

S. D. Bajpai, Manmohan S. Arora

**TWO FOURIER-LEGENDRE EXPANSIONS
 FOR FOX'S H -FUNCTION OF SEVERAL VARIABLES**

1. Introduction

Several mathematicians, during the last three decades, have claimed to present various Fourier series and expansions for the G and H -functions of two or more variables. A serious study reveals that almost all of their results may be viewed as the manipulative forms of already known work on Meijer's G -function and Fox's H -function [5]–[7]. It is important to note that the Fourier series and expansions presented there involve only one variable and are expressed in terms of a single series. Therefore, these must be viewed as Fourier series and expansions for a function of one variable. Any Fourier series and expansion for a function of several variables should indeed involve several variables and be presented in terms of a multiple series, as discussed by Carslaw and Jaeger [2] (pp. 180–183) in the case of Fourier series of two variables.

The object of this paper is to establish two Fourier–Legendre expansions for Fox's H -function of several variables with the help of a multiple integral evaluated in this paper.

The following functions

$$1) \quad f(x_1, \dots, x_r) = (1 - x_1^2)^{s_1-1} \dots (1 - x_r^2)^{s_r-1} H \begin{bmatrix} z_1(1 - x_1^2)^{t_1} \\ \vdots \\ z_r(1 - x_r^2)^{t_r} \end{bmatrix}$$

and

$$2) \quad g(x_1, \dots, x_r) = (1 - x_1^2) \dots (1 - x_r^2) f(x_1, \dots, x_r),$$

AMS (1991) Subject classification: 33C25, 33C30, 33C40.

Key words: Fourier–Legendre expansions, Fox's H -function of several variables.

where H is H -function of r variables given by (1.1) and $-1 < x_i < 1$, $i = 1, \dots, r$, are expanded with respect to the following orthogonal systems

1') $P_{u_1}^{w_1}(x_1) \dots P_{u_r}^{w_r}(x_r)$, where w_i are fixed non-negative integers and $u_i = w_i, w_{i+1}, \dots, i = 1, 2, \dots, r$,

and

2') $P_{v_1}^{u_1}(x_1) \dots P_{v_r}^{u_r}(x_r)$, where v_i are fixed positive integers and $u_i = 1, \dots, v_i$, $i = 1, 2, \dots, r$,

in the Hilbert spaces

1'') $L^2((-1, 1)^r, dx_1, \dots, dx_r)$,

and

2'') $L^2((-1, 1)^r, (1 - x_1^2)^{-1} dx_1, \dots, (1 - x_r^2)^{-1} dx_r)$,

respectively ($P_n^m(x)$ denotes the Legendre function).

The reader is referred to generalizations [4] and definition of Fox's H -function of two and several variables [6] (pp. 22–35), [7] (pp. 82–98, 251–254).

In this paper Fox's H -function of several variables [7] (pp. 251–254) will be represented as follows

$$(1.1) \quad H \begin{bmatrix} z_1 \\ \vdots \\ z_r \end{bmatrix} \equiv H_{p, q; p_1, q_1; \dots; p_r, q_r}^{0, n; m_1, n_1; \dots; m_r, n_r} \begin{bmatrix} z_1 \\ \vdots \\ z_r \end{bmatrix} \begin{matrix} A; C_{p_1}; \dots; C_{p_r} \\ B; D_{q_1}; \dots; D_{q_r} \end{matrix}$$

$$= H_{p, q; p_1, q_1; \dots; p_r, q_r}^{0, n; m_1, n_1; \dots; m_r, n_r} \begin{bmatrix} z_1 \\ \vdots \\ z_r \end{bmatrix} \begin{matrix} (a_j; \alpha'_j, \dots, \alpha_j^{(r)})_{l, p_r}; (c'_j; \gamma'_j)_{l, p_1}; \dots; (c_j^{(r)}; \gamma_j^{(r)})_{l, p_r} \\ (b_j; \beta'_j, \dots, \beta_j^{(r)})_{l, q_r}; (d'_j; \delta'_j)_{l, q_1}; \dots; (d_j^{(r)}; \delta_j^{(r)})_{l, q_r} \end{matrix}.$$

The following formulae are required in the proofs: the integral [3] (p. 316, (16))

$$(1.2) \quad \int_{-1}^1 (1 - x^2)^{s-1} P_n^m(x) dx$$

$$= \frac{\pi 2^m \Gamma(s + \frac{m}{2}) \Gamma(s - \frac{m}{2})}{\Gamma(s + \frac{n}{2} + \frac{1}{2}) \Gamma(s - \frac{n}{2}) \Gamma(-\frac{m}{2} + \frac{n}{2} + 1) \Gamma(-\frac{m}{2} - \frac{n}{2} + \frac{1}{2})} \text{ for } 2 \operatorname{Re} s > |\operatorname{Re} m|$$

and the orthogonality properties of the Legendre functions [3] (p. 279)

$$(1.3) \quad \int_{-1}^1 P_n^m(x) P_k^m(x) dx = \begin{cases} 0 & \text{for } k \neq n, \\ \frac{2(n+m)!}{(2n+1)(n-m)!} & \text{for } k = n, m \leq n, \end{cases}$$

$$(1.4) \quad \int_{-1}^1 (1-x^2)^{-1} P_n^m(x) P_n^k(x) dx = \begin{cases} 0 & \text{for } k \neq m, \\ \frac{(n+m)!}{m(n-m)!} & \text{for } k = m, m \leq n. \end{cases}$$

2. The multiple integral

The multiple integral to be evaluated is

$$(2.1) \quad \int_{-1}^1 \dots \int_{-1}^1 \prod_{k=1}^r (1-x_k^2)^{s_k-1} P_{u_k}^{w_k}(x_k) H \begin{bmatrix} z_1(1-x_1^2)^{t_1} \\ \vdots \\ z_r(1-x_r^2)^{t_r} \end{bmatrix} dx_1 \dots dx_r$$

$$= \frac{\pi^r 2^{w_1+\dots+w_r}}{\prod_{k=1}^r \Gamma(\frac{1}{2}(2-w_k+u_k)) \Gamma(\frac{1}{2}(2-w_k-u_k))}$$

$$\times H \begin{bmatrix} 0, n; m_1, n_1 + 2; \dots; m_r, n_r + 2 \\ p, q; p_1 + 2, q_1 + 2; \dots; p_r + 2, q_r + 2 \end{bmatrix} \begin{bmatrix} z_1 \\ \vdots \\ z_r \end{bmatrix} \begin{bmatrix} A; (1-s_1 - \frac{w_1}{2}, t_1), \\ B; D_{q_1}, (\frac{1}{2} - s_1 - \frac{w_1}{2}, t_1), \\ \vdots \\ (1-s_1 + \frac{w_1}{2}, t_1), C_{p_1}; \dots; (1-s_r - \frac{w_r}{2}, t_r), (1-s_r + \frac{w_r}{2}, t_r), C_{p_r} \\ (1-s_1 + \frac{u_1}{2}, t_1); \dots; D_{q_r}, (\frac{1}{2} - s_r - \frac{u_r}{2}, t_r), (1-s_r + \frac{u_r}{2}, t_r) \end{bmatrix}$$

for $2 \operatorname{Re} s_i + 2t_i \min_{1 \leq j \leq m_i} [\operatorname{Re} \frac{d_j}{s_j}] > \operatorname{Re} |w_i|$, $i = 1, \dots, r$, and the conditions given by (C.4), (C.5), (C.6) in [7] (pp. 252–253).

To establish (2.1), express the H -function in the integrand as (C.1) in [7] (p. 251), change the orders of x -integrals and ζ -integrals, evaluate inner integrals with the help of (1.2) and use (C.1) in [7].

Note 1. The integral (2.1) may be viewed as the several variables analogue of the integral (2.1) in [1] (p. 90) and (2.9.2) in [6] (p. 40).

In the sequel u_i, w_i, v_i , $i = 1, \dots, r$, are non-negative integers.

3. The Fourier-Legendre expansions

The Fourier-Legendre expansions to be established are

$$(3.1) \quad \prod_{i=1}^r (1-x_i^2)^{s_i-1} H \begin{bmatrix} z_1(1-x_1^2)^{t_1} \\ \vdots \\ z_r(1-x_r^2)^{t_r} \end{bmatrix}$$

$$\begin{aligned}
&= \sum_{u_1=w_1}^{\infty} \cdots \sum_{u_r=w_r}^{\infty} \prod_{i=1}^r \frac{\pi^r 2^{w_1+\dots+w_r-r} (2u_i-1)(u_i-w_i)! P_{u_i}^{w_i}(x_i)}{(u_i+w_i)!\Gamma(\frac{1}{2}(2-w_i+u_i))\Gamma(\frac{1}{2}(1-w_I-u_i))} \\
&\quad \times H_{p, q; p_1+2, q_1+2; \dots; p_r+2, q_r+2}^{0, n; m_1, n_1+2; \dots; m_r n_r+2} \left[\begin{array}{l} A; (1-s_1-\frac{w_1}{2}, t_1), \\ B; D_{q_1}, (\frac{1}{2}-s_1-\frac{w_1}{2}, t_1), \end{array} \right. \\
&\quad \left. (1-s_1+\frac{w_1}{2}, t_1), C_{p_1}; \dots; (1-s_r-\frac{w_r}{2}, t_r), (1-s_r+\frac{w_r}{2}t_r), C_{p_r} \right] \\
&\quad (1-s_1+\frac{w_1}{2}t_1); \dots; D_{q_r}, (\frac{1}{2}-s_r-\frac{w_r}{2}, t_r), (1-s_r+\frac{w_r}{2}, t_r)
\end{aligned}$$

valid under the conditions (1.3), (2.1), and

$$\begin{aligned}
(3.2) \quad & \prod_{i=1}^r (1-x_i^2)^{s_i-1} H \begin{bmatrix} z_1(1-x_1^2)^{t_1} \\ \vdots \\ z_r(1-x_r^2)^{t_r} \end{bmatrix} \\
& \sim \sum_{u_1=1}^{v_1} \cdots \sum_{u_r=1}^{v_r} \prod_{i=1}^r \frac{\pi^r 2^{u_1+\dots+u_r} u_i(v_i-u_i)! P_{v_i}^{u_i}(x_i)}{(v_i+u_i)!\Gamma(\frac{1}{2}(2-u_i+v_i))\Gamma(\frac{1}{2}(1-u_i-v_i))} \\
&\quad \times H_{p, q; p_1+2, q_1+2; \dots; p_r+2, q_r+2}^{0, n; m_1, n_1+2; \dots; m_r n_r+2} \left[\begin{array}{l} z_1 \\ \vdots \\ z_r \end{array} \right] \left[\begin{array}{l} A; (1-s_1-\frac{w_1}{2}, t_1), \\ B; D_{q_1}, (\frac{1}{2}-s_1-\frac{w_1}{2}, t_1), \\ (1-s_1+\frac{w_1}{2}, t_1), C_{p_1}; \dots; (1-s_r-\frac{w_r}{2}, t_r), (1-s_r+\frac{w_r}{2}t_r), C_{p_r} \\ (1-s_1+\frac{v_1}{2}t_1); \dots; D_{q_r}, (\frac{1}{2}-s_r-\frac{v_r}{2}, t_r), (1-s_r+\frac{v_r}{2}, t_r) \end{array} \right]
\end{aligned}$$

valid under the conditions (1.4), (2.1).

To prove (3.1), let

$$(3.3) \quad \prod_{i=1}^r (1-x_i^2)^{s_i-1} H \begin{bmatrix} z_1(1-x_1^2)^{t_1} \\ \vdots \\ z_r(1-x_r^2)^{t_r} \end{bmatrix} = \sum_{u_1=0}^{w_1} \cdots \sum_{u_r=0}^{w_r} C_{u_1, \dots, u_r} \prod_{i=1}^r P_{u_i}^{w_i}(x_i).$$

Equation (3.3) is valid, since (cf. [8])

(a) $(P_{u_i}^{w_i}(x_i))_{u_i=w_i}^{\infty}$ is a complete orthogonal system of $L^2([-1, 1], dx_i)$,

$$i = 1, \dots, r, \text{ and hence } \left(\prod_{i=1}^r P_{u_i}^{w_i}(x_i) \right)_{(u_1, \dots, u_r)=(w_1, \dots, w_r)}^{(\infty, \dots, \infty)}$$

of $L^2([-1, 1]^r, dx_1 \dots, dx_r)$,

(b) the left-hand side of (3.3) is continuous and bounded in $-1 < x_i < 1$, $i = 1, \dots, r$.

Multiplying both sides of (3.3) by $\prod_{i=1}^r P_{u_i}^{w_i}(x_i)$, integrating with respect to x_1, \dots, x_r from -1 to 1 and using (2.1), (1.3), we obtain the value of C_{u_1, \dots, u_r} . Substituting it in (3.3), the Fourier-Legendre expansion (3.1) is obtained.

To establish (3.2), let

$$(3.4) \quad \prod_{i=1}^r (1 - x_i^2)^{s_i} H \begin{bmatrix} z_1(1 - x_1^2)^{t_1} \\ \vdots \\ z_r(1 - x_r^2)^{t_r} \end{bmatrix} \sim \sum_{u_1=1}^{v_1} \dots \sum_{u_r=1}^{v_r} A_{u_1, \dots, u_r} \prod_{i=1}^r P_{v_i}^{u_i}(x_i).$$

Multiplying both sides of (3.4) by $\prod_{i=1}^r (1 - x_i^2)^{-1} P_{v_i}^{w_i}(x_i)$, integrating with respect to x_1, \dots, x_r from -1 to 1 and using (2.1), (1.4), we obtain the value of A_{u_1, \dots, u_r} . Substituting it in (3.4), the Fourier-Legendre expansion (3.2) is obtained.

Note 2. The Fourier-Legendre expansion (3.1) may be viewed as the several variables analogue of (3.1) in [1] (p. 91) and (3.6.1) in [2] (p. 70).

On specializing the parameters, Fox's H -function of several variables yields almost all special functions appearing in applied mathematics and physical sciences. Therefore, the results presented in this paper are of a general character and hence may encompass several cases of interest.

Acknowledgement. The authors wish to express their sincere thanks to the referee for his useful suggestions for the revision of the paper.

References

- [1] S. D. Bajpai, *An expansion formula for Meijer's G-function*, Proc. Nat. Inst. Sci. India, Part A, 35, Suppl. 1 (1969), 90-94.
- [2] H. S. Carslaw, J. C. Jaeger, *Conduction of heat in solids*, Clarendon Press, Oxford, 1986.
- [3] A. Erdelyi, et al.: *Tables of integral transforms*, Vol. 2, McGraw-Hill, New York, 1954.
- [4] C. Fox, *The G and H-functions as symmetrical Fourier kernels*, Trans. AMS. 98 (1961), 395-429.
- [5] A. M. Mathai, R. K. Saxena, *Generalized hypergeometric functions with applications in statistics and physical sciences*, Lecture Notes Series No. 348. Springer-Verlag Berlin, 1978.
- [6] A. M. Mathai, R. K. Saxena, *The H-function with applications in statistics and other disciplines*, Wiley Eastern Ltd., New Delhi, 1978.

- [7] H. M. Srivastava, K. C. Gupta, S. P. Goyal, *The H-functions of one and two variables with applications*, South Asian Publishers, New Delhi, 1982.
- [8] A. Zygmund, *Trigonometric series*, Cambridge University Press, 1959.

Manmohan S. Arora

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF BAHRAIN

P.O. BOX 32038,

ISA TOWN, BAHRAIN;

and

S. D. Bajpai

INSTITUTE FOR BASIC RESEARCH

P.O.BOX 1577

PALM HARBOR, FL 34682, U.S.A.

Received April 11, 1994.