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HEREDITARY SUBALGEBRAS OF BCK-ALGEBRAS

1. Introduction

The leading motivation for BCK-algebras comes from algebraic logic:
a BCK-algebra A = (A;-,0) is the algebraic counterpart of a purely im-
plicational calculus in which 0 corresponds to truth, = - y is interpreted as
y—zandz-y=0ast y— z. With A we associate, as usual, a partially
ordered set (A; <), defining z < y iff z - y = 0. Hereditary (with respect
to <) subalgebras B = (B;-,0) of A correspond to subcalculi of A with an
“implicational completeness” property, viz., A contains no consequences of
propositions in B that are not themselves in B.

Given a BCK -algebra A and a variety K of BCK-algebras, there may
be various hereditary subalgebras of A which are members of K. The union
i (A) of these is also a hereditary subalgebra of A. If it too is a member
of K we say that K has the hereditary subalgebra property for A. We shall
prove, inter alia, that if K is a quasivariety of BCK -algebras then the class
of all BCK-algebras for which K has the hereditary subalgebra property
is also a quasivariety. We shall also prove that many of the best known
varieties of BCK -algebras (but not all varieties of BCK -algebras) have the
hereditary subalgebra property for all BCK-algebras A.

2. Conventions

We denote by w the set of all nonnegative integers. We denote alge-
bras by boldface capitals A,B,C,... and their universes by A4, B,C,... By
a quasivariety, we mean a class of algebras of the same type that is ax-
iomatized by a set of quasi-identities. We assume a familiarity with the
theory of BCK -algebras (see survey articles [Cor82] and [IT78]). Henceforth
if A = (A;-,0)is a BCK-algebra, we shall abbreviate the binary operation -
on A by juxtaposition and for n € w and any a,b,bq,...,b, € A, we define
inductively:
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(1) aby ... by =(aby...by_1)b, (n>1),
ab® =a; ab® =ab™'b (n>0).

In view of the identity

(2) Tyz = rzy,

which holds in every BCK -algebra [IT78, Theorem1], the order of b,...,b,
is immaterial in (1). As usual, we associate with A a poset (A4; <) where for
a,b € A, we define a < b iff ab = 0. This poset has a least element, viz. 0.
Recall that every BCK -algebra satisfies the identities

(3) zy < 7,

(4) z(zy) < v,

(5) (zy)(2y) < z2
and the quasi-identities

(6) rly=>zz<yYz,
(7) z <y=>z2y<zz.

For an element a of our BCK-algebra A, we denote by (a] the principal
order ideal of the ordered set (A; <) generated by q, i.e., (a] = {z € A :
r < a}. A set X C A is said to be a hereditary subset of A if X # 0 and
(a] € X for all @ € X. The set of all hereditary subsets of A is denoted
by s#(A). Clearly {0} is the least and A the greatest element of the poset
(H#(A); Q). If & is a nonempty subset of #(A) then both | & and J &
are elements of J#(A). In particular, (#(A); C) is a complete, completely
distributive lattice which fails to be a complete sublattice of the power set
(exp A; C) of A only because the supremum of the empty subset of exp A4 is
0, while the supremum of the empty subset of #(A)is {0}. Note also that
every hereditary subset of A is (the universe of ) a subalgebra of A. We shall
systematically confuse an element B of s#(A) with the subalgebra B of A
whose universe is B.

3. K-hereditary subsets

For a class ' of BCK -algebras, we let J#(A) denote the set of all
elements B of #(A) which are the universes of elements of K.

Recall that a sentence ¢ of a first order language £ is called a universal
existential sentence (briefly, a V3 sentence) if its prenex normal form is
Vzy...Vz,3y;...3ym¥, where 9 is an open formula of & (i.e., a first order
formula of Z not containing any occurrence of a quantifier) and n,m € w.
(The cases n = 0 and m = 0 are possible and should be interpreted as
the absence of universal and existential quantifiers, respectively, in ). By
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a universal eristential class (of &-structures), we mean a class K of .-
structures which is axiomatized by a set of V3 sentences. If & is a subset of
a class K" of Z-structures and for any A,B € ¥, either A is a substructure
of B or B is a substructure of A, we call € a chain of structures in K. In
this case, we may define an Z-structure D = |J ¥ whose universe is |J ¥,
where fP(a;,...,a,) = f2(ay,...,a,) for any A € €, any a;,...,a, € A
and any n-ary operation symbol f of £, and where, for any n-ary relation
symbol r of £, rP(ay,...,a,) is true if and only if r*(ay,...,a,) is true in
some A € € with ay,...,a, € A. If |J% € K for all chains & of structures
in ', we say that K is closed under the formation of set theoretic unions
of chains. It is well known that a class A" is closed under the formation of
set theoretic unions of chains if and only if K is a universal existential class
(c.g., [BS81, Exercise V.1.24, p. 203]).

ProprosITION 1. Let K be a nonempty class of BKC-algebras and A a
BCK-algebra.

(i) If K is closed under the formation of subalgebras and isomorphic
images then #(A) # O (in particular, {0} € H#%(A)) and H#(B) C
K (A) for each B € #(A).

(it) If K is a universal existential class and % is a nonempty subchain
of the poset (H#(A), C) then S € H#,(A). In particular, for every X €
Xi{A), there is a marimal element Y of (#%(A); C) such that X C Y.

Proof. (i) This follows from the transitivity of subalgebras and heredi-
tary subsets.

(ii) It follows easily from the definitions that |J.%¥ € S#(A) and since
I is a universal existential class, |J % € KA. Consequently |J & € #k(A).
The rest follows from Zorn’s Lemma. =

We define ig(A) = |J #%(A). Note that ix(A) € H#(A). Ifig(A) € K,
we say that K has the hereditary subalgebra property for A. In this case
ik (A) is, of course, the largest hereditary subalgebra of A in KA. We also
define K* = {A : A is a BCK-algebra for which A has the hereditary
subalgebra property}.

ProprosITION 2. Let K be a class of BCK-algebras which is closed under
the formation of subalgebras and isomorphic images and let A € K. If &
is a nonempty subset of i (A) then the union (resp. intersection) of
is its supremum (resp. infimum) in Ky (A), while {0} is the supremum of
the empty subset of H#%(A). In particular, ix(A) is the greatest element of
the complete, completely distributive lattice (F#3(A); C).

Proof. For the first assertion it suffices to note that | % is a hereditary
subuniverse of ix(A). The rest is trivial. m
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COROLLARY 3. Let K be a class of BCK-algebras which is closed under
the formation of subalgebras and isomorphic images and let A € K". Then
the following conditions are equivalent:

(i) A€ K;

(ii) ik(A) = 4;

(iii) For every z € A, we have (z] € #x(A). =

COROLLARY 4. Let K be a class of BCK-algebras which is closed under

the formation of subalgebras and isomorphic images and let A € K*. Then
X € H#%(A) iff X is a hereditary subset of ix(A).

Proof. This follows from the fact that hereditary subsets of A are sub-
universes of A and that ix(A) is the largest of these.

LEMMA 5. Let K be a class of BCK-algebras which is closed under the
formation of subalgebras and isomorphic images and let A € K". For each
T € A, we have ¢ € ig(A) iff (z] € H#x(A).

Proof. Easy. =

LEMMA 6. Suppose that for each j € J (J a nonempty set), K; is a
class of BCK-algebras which is closed under the formation of subalgebras
and isomorphic images and A € (K;)*. Then A € (Njes K;)* also.

Proof. Let K = (¢  K;. Then #x(A) = ;e %, (A) = {N;es X; :
X; € %, (A)for each j € J}, because each K; is closed under subalgebras.
Thus ig(A) = ;csik;(A) € K; for every j € J, because each K; has
the hereditary subalgebra property for A. Consequently, ix(A) € K, as
required. m

PRroPOSITION 7. Let K be a class of BCK-algebras which is closed under
the formation of subalgebras and isomorphic images and let A € K*. Then
any subalgebra of A is a member of K*.

Proof. Let B be a subalgebra of A. Let X = {a € A : a < b for some
b € ix(B)}. Then X is the universe of a hereditary subalgebra X of A (by
(3)), and ix(B) is a subalgebra of X, hence of ix(A). Since ix(A) € K, we
have ix(B) € K, as required. =

Let (A; : j € J) be a nonempty family of BCK-algebras and let ¢
be a proper filter on the Boolean algebra expJ = (expJ;U,N,7,0,J) of
all subsets of J. As usual, we denote the #-reduced product of the family
(Aj:j€J)by]];c;Aj/®. Forelements f, g of the direct product [liesA;
and X C [[;c;Aj, we write

f=h(mod®)iff {j€J:f(j)=9()} €8s,
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[fle={g€ J[Aj: f=g(modd)},
JjeJ
(Xle = {[fle: f € X}.
The index @ will frequently be omitted.

ProprosITION 8. Let K be a quasivariety of BCK-algebras which has the
hereditary subalgebra property for all members of a family (A; : j € J) of
BCK-algebras. Let @ be a proper filter on the Boolean algebra exp J. Then

ix([] Ai/9) = [ I1 iK(Aj)L.
jeJ jeJ

Proof. Since the class of all BCK -algebras is a quasivariety, it is closed
under the formation of reduced products, so the application of the operator
ix to [[;e,Aj/® is permissible. Let X' = {pf : k € I} be a set of quasi-
identities @i(z¥,. ..,zﬁ(k)) (with free variables z¥,... a:z(k)) axiomatizing
K. We shall write C =[], A;/®and D =[], A,

Let [f] € {[I;e ix(Aj)]e, where f € D. Let k € Ia.nd a{‘,...,aﬁ(k) €D
with [af],. [a:(k)] < [f]- Then

S:={jeJ:f()€ix(A;) and af(§),...,ank(i) < f()} € &.

By Lemma 5, for each j € S, we have (f(j)] € H#k(A), so (f(j)] E
<,9k(zf,...,zfl(k)). Thus

. A, . oy s
S':={j€ed:p; (af(g),...,aﬁ(k)(J)) is true} € &,

because S C S’. Since quasi-identities are (equivalent to) Horn formulas, it

follows from [BS81, Theorem V.2.7, p. 207] that ¢C([af], . [aﬁ(k)]) is true.

Thus, C satisfies (2%, ..., n(k)). Since quasi-identities are (equivalent to)

universal sentences, they are also preserved in the formation of substructures

[BS81, Exercise V.1.13. p. 202], so ([f]] E gpk(:cf,...,:z:,"l(k)). Consequently,
([f]] € #4x(C). By Lemma 5, [f] € ix(C).

Conversely, suppose [f] € ix(C). Let T = {j € J : f(j) ¢ ix(A;)}. By

L.emma 5, for each j € T, there is an index k € I and af",..., :ka) € A
such that af‘j,... n(k) < f(j) and the sentencegp (afJ, . k(k))ls false.
Define b%,...,b% ) € D by: b¥(j) = a7 if j € T; b¥(j) = f(j)if j € I\ T.
Then [b¥) < [f] for i = 1,...,n(k) and for all k € I and

TC{jeJ :ga?"(bf(j), ...,bﬁ(k)(j)) is false for some k € I}.

Our assumptions about fimply that ¢ C([bf],.. ., [b% n(ky)) is trueforall k € I,
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SO
JNT D {j€J: @ (5(j),- -, bEky(5)) is true for all k € I} € &.

Thus J\T € @ and so f(j) € ix(A;) for all j in a member of &, whence
[f] € [HjeJ il((Aj)]db- =

THEOREM 9. Let K be a quasivariety of BCK-algebras. Then K'* is also
a quasivariety.

Proof. Trivially, any one-element BCK -algebra is in A™". It therefore
suffices, by [BS81, Theorem V.2.25, p. 219], to show that K" is closed under
the formation of isomorphic images, subalgebras and reduced products. The
first of these closure assertions is trivially true and the second follows from
Proposition 7. If K has the hereditary subalgebra property for all members
of the family (A, : j € J) and & is a filter on exp J, then by the Third
Isomorphism Theorem, {[],c;ix(A;)]le = [I;e,ix(A;)/¥, where ¥ is the
restriction of the congruence on IT;¢ A ; associated with ¢ to IT;c i(A)).
Thus {HjeJ i (A ;)]g is isomorphic to the reduced product Hje.l i (A;)/®.
From the previous result and the fact that the quasivariety is closed undel
reduced products, we have ix([];c;, A;/®P) € K, e, [[.c;A;/P € K" as
required. =

A further corollary of Proposition 8 is:

CoOROLLARY 10. Let K be a quasivariety of BCK-algebras which has the
hereditary subalgebra property for all members of a family (A, : j € J) of

BCHK-algebras. Then
i( [T A;) = [T ix(Ay.
i€J jeJ
Proof. The result is trivial if J = ), both sides of the above equation
being trivial algebras. If J # @, apply Proposition 8 with ¢ = {J}.

4. Varieties having the Hereditary Subalgebra Property for all
BCK -algebras

The quasivariety of all BCK -algebras is not a variety [Wro83]. A number
of varieties of BCK -algebras have been studied in the literature. In partic-
ular, for cach n € w, the class of all BCK-algebras satisfying the identity

(En) zy" = zy™t!
is a variety, denoted by FE,, having
(8) ((zy)(22))(zy) = 0,

(9) 0z =0,
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(10) 0=z

and (E,) as an equational base (see [BR95, Proposition 13]). (The identities
(8) and (9) are axioms for BCK -algebras and every BCK -algebra satisfies
(10): see [1T78].) Clearly Ej is the trivial variety, while the members of E;
are known in the literature as Hilbert algebras or positive implicative BCK-
algebras. 1t is not difficult to see that every finite BCK-algebra belongs to

FE,, for some n € w.
A BCK-algebra A is called commutative if it satisfies the identity

(T) z(zy) = y(yz).
In this case the associated partially ordered set (A; <) is a lower semilattice
whose infimum operation is definable by

z Ay = z(zy).

The class T of all commutative BCK -algebras is a variety and was studied

by Tanaka [Tan75] - also see [Cor82].
A BCK-algebra is called implicative or a Tarski algebra if it satisfies the

identity
(1) z(yz) = z.
[t is well known that the class I of all implicative BCK-algebras is a variety
and is the smallest nontrivial quasivariety of BCK-algebras. It is also well
known that I = E; NT (see [Cor82]).

In {Cor81], Cornish considers the class J of all BCK-algebras satisfying
the identity

(/) z(z(y(yz))) = y(y(z(2y)))

and proves that this class is a variety which strictly contains the supremum
of the varieties Fy and T. We shall prove that all of the aforementioned
varieties have the hereditary subalgebra property for all BCK-algebras. (In
the case of T', this is already known [Stu84].)

LEMMA 11. For every k € w, every BCK-algebra satisfies the identity:
(11) zy* = 2(z(zy))k.

Proof (by induction on k): The lemma is trivially true for £k = 0, as we
have defined uv® = u. For k = 1, we have z(z(zy)) < zy as a substitution
instance of (4). But from (4) and (7), we conclude that zy < z(z(zy)) and

so zy = z(z(zy)). Suppose all BCK-algebras satisfy (11) for some k& € w.
Then

zy*t! = (zy*)y = (z(z(zy))*)y (by the induction hypothesis)
= (ey)(2(z9))* (by (2))
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= z(z(zy))(z(zy))* (by the case k = 1)
= z(z(zy))*t. "

COROLLARY 12. If A is any BCK-algebra, n € w, B € #%_(A),z € A
and b € B then bz™ = bz"t!,

Proof. Since B is a hereditary subalgebra of A and b(bz) < b (by
(3)), we have b(bz) € B. Since B € E,, we have b(b(bz))" = b(b(bz))**!.
Applying (11) to this equation, we get bz™ = bz"*!. u

THEOREM 13. For each n € w, the variety E, has the hereditary subal-
gebra property for all BCK -algebras.

Proof. Let A be a BCK-algebra and let H = ig_(A). Take a,b € H.
There exists B € %, (A) such that b € B. By the previous corollary,
ba™ = ba™*! hence H € E,, as required. =

It follows that we cannot replace “quasivariety” by “variety” throughout
the statement of Theorem 9: if K = E,, then K" is the class of all BCK-
algebras, which is not a variety.

ExAMPLE 14. Given n € w and a BCK -algebra A, Corollary 12 says that
if a € ig (A) then az™ = az™*! for each z € A. The converse implication
is not true in general, as the following example shows.

Take an element a such that ¢ g w. Set A = w U {a}. For z,y € w and
z € A, define

ry = z—y = max{0,z -y}, ar=4a, za=0.

Then A = (A;-,0)is a BCK-algebra: in fact, this is a special case of Iséki’s
adjunction of a unit (our @) to the linearly ordered simple commutative
BCK-algebra w = (w; —, 0): see [Isé75, Theorem 4]. Note that a is the great-
est element of the partially ordered set (A; <) and the restriction of < to w
is the classical linear order on w. For all m, p, ¢ € w, where ¢ > 0 and m > p,
we have

m-1P=m-p#m-(p+1)=m-1°*!' and
m-1P=m—-p>m-q°.

Therefore ig (A) = {0,...,n} and so a ¢ ig, (A). Nevertheless, az" =
az"*! for all z € A.

THEOREM 15. [Stu84, Theorem 3]. The variety T of all commutative
BCK-algebras has the hereditary subalgebra property for all BCK-algebras. m

COROLLARY 16. The variety I of all implicative BCK-algebras has the
hereditary subalgebra property for all BCK-algebras.
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Proof. This follows from Lemma 6, Theorems 13 and 15 and the fact
that I = EyNT. m

THEOREM 17. The variety J has the hereditary subalgebra property for
all BCK-algebras.

Proof. Take a BCK-algebra A and a,b € ij(A), say a € Cy € 55(A)
and b € Cy € 5#(A). Then b(ba) < a (by (4)) so b(ba) € Cy. Now we may
apply (J) to a and b(ba) and we have:

a(a(b(ba))) = a(a([b(ba)]0)) (by (10))
= a(a([b(ba)][(b(ba))a])) (by (4))
= b(ba)[[b(ba)](a(a[b(ba)]))] (by (J))
= b(ba)([b(a(alb(ba)]))I(ba)] (by (2))
< b(b(a(alb(ba)]))) (by (5))
< b(b(a(ab))).

The last inequality follows from the fact that b(ba) < b (by (3)) and four
applications of the quasi-identity (7).

Similarly, from the fact that a(ab) € C2, we may prove the reverse in-
equality b(b(a(ab))) < a(a(b(ba))); hence i;(A) satisfies (J), i.e., i;(A) € J,
as required. =

ExaMPLE 18. We show that there exists a variety V of BCK-algebras
which does not have the hereditary subalgebra property for all BCK-al-
gebras. A BCK-algebra is said to be directed if its underlying partially
ordered set is upward directed. Let V' be the class of all BCK-algebras
which are embeddable into directed commutative BCK-algebras. Then V
is a variety [Stu82, Theorem 11] and an equational base for V is provided
by the identities (8), (9), (10), (T') and

(12) zyAyz=20

[RS87, Corollary 5]. Note that (12) is a (-,0)-identity since z A y = z(zy)
holds in every commutative BCK -algebra.
Let (A; <) be the partially ordered set whose Hasse

diagram is depicted on the right. Define a binary oper- ;o ¢
ation - on A (abbreviated by juxtaposition) as follows. /
For z,y € A: 1

bl=cl=bc=¢cb=1

2z =0z=0;, z0=12 0

z<y=>zy=0.
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Then A = (A;-,0) is a BCK-algebra whose associated partial order is <.
Let B and C be the subalgebras of A with B = {0,1,b} and C = {0, 1,¢}.
Then clearly B,C € J#4/(A)and A = BUC so A = iy(A),but A ¢ V,
since A violates (12): indeed, bcAchb=1A1=1#0.
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