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H E R E D I T A R Y S U B A L G E B R A S OF 5 C A'-ALGEBRAS 

1. Introduction 
The leading motivation for i?CA'-algebras comes from algebraic logic: 

a BCK-algebra A = (A;-,0) is the algebraic counterpart of a purely im-
plicational calculus in which 0 corresponds to truth, x • y is interpreted as 
y x and i - y = 0 a s h y - > i . With A we associate, as usual, a partially 
ordered set (A\ <), defining x < y iff x • y = 0. Hereditary (with respect 
to <) subalgebras B = (B ; -,0) of A correspond to subcalculi of A with an 
"implicational completeness" property, viz., A contains no consequences of 
propositions in B that are not themselves in B. 

Given a BCK-algebra. A and a variety K of BCA"-algebras, there may 
be various hereditary subalgebras of A which are members of K. The union 
i/i( A) of these is also a hereditary subalgebra of A. If it too is a member 
of Ii we say that K has the hereditary subalgebra property for A. We shall 
prove, inter alia, that if K is a quasivariety of fiCA"-algebras then the class 
of all BCK-algebras for which K has the hereditary subalgebra property 
is also a quasivariety. We shall also prove that many of the best known 
varieties of 5CA'-algebras (but not all varieties of 5CA'-algebras) have the 
hereditary subalgebra property for all 5CA"-algebras A. 

2. Conventions 
We denote by u the set of all nonnegative integers. We denote alge-

bras by boldface capitals A, B, C , . . . and their universes by A, B,C,... By 
a quasivariety, we mean a class of algebras of the same type that is ax-
iomatized by a set of quasi-identities. We assume a familiarity with the 
theory of .SCAT-algebras (see survey articles [Cor82] and [IT78]). Henceforth 
if A = (J4; •, 0) is a 5CAT-algebra, we shall abbreviate the binary operation • 
on A by juxtaposition and for n G w and any a, b, b\,..., bn £ A, we define 
inductively: 
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( 1 ) ab\ ..,bn = (ab\ ...6n_i)6n (rc > 1), 

ab° = a; abn = abn~lb (n > 0). 

xyz = xzy, 

which holds in every 5CA'-algebra [IT78, Theorem 1], the order of b\,.. .,bn 

is immater ia l in (1). As usual, we associate with A a poset (/I; <} where for 
a , 6 £ A, we define a < b iff ab = 0. This poset has a least element, viz. 0. 
Recall t ha t every 5CA'-algebra satisfies the identities 

For an element a of our BCK-algebra A , we denote by (a] the principal 
order ideal of the ordered set (v4;<) generated by a, i.e., (a] = {x 6 A : 
x < a}. A set A" C A is said to be a hereditary subset of A if X / 0 and 
(a] C A" for all a £ X . The set of all hereditary subsets of A is denoted 
by A ) . Clearly {0} is the least and A the greatest element of the poset 
( J f ( A ) ; C) . If & is a nonempty subset of J f ( A ) then both f | y and [j y 
are elements of Jif(A). In part icular , A) ; C) is a complete, completely 
distributive lattice which fails to be a complete sublatt ice of the power set 
(exp A; C) of A only because the supremum of the empty subset of exp A is 
0, while the supremum of the empty subset of Jif(A) is {0}. Note also t ha t 
every hereditary subset of A is ( the universe o f ) a suba lgeb ra of A . We shall 
systematically confuse an element B of J f ( A ) with the subalgebra B of A 
whose universe is B. 

3. A'-hereditary subsets 
For a class K of flCA'-algebras, we let A) denote the set of all 

elements B of J f ( A) which are the universes of elements of A". 
Recall tha t a sentence ip of a first order language S£ is called a universal 

existential sentence (briefly, a V3 sentence) if its prenex normal form is 
Vzi .. .Vxn3y\ ... 3ymip, where ip is an open formula of S£ (i.e., a first order 
formula of % not containing any occurrence of a quantifier) and n , m 6 u . 
(The cases n = 0 and m = 0 are possible and should be interpreted as 
the absence of universal and existential quantifiers, respectively, in if) . By 

(3) 

(4) 

(5) 

xy < i , 

x{xy) < y, 
(xy)(zy) < xz 

and the quasi-identities 

(6) 

(7) 

x < y => xz < yz, 

x < y => zy < zx. 
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a universal existential class (of JSf-structures), we mean a class K of 
structures which is axiomatized by a set of V3 sentences. If ^ is a subset of 
a class K of Jf-structures and for any A , B 6 "if, either A is a substructure 
of B or B is a substructure of A , we call a chain of structures in K. In 
this case, we may define an JSf-structure D = |J whose universe is |J i f , 
where / D ( a i , . . . , a „ ) = fA(a\,..., a „ ) for any A e ^ , any ai,..., an € A 

and any n-ary operation symbol / of J f , and where, for any n-ary relation 
symbol r of J f , rD(ai,... ,an) is true if and only if r A ( a i , . . . , a n ) is true in 
some A G ^ with ai,..., an £ A. If |J ^ £ A' for all chains of structures 
in A', we say that K is closed under the formation of set theoretic unions 
of chains. It is well known that a class K is closed under the formation of 
set theoretic unions of chains if and only if K is a universal existential class 
(e.g., [BS81, Exercise V.1.24, p. 203]). 

PROPOSITION 1. Let K be a nonempty class of BKC-algebras and A a 

BCK-algebra. 

( i ) // K is closed under the formation of subalgebras and isomorphic 

images then .^j<(A) ^ 0 (in particular, {0 } 6 J?k(A)) and J f ( B ) C 
.//"K{A) for each B e J K ( A ) . 

(ii) If I\ is a universal existential class and y is a nonempty subchain 

of the poset A ) ; C) then \jy £ Jfx(A). In particular, for every X £ 

A\.(A), there is a maximal dement Y of (J4?K(A);C) such that X C Y. 

P r o o f , ( i ) This follows from the transitivity of subalgebras and heredi-
tary subsets. 

(ii) It follows easily from the definitions that \jy 6 Jif(A) and since 
A is a universal existential class, |J y £ A'. Consequently [J y £ Jffii(A). 

The rest follows from Zorn's Lemma. • 

We define ¿ / ( ( A ) = U-^A ' (A ) . Note that iK(A) € Jf(A). I f i * ( A ) £ A', 
we say that K has the hereditary subalgebra property for A . In this case 
iji(A) is, of course, the largest hereditary subalgebra of A in A'. We also 
define Kh = { A : A is a fiCA'-algebra for which K has the hereditary 
subalgebra property}. 

PROPOSITION 2. Let K be a class of BCK-algebras which is closed under 

the formation of subalgebras and isomorphic images and let A £ A'h. If J? 

is a nonempty subset of Jff/<(A) then the union (resp. intersection) of y 

is its supremum (resp. infimum) in Jt?j<(A), while {0 } is the supremum of 

the empty subset of Jf?i((A). In particular, i/c(A) is the greatest element of 

the complete, completely distributive lattice (Jf?j<(A); C). 

P r o o f . For the first assertion it suffices to note that |J y is a hereditary 
subuniverse of z'/<-(A). The rest is trivial. • 
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C O R O L L A R Y 3 . Let K be a class of BCK-algebras which is closed under 
the formation of subalgebras and isomorphic images and let A £ Kh. Then 
the following conditions are equivalent: 

0) A 6 K; 
(ii) iK(A) = A; 

(iii) For every x £ A, we have (x] £ J i / f ( A ) . • 

C O R O L L A R Y 4 . Let K be a class of BCK-algebras which is closed under 
the formation of subalgebras and isomorphic images and let A £ Kh. Then 
X £ J ^ K ( A ) i f f X is a hereditary subset of i^(A). 

P r o o f . This follows from the fact that hereditary subsets of A are sub-
universes of A and that I'K(A) is the largest of these. 

L E M M A 5 . Let K be a class of BCK-algebras which is closed under the 
formation of subalgebras and isomorphic images and let A £ Kh. For each 
x £ A, we have x £ A) i f f (x] £ Jfx{A). 

P r o o f . Easy. • 

L E M M A 6 . Suppose that for each j £ J (J a nonempty set), Kj is a 
class of BCK-algebras which is closed under the formation of subalgebras 
and isomorphic images and A € ( K j ) h . Then A £ ( f l j e j Kj)h also. 

P r o o f . Let K = VljzjKj-Then JtK(A) = Cljej = { H j e j X j : 
X j £ J f f k j (A) for each j £ J}, because each K j is closed under subalgebras. 
Thus !/<•(A) = D j e j ^ y i A ) £ Kj for every j £ J , because each Kj has 
the hereditary subalgebra property for A. Consequently, ij<(A) £ Ii, as 
required. • 

P R O P O S I T I O N 7 . Let K be a class of BCK-algebras which is closed under 
the formation of subalgebras and isomorphic images and let A £ KH. Then 
any subalgebra of A is a member of Kh. 

P r o o f . Let B be a subalgebra of A . Let X = {a £ A : a < b for some 
b £ Z / C ( B ) } . Then X is the universe of a hereditary subalgebra X of A (by 
(3)), and ¿k(B) is a subalgebra of X , hence of (A). Since ¿/<(A) £ K , we 
have I ' /<-(B) £ Ii, as required. • 

Let ( A j : j £ J) be a nonempty family of BCK-algebras and let <P 
be a proper filter on the Boolean algebra e x p j = (exp J ; U, f l , / , 0, J) of 
all subsets of J . As usual, we denote the ^-reduced product of the family 
(A j : j £ J) by I l j e j A For elements f,g of the direct product I l j e j A j 
and X C r i je . /A.J ' we write 

f = h (mod * ) iff { j £ J : f ( j ) = g(j)} £ 
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[fU = { g e l l A J : f = g(mod^)}, 
jeJ 

[X]* = {[/]* : f e x } . 

The index $ will frequently be omitted. 

P R O P O S I T I O N 8 . Let K be a quasivariety of BCK-algebras which has the 
hereditary subalgebra property for all members of a family (Aj : j G J) of 
BCK-algebras. Let <f> be a proper filter on the Boolean algebra e x p J. Then 

j£J jeJ 

P r o o f . Since the class of all BCK-algebras is a quasivariety, it is closed 
under the formation of reduced products, so the application of the operator 

to JI -€ j Aj/$ is permissible. Let E = {(fik • k G / } be a set of quasi-
identities <pk(xk,..., (with free variables xk,..., ^n(k)) axiomatizing 
A'. We shall write C = f \ j e J A j / ^ and D = F l j e j A>-

Let [/] € [ I l j e j »'*(A,-)]*, where / G D. Let k G I and a f , . . . ,a* ( f c ) G D 
with [ a f ] , . . . , [ a * ( f c ) ] < [ / ] . T h e n 

s ••= { j e J : f ( j ) e iK{ Aj) and a * ( j ) , . . . , ak
n{k)(j) < f ( j ) } G i>. 

By Lemma 5, for each j G S, we have ( f ( j ) ] G Jifa(A), so ( f ( j ) ] 1= 
*>*(*?»•••.**(*))• T h u s 

S' := { j e J : ^ ' ( a k ( j ) , . • • ,ak
n{k)(j)) is true} € 

because S C S'. Since quasi-identities are (equivalent to) Horn formulas, it 
follows from [BS81, Theorem V.2.7, p. 207] that . . . , is true. 
Thus, C satisfies (pk(xk, • • -ixn(it))- Since quasi-identities are (equivalent to) 
universal sentences, they are also preserved in the formation of substructures 
[BS81, Exercise V.1.13. p. 202], so ([/]] N ipk(xk,..., xk

{k)). Consequently, 
([/]] € jeK(C). By Lemma 5, [/] € iK(C). 

Conversely, suppose [/] G I ' K ( C ) . Let T = { j G J : f ( j ) & I ' K ( A J ) } . By 
Lemma 5, for each j G T, there is an index k € I and a\'\..., € Aj 

such that ak'\..., < f ( j ) and the sentence (ak'\... , G*^)) is false. 

Define bk,..., bk
n(k) G £> by: = if j G T; = f ( j ) if j G J \ T. 

Then [6f] < [/] for i - 1 , . ..,n(k) and for all k £ I and 

T C { j e J : ^ ' ( b ^ j ) , • • -,bk
n(k)(j)) is false for some k G / } . 

Our assumptions about / imply that « ^ ( [ f r f ] , . . . , [&£„,]) is true for all k G / , 
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SO 

J \ T D { j e J : • ;b k n (k )U) ) i s t r u e f o r a11 * € /} e 

Thus J \ T £ $ and so f ( j ) G t/<-(Aj) for all j in a member of 4>. whence 

[/] € [ I W k Î A , - ) ] * . • 

THEOREM 9. Let K be a quasivariety of BCK-algebras. Then Kh is also 

a quasivariety. 

P r o o f . Trivially, any one-element BCK-algebra is in Kh. It therefore 
suffices, by [BS81, Theorem V.2.25, p. 219], to show that Kh is closed under 
the formation of isomorphic images, subalgebras and reduced products. The 
first of these closure assertions is trivially true and the second follows from 
Proposition 7. If K has the hereditary subalgebra property for all members 
of the family ( A j : j G J) and <P is a filter on exp J, then by the Third 
Isomorphism Theorem, [ r i j g j ii<(Aj)]<p = f j ¿ / < - ( A j ) / ! ? , where 9 is the 
restriction of the congruence on IJj^jAj associated with <P to 7 7 J 6 j i j < { A j ) . 

Thus [ r i j e j î/v ( A j is isomorphic to the reduced product J l j e j A j ) / 0 . 
From the previous result and the fact that the quasivariety is closed under 
reduced products, we have ij<(YljeJ Aj/^) G K, i.e., Yijçj A-j/*P G Kh. as 
required. • 

A further corollary of Proposition 8 is: 

COROLLARY 10. Let K be a quasivariety of BCK-algebras which has tlu 

hereditary subalgebra property for all members of a family (Aj : j € /) of 

BCK-algebras. Then 

n a , ) = I I 
jeJ jeJ 

P r o o f . The result is trivial if J — 0, both sides of tlie above equation 
being trivial algebras. If <7^0 , apply Proposition 8 with <P = { J } . 

4. Varieties having the Hereditary Subalgebra Property for all 
#CA ' -a lgebras 

The quasivariety of all BCA'-algebras is not a variety [Wro83]. A number 
of varieties of ZJCA'-algebras have been studied in the literature. In partic-
ular, for each n G the class of all BCA'-algebfas satisfying the identity 

(En) xyn = xyn+1 

is a variety, denoted by En, having 

(8) ( ( * y ) ( * * ) ) ( * y ) = o, 

(9 ) Ox = 0, 
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(10) xO = X 

a n d ( E n ) as an equa t iona l base (see [BR95, P ropos i t ion 13]). ( T h e ident i t ies 
(8) and (9) a re ax ioms for Z?CAT-algebras and every 5CA"-a lgebra sat isf ies 
(10) : see [IT78].) Clearly E0 is t h e t r ivial variety, while t he m e m b e r s of E\ 
are known in t h e l i t e r a tu re as Hilbert algebras or positive implicative BCK-
algebras. It is not difficult t o see t h a t every finite BCK-algebra belongs t o 
En for some n 6 w. 

A 5 C A ' - a l g e b r a A is called commutative if it sat isfies t h e iden t i ty 

(T) x{xy) - y(yx). 

In this case t h e associa ted par t ia l ly o rdered set (A\ <) is a lower semi la t t i ce 
whose in f imum ope ra t ion is def inable by 

x A y = x(xy). 

T h e class T of all c o m m u t a t i v e i JCA'-a lgebras is a variety and was s tud ied 
by T a n a k a [Tan75] - also see [Cor82]. 

A BCA'-a lgebra is called implicative or a Tarski algebra if it sat isfies t h e 
ident i ty 

( I ) x(yx) = x. 

It is well known t h a t t h e class / of all impl ica t ive fiCA'-algebras is a var ie ty 
and is t he smallest nont r iv ia l quas ivar ie ty of 5 C A - a l g e b r a s . It is also well 
known t h a t I = Ei C\T (see [Cor82]). 

In [Cor81], Cornish considers t h e class J of all BCK-algebras sa t i s fy ing 
the ident i ty 

(./) ar(ar(y(j/x))) = y(y(x(xy))) 

and proves t h a t this class is a var ie ty which s t r ic t ly con ta ins t he s u p r e m u m 
of t he varieties E\ a n d T. We shall prove t h a t all of t h e a fo remen t ioned 
varieties have the he red i t a ry suba lgeb ra p r o p e r t y for all 5 C A ' - a l g e b r a s . (In 
the case of T, this is a l ready known [Stu84].) 

L e m m a 11. For every k 6 u>, every BCK-algebra satisfies the identity: 

(11) xyk = x(x(xy))k. 

P r o o f (by induct ion on k): T h e l e m m a is tr ivial ly t r u e for k = 0, as we 
have defined uv° = u. For k = 1, we have x(x(xy)) < xy as a s u b s t i t u t i o n 
ins t ance of (4) . Bu t f r o m (4) a n d (7) , we conclude t h a t xy < x(x(xy)) a n d 
so xy = x(x(xy)). Suppose all Z?CA'-algebras sa t i s fy (11) for some k £ u. 
T h e n 

xyk+1 = (xyk)y = (x(x(xy))k)y (by t h e induc t ion hypo thes i s ) 

= (xy)(x(xy))k (by (2) ) 
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= x(x(xy))(x(xy))k (by the case k = 1) 
= x(x(xy))k+1. m 

COROLLARY 12 . If A is any BCK-algebra, n G W, B G • # £ „ ( A ) , x £ A 
and be B then bxn = 6 x n + 1 . 

P r o o f . Since B is a hereditary subalgebra of A and b(bx) < b (by 
(3)), we have b{bx) G B. Since B € £ „ , we have b{b(bx))n = b(b(bx))n+1. 
Applying (11) to this equation, we get bxn = 6x n + 1 . • 

T H E O R E M 13. For each n £ u, i/ie variety En has the hereditary subal-
gebra property for all BCK-algebras. 

P r o o f . Let A be a BCK-algebra and let H = iEn(A). Take a,b £ H. 
There exists B £ < % E N ( A ) such that 6 G B. By the previous corollary, 
ban = 6a n + 1 hence H G En, as required. • 

It follows that we cannot replace "quasivariety" by "variety" throughout 
the statement of Theorem 9: if A' = En, then Kh is the class of all BCK-
algebras, which is not a variety. 

E X A M P L E 14 . Given n 6 u and a BCK-algebra. A , Corollary 12 says that 
if a 6 ¿£n(A) then axn = axn+1 for each x G A. The converse implication 
is not true in general, as the following example shows. 

Take an element a such that a £ u. Set A — uj U {a}. For x, y G u and 
z G A, define 

xy = x—y = max{0, x — ?/}, ax = a, za = 0. 

Then A = (A; -,0) is a BCK-algebra.: in fact, this is a special case of Iseki's 
adjunction of a unit (our a) to the linearly ordered simple commutative 
BCK-algebra. u = (u>; — ,0): see [Ise75, Theorem 4]. Note that a is the great-
est element of the partially ordered set {A; <) and the restriction of < to w 
is the classical linear order on u. For all m,p,q £ u, where q > 0 and m > p, 
we have 

m\p = m — p^m — ( p + l ) = m - l p + 1 and 
m • l p = m — p> m • qp. 

Therefore ign(A) = { 0 , . . . , « } and so a ^ ¿ ^ ( A ) . Nevertheless, azn = 
azn+1 for all "z G A. 

T H E O R E M 15. [Stu84, Theorem 3]. The variety T of all commutative 
BCK-algebras has the hereditary subalgebra property for all BCK-algebras. m 

COROLLARY 16 . The variety I of all implicative BCK-algebras has the 
hereditary subalgebra property for all BCK-algebras. 
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P r o o f . This follows from Lemma 6, Theorems 13 and 15 and the fact 
t h a t I = Ei n T. m 

THEOREM 17. The variety J has the hereditary subalgebra property for 
all BCK-algebras. 

P r o o f . Take a 5CA'-a lgebra A and a,b £ i j ( A ) , say a 6 C\ € J t j ( A ) 
and beC2 e Jfj(A). Then b(ba) < a (by (4)) so b{ba) € C\. Now we may 
apply ( J ) to a and 6(6a) and we have: 

a(a(b(ba))) = a ( a ( [ 6 ( 6 a ) ] 0 ) ) ( b y ( 1 0 ) ) 

= a(a([6(6a)][(6(6a))a])) (by (4)) 

= b(ba)[[b(ba))(a(a[b(ba))))) ( b y ( J ) ) 

= 6(6a)[[6(a(a[6(6a)]))](6a)] (by (2)) 

< 6(6(a(a[6(6a)]))) (by (5)) 

< 6(6(a(a6))). 

The last inequality follows from the fact t ha t b(ba) < 6 (by (3)) and four 
applications of the quasi-identity (7). 

Similarly, from the fact t ha t a(ab) e C2, we may prove the reverse in-
equality b(b(a(ab))) < a(a(b(ba)))\ hence t j ( A ) satisfies ( J ) , i.e., ij(A) 6 J , 
as required. • 

EXAMPLE 18. We show tha t there exists a variety V of 5CA'-algebras 
which does not have the hereditary subalgebra property for all BCK-al-
gobras. A 5CiT-algebra is said to be directed if its underlying partially 
ordered set is upward directed. Let V be the class of all BCK-algebras 
which are embeddable into directed commuta t ive BCA'-algebras. Then V 
is a variety [Stu82, Theorem 11] and an equational base for V is provided 
by the identities (8), (9), (10), (T) and 

( 1 2 ) xy A yz — 0 

[RS87, Corollary 5]. Note tha t (12) is a (•, 0)-identity since x A y = x(xy) 
holds in every commuta t ive 5CA'-algebra. 

Let (A\ < ) be the partially ordered set whose Hasse 
diagram is depicted on the right. Define a binary oper- ¿ 0 o ~ 
ation • on A (abbreviated by juxtaposi t ion) as follows. 
For x , y € A: 

61 = c l = 6c = cb = 1 

xx = Oi = 0; xO — x 

x < y => xy = 0. 
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Then A = {A\-, 0) is a ZiCA'-algebra whose associated partial order is < . 
Let B and C be the subalgebras of A with B = {0 ,1 ,6 } and C = {0, l , c } . 
Then clearly B,C <E A ) and A = B U C so A = iv(A), but A £ V, 
since A violates (12): indeed, be A cb = 1 A 1 = 1 ^ 0. 
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