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TWO FOURIER-LEGENDRE EXPANSIONS
FOR FOX’S H-FUNCTION OF SEVERAL VARIABLES

1. Introduction

Several mathematicians, during the last three decades, have claimed to
present various Fourier series and expansions for the G and H-functions of
two or more variables. A serious study reveals that almost all of their results
may be viewed as the manipulative forms of already known work on Mei-
jer’s G-function and Fox’s H-function [5]-[7]. It is important to note that
the Fourier series and expansions presented there involve only one variable
and are expressed in terms of a single series. Therefore, these must be viewed
as Fourier series and expansions for a function of one variable. Any Fourier
series and expansion for a function of several variables should indeed involve
several variables and be presented in terms of a multiple series, as discussed
by Carslaw and Jaeger [2] (pp. 180-183) in the case of Fourier series of two
variables.

The object of this paper is to establish two Fourier-Legendre expansions
for Fox’s H-function of several variables with the help of a multiple integral
evaluated in this paper.

The following functions

Zl(l - I%)t’
1) f(z1,..,z.) =1 =271 . (1-22)*""'H ‘ !
z(1 -z}
and
2) g(z1,..,2z,) =1 -22)...(1 = 22) f(z1,. .., 2,),
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where H is H-function of r variables given by (1.1) and -1 < z; < 1,
i =1,...,7, are expanded with respect to the following orthogonal sys-
tems

1)y P2 (zy)...Pl(z.), where w; are fixed non-negative integers and
Uy = Wi, Wig1y-0.y U= 1,2,...,7‘,

and

2"y Py (zy)...Ppr(z,), where v; are fixed positive integers and u; =
1,...,1),', 1= 1,2,...,7‘,

in the Hilbert spaces

1"y L*((-1,1)",dzy,...,dz,),

and

2"y L((-1,1)7,(1 - )~ Ydz,,...,(1 - 22)"Vdz,),

respectively (P*(z) denotes the Legendre function).

The reader is referred to generalizations [4] and definition of Fox’s H-
function of two and several variables [6] (pp. 22-35), [7] (pp. 82-98, 251-
254).

In this paper Fox’s H-function of several variables [7] (pp. 251-254) will
be represented as follows

21 21

. _ O,n;my,ny;...;me, nr A;Cp,; .;Cpr
(1.1) H|:|=H :

: PrqiP1 Q13- Progr “|B; Dg,;...; Dy,

Zr Zy

2
_ 0,n;my,ny;...;me, 0y . (aj;a;'r“-1a§r))l,pr;(c;‘;7;')l,pl;"-;(Cg‘r);‘y)('r))l,pr
- . S : r r r
P& P1 4155 Prir . (bj;ﬂ'-....,ﬂ,(- ))l.qr;(d§;6§)1,ql;...;(dg );65. Nivgr

The following formulae are required in the proofs: the integral (3]
(p. 316, (16))

(1.2) j(l—x2)"1P,""(a:)dz
-1

omp my\p(s_m
= 71 i n(8+2m) (: 7) ————~ for 2Res > [Rem)|
Fs+ 3+ (- (-F+3+ 1) (-3 ~-3+73)

and the orthogonality properties of the Legendre functions 3] (p. 279)
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1 m m 0 for k £ n,
(13) an (I)Pk (z)d"c:{m%;‘)"('—:‘_)!m—)' for k=n, m <n,
| :
0 for k # m,
(1.4) f (1-2*)7'PM(z)Pi(e)dz = ¢ (ntm) . . m, m < n.
m(n — m)!

2. The multiple integral
The multiple integral to be evalued is

2(1 - 1:%)‘l

(2.1) f f H z})* 1 PE (2 ) H : dz, ...dz,
-1 k=1 Zr(l_xz)tr

_ 7l..r2w1+...-i-wr
[Tho: T2 — wi + we))T((2 - wi — wi))

z
0,n;my,ny +2;...;mprnp + 2 A0 =8 -.}tl),
PGP+ 2,01 +2%. 5o +2,40+2 | By Dgy (5 - 81— 3 t),
2r
(1 -8+ %L,tl),cpl;-”;(ll_sr_ _‘Pin,tr)’(l_sr %"t ),Cp,]
(L=s1+5.t1);--;Dg, (5 — 8 — 55,t:), (1 — 8- + 5,8,

for 2 Re s;42t; miny <j<m, [Re %‘L] > Re|w|,t =1,...,r, and the conditions
given by (C.4), (C.5), (C.6) in [7] (pp. 252-253).

To establish (2.1), express the H-function in the integrand as (C.1) in
[7] (p. 251), change the orders of z-integrals and (-integrals, evaluate inner
integrals with the help of (1.2) and use (C.1) in [7].

Note 1. The integral (2.1) may be viewed as the several variables ana-
logue of the integral (2.1) in [1] (p. 90) and (2.9.2) in [6] (p. 40).
In the sequel u;,w;,v;, ¢ = 1,...,r, are non-negative integers.

3. The Fourier-Legendre expansions
The Fourier-Legendre expansions to be established are

z1(1 - Il)tl

r

3.1) Ja-zH)'H :
=1 zr(1— 1’12-)"
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3 > Ny rrwrtedwe T (Quy — 1)(u — wi) P (24)
B ulz=;u1 o 'u'g: I;[ (ui + wi)'I( (2 w; + u,))I"( (1 - wy —u;))

xHO,n;ml,n1+2;...;mrnr+2 A;(l—sl E‘L Jh),
peipt+2,q10+2..5pr +2,¢- +2 B;Dql,( 51 =2,t),

(l—sl-{-—ltl) p1ie - (1 —%L,tr),(l—sr ‘;tr),CprjI

(1=sy + 5t1);. -5 qr,(z—s,—%’-,t,),(l—sr+3‘§'—,tr)

valid under the conditions (1.3), (2.1), and

21(1 - .’L‘%)tl

r

3.2) [Ja-<H)*'H

=1 z(1 —9«‘3)"
S5 S DY | PR Cletl) i
= S (vi+u)T(3(2—wi + v,-))I’(%(l - u; — v;))
21
O,n;my,ny +2;...;meny + 2 . A,(l—sl—%k,h),
PGP +2,01+2. P+ 2,00 +2 | | B Dy, (3 - 51— B, 1),
zr
(1-s1 4+ 2,11) C,,,,.. (1 %n,t,),(l—s,+22=t,),c,,,]
(I-s1+% 2 1);- Qr’(2 T_Ezr"t")’(l—s’+v2’t")

valid under the conditions (1.4), (2.1).
To prove (3.1), let

21(1 ol z:%)“

3.3) JJa-zH*'H : E ZCU,, ,u,HP'"-(z

i=1 Zr(l _ zz)t, u;=0 u,=0

Equation (3.3) is valid, since (cf. [8])
(a) (P& (2))_,, is a complete orthogonal system of L?[[-1,1], dz;],

i=1,...,7, and hence (HP'”- .)) 20u:100)

i=1 (81404 )=(wn ,..00y)

of L*([-1,1]",dz; ..., ,dz,),
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(b) the left-hand side of (3.3) is continuous and bounded in —1 < z; < 1,

=1,...,r.

Multiplying both sides of (3.3) by [];_; Py (z:), integrating with re-
spect to z1,...,Z, from —1 to 1 and using (2.1), (1.3), we obtain the value
of Cy,,... 4, - Substituting it in (3.3), the Fourier-Legendre expansion (3.1)
s obtained.

To establish (3.2), let

21(1 et I%)tl

r v vy r
3.4) JJa-<H)"H ~ )Y Au [ P (=)
i=1 2,-(1 _ xz)t, u; =1 u,=1 i=1
Multiplying both sides of (3.4) by []i_,(1 — z?)~! P¥i(z;), integrating with
respect to z1,...,z, from —1 to 1 and using (2.1), (1.4), we obtain the value
of Ay, .. u,. Substituting it in (3.4), the Fourier-Legendre expansion (3.2)

is obtained.

Note 2. The Fourier-Legendre expansion (3.1) may be viewed as the
several variables analogue of (3.1) in [1] (p. 91) and (3.6.1) in [2] (p. 70).

On specializing the parameters, Fox’s H-function of several variables
yields almost all special functions appearing in applied mathematics and
physical sciences. Therefore, the results presented in this paper are of a
general character and hence may encompass several cases of interest.
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