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THE CONTROLLED (n,E)-NETS OF SHIFT-REGISTERS

1. Introduction

The k-shift-registers have been widely used in technics (automatic regu-
lation, radar, coding theory, cryptology, computer technics and many others)
for more than forty years. Although the monographs [1, 9] related to this
topic have been published, this theory is not complete.

In some applications (especially in coding theory and cryptology) the
nets of shift-registers (sequential, parallel or mixed) rather than singular
ones have been used [11, 12, 14]. The sequential nets of k-shift-registers
have been studied by many authors [2, 3, 4, 5, 10, 13, 15]. Szuster [15]
has adopted an algebraical method of [9] to the study of sequential nets of
k-shift-registers. _

The theory of parallel and parallelly-sequential nets of shift-registers is in
the initial stage of development. Only few papers related to singular classes
of such nets have been published [6, 7, 8].

The aim of this paper is to introduce a new class NSR} (k =
(k1,...,km)) of the controlled (n,k)-nets of shift-registers (briefly (n, k)-
nets). This class covers over the deterministic as well as the nondeterministic
(n, k)-nets. The subclas NSRE, of NSR} will be distinguished and briefly
characterized. Every (n, E)-net Nn,,; of this subclass determines the sequen-
tial (1, E)-nets Nlj,E (7 =1,2,...,n), also deterministic or nondeterministic,
such that each N 1j,E computes an infinite sequence T; over an alphabet A
and (Ty,...,T,) is a computation of the (n, k)-net N, i

Every (n, E)-net N"'E can be characterized by the set of all its computa-
tions which are the n-tuples (T3,...,Ty) of infinite sequences, each over an
alphabet A.

A necessary and sufficient condition for a nonempty set EC (A4“)"
to be the computation set of any (n,k)-net of NSRE will be formulated.
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The periodicity problem of the computation sets will be investigated too.

A class GNSR? of the graph controlled (n, k)-nets of shift-registers will
be also introduced. The relationship between the classes of computation sets
of the (n, k)-nets of NSR?E and GNSR will be established.

2. Preliminaries

The set of all positive integers will be denoted by N. For a nonempty
finite alphabet A and a number k > 1 the elements of (A¥)"™ will be written
in the form x = (x1,...,%Xn), ¥y = (¥1,---,¥n) and z = (21,...,2,).

The set of all infinite sequences over A will be denoted by A“ and its ele-
ments (resp. subsets) by upper case Latin letters T, U, V, W
(resp. E, F).

For n > 1, (A“)™ will denote the n-th Cartesian product of A¥. The
elements (resp. subsets) of (A“)" will be denoted by upper case boldface
Latin letters.

The symbols A7, and (A},)" will denote the subsets of A~ and (A“)"
of all periodic sequences.

ForT =ty,t3,...€ A%and 1 < i < j, T(7, j] will denote the restricted se-
quence t;,...,t; and T[¢, 00) — the infinite sequence t;, t;41,... For brevity
we shall write T'[7] instead of T'(¢, 1].

For T=(T), ..., Tn)€ (A¥)", and 1< i < j, T[¢, 7] will denote the vector
(1[5, 4], - ., Tult,j]) and T[i,o0] — the infinite sequence (Ti[i, 0], ...,
T,[t, 00]); T[:] will denote Tz, i].

Let us introduce at the end some auxiliary notions.

A sequence T = ty,t3,... € AY is said to be almost periodic iff there
exist the numbers j,p € N such that

V(iizp) (tisj=t)

If the above equality holds for p = 1 then T is said to be periodic and
t1,...,t;, with the minimal j, is said to be its period. In this case T will be
denoted by (¢, ..., tj)so. On the other hand T is said to be aperiodic if it
is not almost periodic. A notion of almost periodicity can be analogously
introduced for the sequences of (A“)".

3. Basic definitions

Let ky,..., km, n be the arbitrary positive integers and k= (k1y-eeyhkm)-

Every controlled (n,k)-net of shift-registers N, ¢ (briefly (n, k)-net) is
a triple (A, ®,¥), where ¢ = {¢f‘,..., ®km} (m > 1) and every 45:“ (1<
i < m) is a nonempty set consisting of the total functions of A* into A
(the feedback functions of N, ;) and ¥ is a control. A control ¥ is a partial
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function of ((A¥)"U...U(A*")") x N into 2(871) U u(@rm)” — {0} such that
for all ki, k; € {k1,...,km}, X1 € (A*)", xe (A%)" and p >1, if (x1,1) €

kin in
Dy, (x,p) € Dy then we havel: ¥(x;,1) C 2(%,7) , ¥(x,p) C 245" and
additionally the power condition holds:

(1) ki < kj +p.

The vectors x; and x as above are called the states of Nn',; at the moment
1 and p, respectively.

If the control ¥ is a function of ((A*1)"U...U(A%")")x N into (}*)" U
...U(®% )" then N, ; is said to be deterministic, otherwise a nondetermin-

k
tstic one.
Let NSR} denote a subclass of VSR ¢ of all (n, k)-nets such that their

controls are the total functions of N into 2(81")"U-u#mm)" _ {0}.
The classes NSR};, NSR}; will be denoted simply by NSR;, NSR;

and their elements will be called the sequential E-nets.

The deterministic subclasses of the classes mentioned above will be de-
noted by the same symbols which are preceeded by the letter D.

PDNSR} will denote a subclass of DN SR of all deterministic (n,E)-
nets with the periodic controls.

Let us look on the (n, k)-nets as on the technical objects.

Every (n,E)-net N, i of NSRE consists of n memories M,, ..., M,,

each with k cells (k = max{ky,...,kn}), where symbols of a nonempty
alphabet A can be stored. As has been said, a net N ; is equipped with the

nonempty sets d5’l°‘ , .., Pk of feedback functions and with a control ¥. Let
us suppose that the control ¥ assigns to a state x = (xj,...,X,) € (A%)?
and a moment p > 1 a nonempty subset of vectors of (¢f‘)" which will be
used to obtain the new states (or a unique state in a deterministic case) of
Nn,,; at the moment p 4+ 1. The content of all cells of every memory M,,
1 < g < n, is moved one place leftward and simultaneously the value ¢4(x4)
is inserted in the last cell of My, where (¢1,...,¢y,) is one of the vectors
of ¥(x,p). A vectory = (y1,...,¥n) € (A% )™ whose all components are
inserted in the last k; cells of the memories M;,..., M, is a state of Nn',;
at the moment p + 1, where (y,p+ 1) € Dy.

But it is possible to give another characterization of the (n, E)-nets. If we
add the right—hand side infinite tape 7; to every memory M;, 1 < ¢ < n, and
note on it the initial state of M; and the elements of the alphabet A which

1 Dy denotes the domain of ¥
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appear in the last cell of M; in the successive moments, then the content of
Ty x ...x T, is said to be a computation of N .

Now let us define (inductively) a computation T = (Ty,...,T,) € (A¥)"
of a (n, k)-net N, = (4, {Fr,... ¢Fn},0) € NSR} as follows:

(1) For arbitrary x € (A%)" (1< i < n), if (x,1) € Dy then we put
T[laki] = X5
(2) Let us suppose that T[1, p] for some p > k; has been defined; if
Eiyn
U(T[p-k; + 1,pl,p— k; + 1) € 2%
for some 1< j < m then we put
Tolp+ 1] = @i (Tolp — k5 + 1, 7))
for all 1< ¢ < n, where (¢i,, ..., @i, ) is any vector of
¥(T[p—k; + 1,p),p— k; + 1).
The set of all computations of N_ ¢, called its computation set, will be de-
noted by C(N, ;).
Let us see few examples illustrating the above notions.
ExaMPLE 3.1. Let us define two deterministic (¢,(2,3))-nets (i = 1,2)
N3 = ({0,1},{9},83},¥:) € DNSsz,a),

where #2 = {1, p,} and &3 = {3, ¢4}, as follows:

X |pi(x) [e2(X) || ¥y |es(y) |ea(y)
00 0 1 000 0 1
01 0 1 001 0 1
10 1 0 010 1 0
11 1 0 011 0 1
100 1 0
101 1 0
110 0 1
111 1 0
The controls ¥; and W, are defined as follows:
_ J s if Si(y1)
Ui(yi,2p+1) = {w otherwise
if Rl(xl)

_fe
U (x1,2p+2) = {992 otherwise
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_ ((p3,¢,04) if S2(Y2)
V(y2,4p+1) = {((p4’(p4) otherwise
_ J(p1,92) if Ra(x2)

¥z(x2,4p +2) = { (p2,91) otherwise
_ [ (pa,p3) if S2(y2)

P(y2,4p+3) = { (¢3,93) otherwise
if Ra(x2)

_ (9027 ‘Pl)
Uy(x2,4p +4) = { (¢1,92) otherwise

for all x; € {0,1}%,y1 € {0,1}3, x; € {0,1}2x{0,1}%,y, € {0,1}3x {0,1}3
and p > 0, where S;(y;) iff the last elements of all sequences of y; are equal
to 0 and R;(x;) iff the last elements of all sequences of x; are equal to 1.

Then all computations of both (i,(2,3))-nets are almost periodic. For
example, one of the computations of Ny (3 3) has the form 001110(01)., and
of Ny (2,3 — (00(001010011100), 00(010111111011)).

EXAMPLE 3.2. Let us define a deterministic sequential (3,2)-net N3 ) =
({0,1}, {92, 93}, ¥) where 9%, 3 are the same as in Example 3.1; the control
¥ is the aperiodic sequence of the form:

P3P1P4P2P3P3P1P1P4P4P2P2P3P3PIP1P1P1P4P4P4P2P2P203 - - -

All computations of N3, are aperiodic as well.

EXAMPLE 3.3. Let us define the nondeterministic (2,(2,3))-net Ny (5 3y =
({0,1}, {®%,83},W,) € mfm) as follows: ®?,$3 are the same as in Ex-
ample 3.1; the control ¥, is a function of N into 2(®1°U(®D* _ (B} such
that:

P2(4p + 1) = {(¢3,04): (P4, 04)},  ¥2(4p + 2) = {(¢1,92), (2, 1)},

U2(4p + 3) = {(pa, 93): (03, 93) ), ¥a(4p + 4) = {(p2, 1), (1, 2) },

for all p > 0. One can easily verify that C(N; (3 3)) is infinite.

4. Synthesis problem of the (n,E)-nets

At the beginning a necessary and sufficient condition for a nonempty set
E C (A“)" to be the computation set of any (=, k)-net of NSRE will be
given.

Then three aspects of the synthesis problem will be considered.

THEOREM 4.1. A nonempty set EC (A“)" is the computation set of any
(n,k)-net of NSR} iff there ezists a sequence ki, ki,,... € {ki, ... kn}*
satisfying the power condition (1) of Section 3 such that
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(1)  For every y€ (Ak1)™ there ezists a sequence X€E such that
(2) (VX eE)YY € E)(Vj> 1)(X[j,j+ki, - 1]=Y[j,j+ ki ~ 1] =
=> SucgX[j,j+ ki; — 1] = SuceY[j,j + ki, — 1))
where SucegX[p,q] = {Z[g+1]}:Z € E & Z[p,q] = X[p. q]}:
(3) (VX € E)YY € E)¥j > 1)(X[j,j+ ki, — 1) = Y[j,j + ki, — 1] =
= X[1,j+ ki; —1]Y[j + ki;,00] € E).

THEOREM 4.2. A nonempty set E C (A¥)" is the computation set of any
(n,E)-net of]_\/S'RE iff there exists a sequence k; ,ki,,... € {k1, ... kn}*
satisfying the power condition (1) of Section 3 such that the conditions (1)
and (2) of Theorem 4.1 and the following one are satisfied:

(4) (VX € E)VY € E)(V; 2 )(X[5,j+ki; = 1] = Y[j,j+ ki; - 1] =
(’SUCE(X[]1]+ kij - 1” = lS‘UCEY[j,]‘ + ki,- - 1“)1
where |F| denotes the cardinality of F.

COROLLARY 4.1. For arbitrary vector k andn € N the following inclu-
ston holds:

C(NSR;) C C(NSRE),
where C(NSRj) and C(NSR}) denote the classes of the computation sets

of all the (n,k)-nets of N SR and NS'R’,—:-, respectively.

Remark 4.1. The proofs of necessity of both above theorems arc obvi-
ous. For the proof of sufficiency we have to verify if the conditions (1) 3ol
Theorem 4.1 (or the condition (1), (2), (4) of Theorem 4.2) are satisfied. But
this verification is ineffective even in the case when all components of the
sequences of E are defined by means of recursive functions. In the majority
of cases a construction of respective (n, E)-nets is also ineffective. Therefore
we omit the proofs of both theorems. The solution of the synthesis prob-
lems which will be formulated below allows to construct (effectively) the

(n, k)-nets with the prescribed properties.
Let us state three synthesis problems SP7 and SPE” for 1=1,2, as fol-

lows:
SPZ: For a finite set E C (Ay;)" whose elements are defined by means of

their periods we have to decide if there exists a (n, k)-net N €D SR:
such that E=C(N, ;).
SP;.“I: For a finite set E C (A%,)" whose elements are defined by means

of their periods and a set & = {d5f‘,...,45fn"‘} we have to decide if there
exists a (n,k)-net N_ = (A,®,¥) € DNSR} such that E = C(N,_ ;).



The controlled (n, l.c')-nets of shift-registers 135

SP%?: For a finite set E C ( »4)" whose elements are defined by means

of their periods and a function

N o (UL U@k
we have to decide if there exists a (n, k)-net N, i=(4, {®F1,..., 850}, 0) €
DNSR} such that E= C(N, 7).

If the answer on the above problems is positive then a construction of
respective (n, k) — nets should be done. .

To prove the decidability of the problems § P} and SP;.'" (i =1,2) we
have to verify if the conditions (1), (2), (3) of the Theorem 4.1 (or the
conditions (1), (2), (4) of Theorem 4.2) are satisfied. The effectiveness
of this verification follows from the fact that E C (4,;)" is finite and its
eslements are defined by means of their periods.

The same synthesis problems for the class of sequential nets of shift-
registers have been solved by the author [5]. Therefore we omit the solution
of the above problems.

5. Periodicity problems for the (n,k)-nets
The following periodicity problems PP? and ﬁ};‘ for the class

PDNSR}; of the deterministic (n,k)-nets with the periodic controls will
be considered:

PP?:  How can the feedback functions of a (n, k)-net N_: € PDNSR;
L be like for all its computations to be periodic;
PPZ: We have to decide if for arbitrary (n, k)-net N_: € PDN SR} all

its computations are periodic.

Only the problem PPZ, with k= (k1 ), will be solved. The general prob-

lem PP} we leave as open. On the other hand it will be shown that ﬁz is
decidable.

LeMMA 5.1. Let N, ¢ = (4, {®%,..., 8%}, W) be an arbitrary (n, k)-net

of PDN'SRj. Then all its computations are almost periodic with the period
length less than or equal to

n
g=) [8F["-|AM "
1=1

Proof is obvious.

Remark 5.1. If the controls of the (n,k)-nets are aperiodic then in

majority of casses their computations are aperiodic as well. But there are
T n . . . .

the (n, k)-nets of DN SR with aperiodic controls such that all their com-

putations are almost periodic.
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EXAMPLE 5.1. Let us define a (3,(2))-net N33y = ({0,1}, %% ¥) with
% = {p1,¢2} where

x | @e1(x) | ¢2(x)
00| o0 0
01 1 0
10| o 0
11 1 1

and with the control ¥ which is an aperiodic sequence of the form:

(991v9927 ‘Pl))(‘P?, 9915‘P2)’ (‘Plv P2, "pl)s
(p1, 92, 91)s (¢2, 01, 92), (P2, 01, 92), - -

One can easily verify that all computations of N3 (5) are almost periodic
with the period length of 1.

LEMMA 5.2. Let N, () = (A, 8*,¥) be a (n, (k))-net of ’DNSR?,C), with
a periodic control. Then all computations of Ny (x) are periodic iff the fol-
lowing condition is satisfied:

(1)  For every function ¢ € ®F we have:

(*) platy...tx) # @(bty .. . 1)
for allty ...ty € A¥"1, a,bc Aand a #b.

Proof. Let N, x) = (A,8*,¥) be a (n,(k))-net with the periodic con-
trol and E = C(Np(x)). Then Ny, () determines an existence of a unique
sequence NlJ'(k) = (A,d5f,Wj) (7 =1,2,...,n) of the sequential (1, (k))-nets
such that

i(p) = {#5 : (p1,- -, 0 € B5)((1,- .-, 0n) €¥(P))}sP 2 1,
qf’f = {p € #* : p € Rg(¥;)}, where Rg(¥;) denotes the range of ¥;.

Obviously we have
n
k k
ot = | ) 8t
j=1

and E = F; x ... X E,, where Ej=C(N1j’(k)) for1<j<n

As it has been shown in [3] E; C A%, iff the condition (*) holds for all
functions ¢ € 45_’1?. Then EC (Ajy,)" iff the condition (#) is satisfied for the
whole set ¢%. »

Remark 5.2. For arbitrary (n, k)-net N.z= (A, {®5,... ,0km} W) €
PDNSR the previous condition (1) has the form:
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{2) Foreveryl< j<mand a function ¢ € 45;’ the following condition
holds

(++) p(ax) # ¢(bx)
for all x € A%i~! a,b€ A and a # b.
The condition (2) does not imply the periodicity of all computations of

the (n, k)-nets (see Example 3.1). On the other hand there are the (n, k)-
nets having only periodic computations for which the condition (2) is not

satisfied.
EXAMPLE 5.2. Let us define a sequential (2,4)-net
Ny24) = ({0,1},{91,8,},¥) € DNSR 24y,
as follows:

#} = {p1,92} and & = {p3, ¢4},
©1(x) = 0, wa(x) = 1 for all x € {0,1)?,

3(¥) =0, pa(y) =1
for y € {0000,0001,0010,0011,0100,0101,0110,0111},
©3(z) = 1, p4(z) = 0 for the remaining z € {0,1}*

V(1) = ¢1,%(2) = 02, %(3p+ 3) = 3, ¥(3p + 4) = ¢4, ¥(3p + 5) = 3,
for all p > 0. It is easy to see that there exists a (1,(4))-net Ny (4 =
({0,1}, 85, %) with #;(3p+:) = ¥(3p+:+3),p > 0 and i = 1,2,3,
such that E = C(Ny,24)) € C(N14)) = E1. As ¥, is periodic and for all
functions of &3 the condition (2) holds then E; consists of only periodic
sequences. Although the control ¥ is almost periodic with the nonempty
tail and for the functions 1,2 the condition (2) is not satisfied but all
computations of Ny (34 are periodic, because E C E;.

Remark 5.3. Example 5.2 inspires a method of construction of a
DNSR} subclass of the (n,k)-nets with almost periodic controls and for
which the condition (2) of Remark 5.2 is not satisfied but having only peri-
odic computations.

Let us solve at the end the problem PPj.

LEMMA 5.3. The problem PPy is decidable for the class PDNSR
Proof. Let N ;= (A, {®%,...,8%~},¥) be an arbitrary (n, k)-net of

PDNSR;. As all computations of N i are almost periodic with the period
length less than or equal to ¢, where

m
g= AN ok,
=1
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then we are able to define a g-register Ry = (A%, ) such that C(N ;) C
C(R,). We define a function 7 : (A9)" — A" as follows:
m(X[i,i+g—1)=X[i+¢]forall X € Eand : > 1.
Then we verify if for all x€ (A9~1)", a,be A" (a # b) such that (ax)e
D, (bx)€ D, we have
m(ax) # 7(bx)

As the above verification is effective therefore PP} is decidable. m

6. The graph controlled (n, k)-nets of shift registers
By a graph controlled (n, k)-net of shift registers (briefly (n, k)-gnet) we
mean a triple GN ¢ = (A,45,G;-‘) where

(1) & ={®F,..., 8k} is the set of functions as previously;
(2) ¢ is a directed labelled graph such that
(2.1) the set V of its vertices is equal to @;
(2.2)  an edge going from a vertex &5 to a vertex 45? is labelled by

an n — tuple of the indexes of feedback functions of 45:".
G is said to be a transition graph of GN, ;. Sometimes the transition

graphs will be identified with (n, k)-gnets.

To obtain the infinite computations of such nets we restrict ourselves to
the cases when the transition graphs are the cycles or the rooted infinite
trees. Additionally for such graphs the following power condition must be
satisfied:

PC': for every walk of G;-‘ of the form
(3) @, d) B (G2 s 32)s e (Ki, € {k1yeony ki) for all 5 >

1) the following conditions hold:
(3.1) if G7 is a rooted infinite tree then we have: k; < ki + p for
all p> 1;
(3.2) if G;?l is a cycle then we have: k
or k =k;, forall p> 1.

ips1 = kgp-{-l or kip = kip+l +1
Tpt1
An (n,l::)-gnet GN, i is said to be deterministic iff every vertex of its
transition graph has a unique outcoming edge. Otherwise GN,  is said to
be nondeterministic.

An infinite sequence X=(T,, ..., T,) € (A*)" is said to be a computa-
tion of an (n, k)-gnet GN, ¢ =(A,9,G7) iff there exists a walk of the form

(3) such that for every p > 1 and 1< ¢ < n we have:
Tylp + kjr] = @2 (To(psp + kjr — 1)).
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The set of all computations of GN - will be denoted, as previously, by
C(GN, 7).

EXAMPLE 6.1. Let us consider a (3,(2,3))-gnet G N3 (3 3) which is defined
by means of its transition graph G?2.3) which is shown in Figure 1, where &3
and ¢? in Example 3.1 have been defined. It is obvious that all computations
of GN3 (2,3) are almost periodic.

(4,3,4)

o}

Fig. 1. Transition graph of Example 6.1

EXAMPLE 6.2. Let GN; (3) be a deterministic (2,(3))-gnet such that its
transition graph G(Za) which is a binary infinite tree of the form:

(4)  The set of vertices of G?s) is equal to & = {1, 2, 3,4} Where
w3 and ¢4 are the same as in Example 3.1 and ¢;, ¢, are defined as
follows:

wi(x)=i—1forall x € {0,1}° and i = 1,2;

(5) The edges going to the left and right sons of the root are labelled by
(1,3) and (2,4);

(6) If an edge incoming to an arbitrary vertex is labelled by (p, q) then
the eges outcoming to the left and right sons are labelled by (p®1,¢)
and (p,q @ 1), respectively where @ is an addition modulo 4.

One can easily show that for G N, (3) there exists an equivalent (n, E)-net
Ng'(a) Of JU SR;.
Let GNSR denote the class of all graph controlled (n, k)-gnets and

TNSRE, CNSR-the subclasses of GNSRE of the (n,k)-nets such that
their transition graphs are the rooted trees and the cycles. C(GNSRE),



140 Z. Grodzki

C(TNSR}),C(CNSR}) denote the classes of the computation sets of (n, k)-
gnets of GNSRE, TNSR} and CNSRE, respectively.

The following theorem shows the relationship between the classes of com-
putation sets.

THEOREM 6.1. For arbitrary numbers ky, ..., kn, n € N the following
relations hold:

C(TN'SR}) C C(NSRE)
~(C(CNSRY) C C(NSRE)).

Proof. The first inclusion is obvious. To prove the second one let us
observe that the controls of the (n, k)-gnets of CN SR, are the finite sets of
periodic sequences (because the computations can start from an arbitrary

vertex of a transition graph) whereas the controls of (n,k)-nets of NSR;
are the unique sequences, which can be even aperiodic. ®

Final remarks
This paper is the initial stage of developments on the class NSR;—' of

the (n, E)-nets. Only basic properties of the computation sets of such nets
have been given. Many problems, such as equivalence and complexity, remain
open. It would be also interesting to study a subclass of the binary (n, k)-nets
with the linear feedback functions.

The next author’s paper will be devoted to a slightly different class of
the nets. Adding the identity functions, it is easy to design the nets of this
class which realize the Hamiltonian circuits.
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