorandom sequences, IEEE Trans. 
Computers vol. C-27, No 7 (1978), 660-669. 

[11] H. N i e d e r r e i t e r , Cryptology — The mathematical theory of data security, Proc. 
Internat. Symp. on Prospect of Mathematical Science (Tokyo 1986). 

[1'2] W. P a t e r s o n , Cryptology (for mathematicians and computer scientists), Rowman 
and Littefield, Savage, Maryland, 1987 

[13] Ch. R o n s e , Feedback shift-registers, Lecture Notes in Computer Science, 169, 
Springer Verlag, Berlin 1986. 

[14] R. A. R u p p e l , Analysis and Design of Stream Ciphers, Springer Verlag, Berlin 
1986. 

[15] J. S z u s t e r , Analysis of the controlled iterative systems, (In Polish), Ph.D. thesis, 
Lublin 1990. 

DEPARTMENT OF APPLIED MATHEMATICS 
TECHNICAL UNIVERSITY OF LUBLIN 
Bernardyriska 13 
20-950 LUBLIN, POLAND 

Received April 13, 1994• 




