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TWO FOURIER-LEGENDRE EXPANSIONS 
FOR FOX'S / /-FUNCTION OF SEVERAL VARIABLES 

1. Introduction 
Several mathematicians, during the last three decades, have claimed to 

present various Fourier series and expansions for the G and //-functions of 
two or more variables. A serious study reveals that almost all of their results 
may be viewed as the manipulative forms of already known work on Mei-
jer's G-function and Fox's //-function [5]-[7]. It is important to note that 
the Fourier series and expansions presented there involve only one variable 
and are expressed in terms of a single series. Therefore, these must be viewed 
as Fourier series and expansions for a function of one variable. Any Fourier 
series and expansion for a function of several variables should indeed involve 
several variables and be presented in terms of a multiple series, as discussed 
by Carslaw and Jaeger [2] (pp. 180-183) in the case of Fourier series of two 
variables. 

The object of this paper is to establish two Fourier-Legendre expansions 
for Fox's //-function of several variables with the help of a multiple integral 
evaluated in this paper. 

The following functions 

1) f(x1,...,xr) = (l-xl)»-1...(l-x2
ry-1H 

zr( 1-xlY' 

and 

2) g{xi,...,xr) = (1 - * ? ) . . . ( ! - x2
r)f(x1,...,xr), 
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where H is .//-function of r variables given by (1.1) and - 1 < X{ < 1, 
i = l , . . . , r , are expanded with respect to the following orthogonal sys-
tems 

1') P u i ( x \ ) - - - P u * ( x r ) i where u>, are fixed non-negative integers and 
Ui = wi,wI+I,..., i - 1,2, . . . , r , 

and 

2') .. .P„*(xr), where V{ are fixed positive integers and Uj = 
i = 1 , 2 , . . . , r , 

in the Hilbert spaces 

1") L2((-i,iy,dxu...,dxr), 
and 

2") L2((-I , i r , ( i- x])- id x i , . . . , ( i -xiy 'dxr) , 
respectively (P™(x) denotes the Legendre function). 

The reader is referred to generalizations [4] and definition of Fox's H-
function of two and several variables [6] (pp. 22-35), [7] (pp. 82-98, 251-
254). 

In this paper Fox's .//-function of several variables [7] (pp. 251-254) will 
be represented as follows 

(1.1) H _ JJ 0, n; mi, n i ; . . . ; mr, nr 
— p> 7 ;p i ,7 i ; - ;p r ,7 r 

= H 

Lz r J 

0, n; mi, ni;. ..; m r, nr 

p. Pi. ?i; • • •; Prqr 

A; CPl i • • •! Cpr 
B; Dqi;...; Dqr 

( a j , a<.r))liPr; (C;; 7< )ilPl; • • •; (c<r); 7{r)k
M ^ r ) ) / . , r ; K - ; i > ) / , , i ; - - - ; ( 4 r ) ; 4 r ) ) ' . i r 

The following formulae are required in the proofs: the integral [3] 
(p. 316, (16)) 

(1.2) / (1 - x ' y - 1 P ^ ( x ) d x 
- l 

w2mr(s + f)r(s-f) 
r(s+ f +1)r(s - f ) r ( - f + f + i ) r ( - f - f + 1 ) 

- — j - for 2 R e s > | R e m | 

and the orthogonality properties of the Legendre functions [3] (p. 279) 
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(1.3) 

(1.4) 

f P?(x)P?(x)dx = 2(n+m)! 
_ j I ( 2 n + l ) ( n - m ) ! 

for k ^ n, 
for k = n, m < n, 

0 for k / m, 
/ (1 - x ' r ' P H * ) / * ^ * = \ (n + m)! f o r ^ = m < n 

m(n - m)! - l 

2. The multiple integral 
The multiple integral to be evalued is 

(2.1) J . . . f flii-zly^ppMB 

xr2Ui¡ + ...+wr 

-1 -1 k-l [Zr(l -ZD*' 

dxi ...dxr 

m = i n w - * * + u « ) ) r ( U 2 -w«-u*)) 
21 

x t f 0,n;mi,ni + 2;.. . ; m rn r + 2 
P.9IP1 + 2 , 9 1 + 2 ; . . . ; p r + 2 , ? r + 2 

i4;(l - si - ^ ,<1), 

(1 - a i + f - , < i ) , C P l ; . . . ; ( l - s r - ^ , < r ) , ( l - S r + ^tr),CPr 

(1 - a, + ^ . ¿ ^ . . . ¡ Z V ^ i - s , . - ^ , i r ) , ( l - a r + 

for 2 Re s,-+2ij m in i< j< m i [ Re > Re i = 1 , . . . , r , and the conditions 
given by (C.4), (C.5), (C.6) in [7] (pp. 252-253). 

To establish (2.1), express the /^-function in the integrand as ( C . l ) in 
[7] (p. 251), change the orders of x-integrals and ^-integrals, evaluate inner 
integrals with the help of (1.2) and use (C . l ) in [7]. 

Note 1. The integral (2.1) may be viewed as the several variables ana-
logue of the integral (2.1) in [1] (p. 90) and (2.9.2) in [6] (p. 40). 

In the sequel Ui,Wi, u,, i = 1 , . . . , r , are non-negative integers. 

3. The Fourier-Legendre expansions 
The Fourier-Legendre expansions to be established are 

(3.1) n ^ - 1 ' ) " " 1 " 
i=i *r( l - * r ) ' r J 



Ul=Wl ur 

0, n; mi, ni + 2;... ; m rn r + 2 xH P,Q\P 1 +2,91 +2; . . . ;p r +2,qr + 2 
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^ " ' 1 1 + " « W ^ 2 - ^ + « O K W - ^ - «••)) 

¿ ; ( l - 5 i - i i) , 
ai 

(1 - Si + ^,ti),CPl;...; (1 - sr - - sr + ^tr),CPr 

(1 - a , + - a r - ^ , i r ) , ( l - a r + f , f r ) 

valid under the conditions (1.3), (2.1), and 

(3.2) n i 1 - ^ ) 3 ' " 1 ^ 
i— 1 

Vl 

Ui =1 " ' À to + - «i + v , ) ) r ( i ( i - m -1,,)) 
E E n 

xH 0, n; mi, ni + 2;... ; m rn r + 2 
Pi 71 Pi +2,gi +2; . . . ;pr + 2,9r +2 

( 1 - 51 + f . t i ) ; . . . ; / ? , „ ( i - s r - - + f , i r ) 

valid under the conditions (1.4), (2.1). 

To prove (3.1), let 

(3.3) n o - * ? ) « - 1 * 
1 = 1 

¿ i ( l - x î ) ' 1 U>J wr 

= . n ™ 
u i =0 u r = 0 »'=1 

Equation (3.3) is valid, since (cf. [8]) 

(a) (Pu^(xì))V,=wì ' s a complete orthogonal system of L 2 [ [ - l , 1], d x j , 

r 

» = 1 , . . . , r, and hence ( J ] (x<)) 
« = 1 

(oo,...,oo) 

(«1 ,...,ur) = (tl>l ,...,tor) 

of X 2 ( [ - l , l ] r , d x i . . . , d x r ) , 
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(b) the left-hand side of (3.3) is continuous and bounded in — 1 < Xi < 1, 
= 1 r 

Multiplying both sides of (3.3) by II[=i ^ ' i 1 « ) » integrating with re-
spect to x i , . . . , x r from —1 to 1 and using (2.1), (1.3), we obtain the value 
of Cu , U r . Substituting it in (3.3), the Fourier-Legendre expansion (3.1) 
s obtained. 

To establish (3.2), let 

1 - x ? ) 1 ' " 

(3.4) ¡ ¡ ( I 
t= i 

vi 

s - n ^ ( « . - ) • 
U] =1 Ur = l 1=1 

Multiplying both sides of (3.4) by I ILiC 1 _ (*«). integrating with 
respect to x\,.. . , x r from - 1 to 1 and using (2.1), (1.4), we obtain the value 
of AUu...tUr. Substituting it in (3.4), the Fourier-Legendre expansion (3.2) 
is obtained. 

Note 2. The Fourier-Legendre expansion (3.1) may be viewed as the 
several variables analogue of (3.1) in [1] (p. 91) and (3.6.1) in [2] (p. 70). 

On specializing the parameters, Fox's //-function of several variables 
yields almost all special functions appearing in applied mathematics and 
physical sciences. Therefore, the results presented in this paper are of a 
general character and hence may encompass several cases of interest. 
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