DEMONSTRATIO MATHEMATICA
Vol. XXIX No1 1996

Bronistaw Przybylski

SINGULARITIES OF PRINCIPAL-DIRECTED CURVES
IN THE PLANE, I

Principal-directed curves in the plane R2, called shortly P-directed
curves, were introduced in paper [3] in connection with the study of smooth
curves with respect to the product final differential structures S! and S?
defined on R?. These structures determine the differential spaces R x; R =
(R?,S') and Rx,R = (R?,S?) which have many common properties (see
[2] for details) and can be considered together as the differential space Rx ;R
where & € {1,2} is fixed but arbitrary. In particular, the class of all smooth
curves in R x4 R does not depend on k£ and consists of exactly all locally
K -subordinate smooth curves in R? (see {3], Corollary 2.21), which implies
that any such curve must be P-directed. On the other hand, it is easy to con-
struct a P-directed curve in R? which is not locally K-subordinate (see [3],
Example 2.22), and so, the class of all P-directed curves in R? is essentially
stronger than that of all smooth ones in R x R.

In the present paper we treat principal-directed curves in the plane in
a way independent of the differential structures S and S2. For such curves
we first prove the so-called statements of singularity (SA) and (SB) of Theo-
rem 1.3. Next, relative to statement (SA) we formulate the special condition
of singularity (SCA) as well as the general one (GCA). In particular, this
means that any curve satisfying condition (SCA) has to satisfy condition
(GCA) for the corresponding data. Our paper is mainly devoted to the
study of condition (SCA). More precisely, applying topological and func-
tional analysis methods we obtain appropriate constructions of P-directed
curves in R? satisfying this condition. Strictly speaking, we replace condi-
tion (SCA) by equivalent one (SCAq) which concerns real smooth functions
defined on an interval of R. We prove the basic Theorem 2.8 which im-
plies that there exists a monotonically nondecreasing real smooth function
that satisfies condition (SCA{) of Corollary 2.9, being stronger than condi-
tion (SCAp). In turn, this involves that there exists a monotonically nonde-



70 B. Przybylski

creasing smooth curve in R? satisfying condition (SCA*) of Corollary 2.10,
stronger than condition (SCA). Finally, we ask Question (QSA) and then
present a correct answer to it given by statements (A) and (B) of Theorem
3.2. Strictly speaking, statement (A) asserts that any P-directed curve in
R? satisfying some condition has to be contained in a principal line. Oth-
erwise, by statement (B) one can construct a monotonically nondecreasing
P-directed curve in R? which is contained in a given principal right angle
with a mixed direction but is not in any principal line.

The programme of an investigation of the remaining condition (GCA) is
continued in the next papers (see [4], parts II and III). It turns out that the
corresponding solutions take account of various kinds of ordinal invariants
of smooth geometric curves in R2. This is fully presented in part III of (4]
where such solutions for some realizations of (GCA) are given. However, the
preparatory considerations are included in part II of [4] where the concepts
of chains and chain fibrations are explained (Section 4) in a form suitable for
our further considerations. Give attention that all the conditions discussed
above are formulated relative to statement (SA) only. This means that any
similar discussion relative to statement (SB) remains completely open.

Our paper has been intended to be part I of series [4] of preprints which
have common terminology and notation as well as continuous numeration.
Moreover, since they are meant to be continuations of paper [3], we accept
for them all the terminology and notation from [3] unless otherwise stated.

1. Statements and conditions of singularity

Let ¢ be a smooth curve in R?. Following [3], we have defined the sets
dom(c), domg(c), domgs(c), domes(c) and dompyg(c) as well as the sets
domx(c) and locx(c) where X € {V, H, P}. In addition we adopt the fol-
lowing notations:

dompg(c) = dom(c) \ locp(c),
locrx(c) = dompg(c) Nlocx(c).

Obviously, the set domps(c) is closed in dom(c). In turn, the sets locgy(c)
and locgy(c) are disjoint and open in dom(c). Furthermore, locgp(c) =
locrv(c) U locgy(c) and by definition we get locgp{c) C dompg(c) and
locrp(c) C locp(c). It is easy to verify the following propositions:

1.1. PROPOSITION. Let ¢ be a smooth curve in R?. Then the following
conditions are equivalent:

(a) ¢ is P-directed, i.e. domp(c) = dom(c);
(b) locp(c) is a dense subset of dom(c);
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(c) domps(c) is a boundary subset of dom(c);

(d) locrp(c) = dompg(c). »

1.2. PROPOSITION. Let ¢ be a smooth curve in R2. Then the following
conditions are equivalent:

(a) ¢ is almost regular, i.e. int domg(c) = @;

(b) locgp(c) = locp(c);

(c) locrv(c) = locy(c) and locgrp(c) = locy(c). »

The following theorem presents the so-called statements of singularity
(SA) and (SB) for a P-directed curve ¢ in R%. They can be the basis for for-
mulating the corresponding conditions of singularity, which is realized here
relative to statement (SA) only.

1.3. THEOREM. If X € {V,H} and c is a P-directed curve in R?, then
the following statements hold:
(SA) domps(c) C fr domes(c) C frdomg(c),
(SB) domps(c) = cllocgx(c) \locx(c) = frlocpx(c) \ locx(c) =

= cllocpv(c) N cllocry(c) = frlocpy(c) N frlocry(c),

where fr and cl are the boundary and the closure operations in dom(c); re-
spectively.

Proof. (SA). Since domcs(c) and domg(c) are closed subsets of dom(¢),
domes(c) € domg(c) and intdomes(c) = int domgs(c), we conclude that

frdomgs(c) € frdomg(c). Thus, it remains to show the inclusion
domps(c) C frdomcs(c) which is equivalent to the following one

(1) dom(c) \ frdomcs(c) C locp(c).
To prove (1), note first that
(2) dom(c) \ frdom¢s(c) = intdomces(c) U dompys(c).

Furthermore, int domc¢s(c) = locy(¢) Nlocy(c) C locp(c) and dompys(c) C
locp(c) (see [3], Lemma 1.3 and Proposition 1.13). Hence and from (2) we
get (1), and so, the proof of statement (SA) is complete.

(SB). Suppose that ¢ = (a, ). First we prove that
(3) dompg(c) = cllocgy(c) N cllocgp(c).

Indeed, let us take a parameter s € dompgs(c). If U is an open neigh-
bourhood of s in dom(c), then there are v,w € U such that a(v) # 0 and
B(w) # 0, for otherwise s € locp(c), a contradiction. Therefore, we can find
open neighbourhoods V' of v and W of w in dom(c) such that V,W C U and
a(v') # 0 and B(w') # 0 for any v' € V and w' € W. Since ¢ is P-directed,
it follows that V' C locgg(c) and W C locgy(c). Consequently, we have
s € cllocry(c) N cllocpp(c).
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Conversely, let us take s € cllocgy(c)Ncllocgy(c). In this case for an ar-
bitrary open neighbourhood U of s in dom(c) we have U Nlocgry(c) # @ and
U Nlocgy(c) # 0. This means that there are v, w € U such that a(v) # 0
and B(w) # 0. Therefore, we conclude that s € dompgs(c), for otherwise
s € locp(c), and so, there would exists an open neighbourhood U of s in
dom(c) such that a|U = 0 or B|U = 0, a contradiction. Summarizing, we
have proved the equality (3).

Now, since locgp(c) = locgry(c) Ulocgy(c) and dompg(c) are disjoint
sets, it follows from (3) that

dompg(c) = (cllocgy(c) Ncllocgy(c)) \ locrp(c)
= (cllocgy(c) \ locryv(c)) N (cllocry(c) \ locry(c))
= frlocry(c) N frlocrp(c).
Analogously, we have
dompg(c) = (frlocgrv(c)Nfrlocgu(c)) \ locp(c)
= (frlocgy(c) \ locy(¢)) N (frlocrp(c) \ locy(c)),
which implies
dompg(c) C frlocgx(c) \ locx(c) C cllocgx(c) \ locx(c)
for X € {V, H}. Thus, to complete the proof, it remains to show that

(4) cllocgrx(c) \locx(c) C dompg(c).

Indeed, since the cases X = V and X = H are analogous, we can fur-
ther assume that X = V. Let us take a parameter s € cllocgy(c) \ locy(c).
Consider an open neighbourhood U of s in dom(c). Obviously, we have
U Nlocgy(c) # O and note that U Nlocgy(c) # O, for otherwise we get
&|U = 0, which means that U C locy(c), a contradiction. Consequently,
we conclude that s € cllocgy(c) N cllocgy(c) and from (3) we obtain
s € dompg(c), which proves (4) for X = V. »

Obviously, from this theorem and Proposition 1.2 we get
1.4. COROLLARY. If ¢ is an almost regular P-directed curve in R?, then
dompg(c) = cllocy(c) Ncllocy(c) = frlocy(c) = frlocy(c). m

Statement (SA), also called the stratification statement of singularity for
¢, will have a special significance for our further investigations. We shall as-
sociate with it the special condition (SCA) and the general condition (GCA)
which will be regarded as those of singularity for P-directed curves in R2.
More exactly, the first one will be the main condition under consideration in
this paper, but the second is intended to be studied more thoroughly in the
next paper (see [4], part III). To formulate these conditions, we first make
some necessary observations relative to statement (SA).
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In what follows the symbol I stands for an arbitrary but fixed interval of
R, that is, a nonsingle-element connected subspace of R, or equivalently, a
convex subset of R with nonempty interior, which will often be regarded as
the base topological space. We accept that all topological operations for sub-
sets of I or for functions defined on I are meant relative to I. In particular,
this concerns the operations of interior, closure and boundary for subsets of
I (see [1]), represented respectively by the symbols int, cl and fr as well as
the operation of support for real functions defined on I, represented by the
symbol supp. For any subset A of I we denote by A? the derived set of A
relative to I, that is,

Al ={zel:zeccdA\{z})})
From the definition of A? we obviously get

1.5. LEMMA. For any A C I the set A\ A® is discrete in I, and so,
card(A\ A4) < Rg. m

We adopt the notation No = N U {0}. For any a € C*(I) and i € Ny
let the symbol D'a stand for the ith derivative of a. In particular, we accept
N°a = a, D'a = o’ = & and D?a = o". Moreover, we adopt the following
notations:

Z(n)={z €l:a(z)=0);

Zk(O') — m{Z(D‘a) :0<1 < k} for k € Ny;

z>*(a) = ({Z(D'a): i€ No} = N{Z*(a) : k € No}.

1.6. LEMMA. If a € C®(I) and A = Z(a), then A C Z®(a). =

Proof. Let us take a € A%. Of course, there is a strictly monotonic
sequence (a?) of elements of the set Z(D%a) = A such that lim;a? = a.
Without loss of generality we can further assume that (af) is strictly in-
creasing, i.e. a® < al, for i € N. Suppose now that for any k € Ny we have
defined a strictly increasing sequence (a¥) of elements of Z(D*«) such that
lim; af = a. In particular, we have (D¥a)(af) = (D*a)(ak,,) = 0 for each
i1 € N, and so, it follows from the Rolle Theorem that there exists af“ in
I satisfying a¥ < o' < afH and (D*¥*'a)(a¥*!) = 0. Therefore, for any
k € Ng we have defined a strictly increasing sequence (a¥) of elements of
Z(D*a) such that lim; ¥ = a. Hence we conclude that a € Z*(a) for all
k € Ng, which implies that a € Z*°(«). Finally, since a can be an arbitrary
element of A%, it follows that A? C Z%°(a). =

To any a € C*(I) we can assign, for example, the horizontal smooth
curve ¢, = (a,0): I — R2. Clearly, the assignment a — ¢, defines a one-to-
one correspondence between C*°([) and the family of all smooth curves in
R? defined on I and contained in the horizontal line Rx {0}. This assignment
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allows us to transfer to C°°(I) those necessary notations for smooth curves
in R? which depend on differential operations. Therefore, we can adopt the
following notations: domgs(a) = domg(cs) and domes(a) = domes(cy).
Clearly. we have doms(a) = Z(&) and domcs(a) = N{Z(D*a): k € N} =
Z*°(a). Finally, note that with the same effect, for any given principal line L
in R?, we can consider in a similar way the appropriate assignment a — c£
from C>(I) to the family of all smooth curves in R? which are defined on
I and contained in L.

Let us fix @ € C*°([]) and set F = domg(a) = Z(a) and E = dom¢eg(a)
= Z*°(a). Obviously, F and E are closed subsets of I such that £ C F. By
applying Lemma 1.6 for & we get the condition F¢ C E. More generally,
note that if F and F are closed subsets of I such that £ C F, then the
condition F'? C E involves that int F' = int E. Indeed, we have int F C int E
because int F C F* C E and int E C int F because £ C F. Furthermore, it
turns out that the condition F¢ C E C F'is in general essentially stronger
than that int F = int £ and £ C F. For instance, let [ = [0;1], E = @ and
F = C be the Cantor set lying in I (see [3], Example 2.6). In this case we
have int F = int E = @ and E C F, however, the set F¢ = C is not con-
tained in F. Clearly, this implies that for such E and F there is no function
a € C*°(1) satisfying domg(a) = F and dom¢gs(a) = E.

Let now ¢ = (a,8) : I — R? be a smooth curve. Clearly, we have
F=Fnland £ = F;N E; where F, F|,F, and E, E;, E, denote re-
spectively the sets domg(c), domg(a), domg(/) and the sets domes(c),
domcg(a), domegs(B). From the previous considerations it follows that
F{igEl C F, and Fg‘gEg C F3, whence we get ngF;*angEgF.
We have thus for ¢ the condition F¢ C E C F which is also in general
essentially stronger than the condition int F' = int £ and E C F (see [3],
Lemma 1.3), similarly as for real smooth functions defined on I.

Suppose that E and F are closed subsets of I such that F* C E C F.
One can ask whether there exists a P-directed curve ¢ : I — R? which is
subject to the following condition:

(SCA) domps(c) =0, domcs(c)=F and doms(c)= F;

This condition is consistent with statement (SA) and will be regarded as
the purpose for constructions of the corresponding curves. Moreover, we
can formulate the most general condition (GCA) as follows. Let D, E and
F be closed subsets of I such that D is a boundary set, F¢ C E C F
and D C fr E C fr F. One can ask whether there exists a P-directed curve
c: I — R? for which the following condition holds:

(GCA) dompg(c)= D, domcg(c)=F and domg(c)=F.

It is seen that any curve satisfying condition (SCA) has to satisfy condition
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(GCA) for the corresponding D, E and F. In our paper applying topolog-
ical and functional analysis methods we present appropriate constructions
of P-directed curves in R? relative to condition (SCA). In the next paper
(see [4], part III) we give similar constructions of such curves relative to
condition (GCA).

We first show that condition (SCA) can be replaced by condition (SCAy)
below. Suppose that E and F are closed subsets of I such that F¢ C E C F.
One can ask whether there exists a function A € C*°([I) satisfying the fol-
lowing condition:

(5CA,) dom¢cs(A) = E and domg(A) = F.

Indeed, if A € C*(I) satisfies condition (SCAp), then the horizontal
curve ¢y = (A, 0) clearly satisfies condition (SCA). Conversely, if ¢ = (a, §) :
I — R? is a P-directed curve satisfying condition (SCA), then observe first
that the assumption dompg(c) = @ involves that supp & Nsupp # = @. This
implies that the function A = o + 3 satisfies condition (SCAg) because
domg(A) = domg(c) = F and dom¢gs(A) = domeg(c) = E. Summarizing,
we have shown that conditions (SCA) and (SCAg) are equivalent.

2. Singularities of real smooth functions

Consider the family C*°([) as a real vector space under the pointwise
operations. Denote by & = &([I) the set of all pairs (k,C) where k£ € Ny
and C is a compact subset of I. We shall regard & as partially ordered set
under the ordering < defined as follows: (k',C') < (¥",C") if k' < k" and
C'"CC" Forany A€ C®(I)and o = (k,C) € & we set

IMle = max{|(D'A)(t)|:0< i<k, teC}.

It is seen that every || - ||, is a seminorm in C°(I). Moreover, if A # 0, one
can find 0 € ® such that ||A||, # 0. We have thus a topological vector space
C®(I) under the weakest topology induced by the family {||- |l : ¢ € &}
of seminorms. Moreover, this family is monotonically nondecreasing, which
means that for any 0,7 € & such that ¢ < 7 we have ||A||, < ||A||; for each
A € C*®(I), written as || - |lo < || - ||+. Since I is a locally compact space
being countable at infinity, we can fix a sequence (C*) of compact subsets of
I such that C* Cint C*¥*+! for k € Ng and J{C* : k € Ny} = I. Let us set
I-llx = |lll(k,c*) for k € No. One can see that for each 0 € & thereis k € Ny
such that || - |l < || - ||x. It follows that the topology of C*°(I) is induced
by the family {}|-||x : ¥ € No} of seminorms too. This means that C*°(I) is
a metrizable topological vector space. In fact, C*(I) is a separable Frechet
space (compare [5], the definitions of a Frechet space in 1.8 (f) and of C*°(2)
in 1.46). In this topology the convergence A, — A in C°°(/) means that for
each i € Np, D'\, is convergent to DX uniformly on every compact subset
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of I. In the sequel we shall always regard that C*°([) is a Frechet space with
respect to the above-described family || - || : k¥ € Np of seminorms.

Let Aj,Aq,... be an infinite sequence of functions of the Frechet space
C>=(I). The series Y oo | A, is called absolutely convergent in C>(I) if for
each 0 € & the series Y., ||Ax|lo is convergent, or equivalently, if for each
k € Np the series 3>, ||An]lx is convergent. Clearly, every series Y o2 | A,
absolutely convergent in C*°([) is convergent in C°(I) but not conversely in
general. We need the following lemma which can be proved, more generally,
for an arbitrary Frechet space C*°(2) (see [5], 1.46).

2.1. LEMMA. If the series 3 o | a, is absolutely convergent in C*(I),
then for each ¢ € N so is the series ZT:I D'a,. Furthermore, if a =
Yoo Qn, then D'a =YY" Dia,. =

2.2. LEMMA. If a1, a3, ... is an infinite sequence of functions of C*>([),
there exists an infinite sequence €;,¢€z, .. . of positive real numbers such that
the series 3 o2 | €ncry is absolutely convergent in C*(I).

Proof. It is clear that for any n € N one can find ¢, > 0 such that
enllan]ln < 27™. This implies that for each k € Ny the series > oo, llenan||k
is convergent because the family (|| - ||x) is monotonically nondecreasing,
and so, we have |[e,anllk = €nllan|le < enllan|ln < 27" for n > k. Thus the
series Y- €nap is absolutely convergent in C*°(/). m

2.3. LEMMA. For any closed subset A of I, there exists a nonnegative
function a € C*°(I) such that Z(a) = Z*(a) = A.

P roof. The assertion is trivial if A = I. Therefore we can further assume
that A # I. Since A is a Gs-subset of the normal topological space I, it fol-
lows that there is an infinite sequence Uy, Us, ... of open neighbourhoods of
Ain I such that dlUp4y C Uy, for n € N and ({U, : n € N} = A. In turn,
it is known that for each n there exists a nonnegative function a, € C*(I)
such that Z(a,) = clUp41. By Lemma 2.2 there exists an infinite sequence
(€n) of positive real numbers such that the series a = Y . | enay, is ab-
solutely convergent in C*°([). Clearly, we have Z(a) = A. Moreover, from
Lemma 2.1 it follows that Z®°(a) = A. =

It is clear that I equipped with the differential structure C°°([/)is a para-
compact connected one-dimensional differentiable manifold (with boundary
in case [ is not open in R) being a normal topological space. Applying a
smooth partition of unity it is easy to prove the following lemma which can
be generalized for paracompact finite-dimensional manifolds too.

2.4. LEMMA. Let A and B be closed disjoint subsets of I. If U and V are
open neighbourhoods of A and B in I respectively such that clU NclV =0,
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then there ezists a function A € C®(I) such that A|U = 1, A\|V = 0 and
0<XMNz)<1lforzel m

2.5. LEMMA. For any discrete subset A of I there ezists a nonnegative
function a € C*®(I) such that A C Z'(a) and a"(a) > 0 (a"(a) # 0) for
each a € A.

Proof. The assertion is obviously trivial if A = @. Therefore we can
further assume that A # (. Since A is a discrete subset of I, it follows that
1 < card A < Xo. We can thus suppose that A = {a;,...} where (a,) for
n < min{card A+1,No} is a finite or infinite sequence of all distinct elements
of A. Next, since A is a discrete subset of the normal topological space I, it
follows that there exists a sequence (W, ) of disjoint open subsets of I such
that W, N A = {a,} for each n. Furthermore, by applying induction on n
we conclude that for n < min{card A + 1,Rp} there exist disjoint open sets
U, and V,, in I such that
(1) a, €U, CW,NV(n), I\W,CV, and cdU,NclV,=0
where V(1) = I and V(n) =({Vi:1 <i < n -1} for n > 1. Moreover, by
Lemma 2.4 we conclude that for each n there exists a function A, € C*(I)
such that

(2) AlUn =1, A|Vu=0 and 0< A (z)<1 forzel.

Let us set
an(z) = Ap(z) - (z —an)? forz el
and note that a, is a nonnegative function of C°(I) satisfying the condi-
tions:
(3) supp a, C W,, an(a,) =a'(a,) =0 and o'(a,)=2.

In the case when m = card A < Ry we set @ = a1 + ...+ a,,. Note
that o is a nonnegative function of C*®(I) such that a|U, = a,|U, for
each | < n < m, which follows from (1) and (2) because for i # n we
have A,|U; = 0, and so, a,|U; = 0. Therefore, from (3) we infer that in
this case a satisfies the assertion of our lemma. Otherwise, if A is infinite,
then from Lemma 2.2 it follows that there exists an infinite sequence (e,)
of positive real numbers such that the series E;’f’:l EnQy is absolutely con-
vergent in C°°(I). Clearly, in that case @ = Y .o, €nay, is a nonnegative
function of C°(I). Moreover, similarly as in the previous case, we conclude
that a|U, = e€,a,|U, for each n € N. Consequently, it follows from (3) that
o satisfies the assertion of our lemma too. =

2.6. Remark. Observe that if a is a nonnegative function of C*°([I)
and a € Z'(a), then the condition a”(a) # 0 involves that a”(a) > 0.
Indeed, suppose to the contrary that a”(a) < 0. Then there exists ¢ > 0
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such that a"(z) < 0 foreach z € U, = IN(a —¢€;a+ ¢). It follows from the
Taylor formula that for any z € U, there exists £; € (0;1) such that

a(e) = 3 -a"(a+Ex(z - @) - (z — a),
which implies immediately that a(z) < 0 for each z € U, \ {a}, a contradic-
tion. m

If necessary, we shall regard C'*°(7) as a real algebra under the pointwise
operations. For any A C I and k € Ny U {oc} let us set

JH(A) = {a € C=(I): A C Z*a)}.
Clearly, we have J¥(A) = J¥(cl A). Moreover, note that J¥(A4) is an ideal
of the algebra C*°(I).

2.7. LEMMA. Let A and B be disjoint subsets of I. Suppose that A is
discrete, B is closed and A C B. Then there ezists a nonnegative function
@ of C>(I) such that A C Z'(p), ¢"(a) > 0 for each a € A, Z°(p) = B
and Z(p) = AU B.

Proof. By Lemma 2.5 there exists a nonnegative function a of C*>(I)
such that A C Z!(a) and a”(a) > 0 for each @ € A. In turn, by Lemma
2.3 there exists a nonnegative function § of C*°([) such that Z(3) =
Z>(p) = B. Let us consider the nonnegative function ¥ = af of C>(I).
Since o € J'(A), B € J®(B) and both J'(A) and J>®(B) are ideals of
C>(1), it follows that A C Z'(9) and B C Z*(¥). Moreover, by applying
the Leibniz rule we conclude that ¥”(a) = a”(a)B(e) > 0 for each a € A
because a(a) = a'(a) = 0, "(a) > 0 and B(a) > 0. Next, since AU B is a
closed subset of I, it follows from Lemma 2.3 that there exists a nonnegative
function w € C'">®(I) such that Z(w) = Z*(w) = AU B. Finally, note that
the function ¢ = 9 + w satisfies the assertion of our lemma. =

2.8. THEOREM. Let E and F be closed subsets of I such that F* C E C F.
Then there exists a nonnegative function o € C*(I) such that Z(p) = F,
Z®(p)=E, F\EC Z(¢') and ¢"(z) > 0 for eachz € F\ E.

Proof. This theorem is a consequence of Lemma 2.7 for A = F'\ E and
B = E, where A C F'\ F%is a discrete subset of / by Lemma 1.5. m

2.9. COROLLARY. Let E and F be closed subsets of I such that F* C E C
F. Then there erists a monotonically nondecreasing function b € C™(I)
satisfying the following condition:

domcg(¥) = F, domg(?) = F;
F\EC Z(®"), (D*)(z)>0Vze€ F\E.
In particular, 9 satisfies condition (SCAyg).

(SCAY)
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Let ¢ be a function satisfying Theorem 2.8. We define the function
Vv € C®(I) to be an antiderivative of o, that is, satisfying ¥' = ¢. It is
seen that 9 satisfies the assertion of our corollary. m

A curve ¢ = (a,) : I — R? is called monotonically nondecreasing if so

are both the functions a and 8. If ¢ is smooth, then for any i € N we set
Dic=[D'a,D'B] and Z(D'c)= Z(D'a)n Z(D'B).

2.10. COROLLARY. Let E and F be closed subsets of I such that F* C E C
F. Let L be a given principal line in R%. Then there ezists a monotonically
nondecreasing P-directed curve ¢ : I — R? contained in L and satisfying the
following condition:
dompgs(c) =0, domcs(c)=FE, domg(c)= F;
F\ EC Z(D*%), (D)z)#0Vze€ F\E;
which is stronger than condition (SCA).

Proof. By definition, L has to be of the form R x {a} or {a} x R for
some ¢ € R. Therefore if we take a function 9 satisfying Corollary 2.9, then
the smooth curve ¢ = (9,a) (resp. ¢ = (a,?)) in R? satisfies clearly the
assertion of our corollary. =

(SCAY)

3. Singularity of locally P-subordinate smooth curves

Following [3], 2 smooth curve ¢ in R? is said to be almost regular if
int domg(c) = 0. Recall that c is locally P-subordinate if locp(c) = dom(c),
or equivalently, dompg(c) = @. Clearly, every locally P-subordinate smooth
curve in R? is P-directed. We need the following (see [3], Proposition 1.9).

3.1. LEMMA. Every almost regular locally P-subordinate smooth curve in
R? is contained in a principal line. »

Of course, if ¢ is a P-directed curve in R? and dompgs(c) # @, then ¢
cannot be contained in any principal line. It is of interest to know whether
there exists a locally P-subordinate smooth curve in R? or, more gener-
ally, satisfying condition (SCA) which is not contained in any principal line.
From Lemma 3.1 it follows that if ¢ is a locally P-subordinate smooth curve
in R? not contained in any principal line, then it cannot be almost regular.
On the other hand, a totally stationary smooth curve c in R2, that is, satis-
fying domgs(c) = dom(c), is clearly not almost regular however is contained
in a principal line as a constant map. More generally, note that if ¢ is a
P-directed curve in R? such that the set dompg(c) is connected, then c is
contained in a principal line (Corollary 3.3).

One can ask the following question formulated relative to condition

(SCA):
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(QSA)  For what closed subsets E and F of I satisfying F* C E C F,
there ezists a P-directed curve ¢ in R? such that

dOmPS(C) =0, domes(c) = E, domgs(c)=F
and ¢ is not contained in any principal line.

To obtain an affirmative answer to this question (Theorem 3.2), we first
consider the operation of C*®-gluing for P-directed curves in R? which cor-
responds to that for real smooth functions. This operation can be regarded
as a particular case of the procedure of gluing for differential or differentiable
spaces (see [6] and [7]).

For any nonempty S C I we adopt the following notations:

I=(S)={z€l:z<sVs€ S},
It'(S)={z€l:x2>sVse S}

Clearly, /7(S) and I(.9) are convex subsets of I. In particular, for a € I
we accept [~ (a) = I=({a}) and I'*(a) = I'*({a}).

Let us take « € int I and observe that I~(a) and I'*(a) are subintervals
of I satisfving the identities I = I7(a)UI*(a) and I~ (a)NI*(a) = {a}. The
pair (11, [) where I} = I~ (a) and I, = I'*(a) is called the cut of I by a, and
a is referred to as the contact parameter of I) and I,. In this case we also say
that 7, and Iy are contact intervals of R at a. Conversely, if I} and I, are
intervals of R such that sup/y = max I, = inf I, = min [, then I; and I,
are contact intervals of R at the parameter a = max I; = min I,. Moreover,
I = I UL, is an interval of R and the pair (1, 12) is the cut of I by a.

Suppose further that I} and I are contact intervals of R at a. We say
that functions a; € C®(1,) and ay € C®(1;) are C*™-contact (at «) in the
case when (Diay)(c) = (D'az)(c) for each ¢ € Ny, which is equivalent to
the fact that there is a unique function @ € C*(7) such that a; = a|l,
and a; = a|l,, called the (smooth) gluing of a; and a; (at a) and de-
noted by a; I, a3, or shortly, a; Il as. Let now ¢; = (a;,/3) : I} — R?
and ¢; = (a3,8:) : I; = R? be smooth curves. We say that ¢; and ¢, are
C™.contact if the functions a; and ap as well as 8; and 3, are "> -contact
at a. Clearly, in this casc there exists a unique smooth curve ¢ : I — R?
where I = I, U I; such that ¢; = ¢|I} and ¢; = c|l3, called the (smooth)
gluing of ¢ and ¢y (at a) and denoted by ¢y I, ¢y or ¢; I ¢5 for short. It is
seen that if in addition ¢, and ¢y are P-directed, then so is the gluing ¢; U e,.

For any (a,b) € R? and 0,7 € {—, +} we define the set

A(a?,0™) = R%(a) x {b} U {a} x R"(b)
and call it the principal right angle at (a,b) with (o, 7)-direction. In par-

ticular, we have the sets A(a=,b%) and A(at,b™) called the principal right
angles at (a,b) with mized directions. It is seen that the principal cross K,
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for p = (a,b) (see [3]) is a union of four distinct principal right angles at
p with all possible directions which correspond to the four quarters of the
plane determined by K.

For any subset S of I denote by conv S the convez hull of S in I, i.e.
convS = {tz+ (1 —t)y:z,y€ S and 0 <t < 1}.It is clear that conv S is
a subinterval of I provided that S has at least two distinct elements.

3.2. THEOREM. Let E and F be closed subsets of I such that F* C E C F.
Then the following statements hold:

(A) If int Fnconv({ \ F) = @, then any P-directed curve c in R? such
that dompgs(c) = @, domcs(c) = E and domg(c) = F is contained in a
principal line.

(B) If int Fnconv(I\ F) # @, then for any principal right angle A at
a point p € R® with a mized direction, there erists a monotonically non-
decreasing smooth curve ¢ : I — R? satisfying condition (SCAT) of Corol-
lary 2.10 and such that ¢ is contained in A but is not in any principal line.

Proof. (A). In the case when int FF = @, ¢ is almost regular, so it is
contained in a principal line by Lemma 3.1. In turn, if I \ F = @, then c is
totally stationary, which means that it is contained in a principal line as a
constant map. Therefore we can further assume that int F # @ and I\ F' # 0.
In the sequel we put R = I'\ F. Since int F N conv R = @, it follows that
int F C I~ (R)UIT(R). Without loss of generality one can also assume that
int FNI~(R) # 0. Thus, we can set a = max ] (R) and note that z < a < y
forany z € int FNI~(R) and y € R,so a € int I. Let (I, I;) be the cut of
I by a. We set ¢; = ¢;|I} and ¢ = c3|12, which means that ¢ = ¢; U, ¢;. It
is seen that ¢ is totally stationary, i.e. ¢(?) = c(a) for each t € I,. In turn,
observe that ¢y satisfies the condition:

domp(cz) = R and int F, C IT(R)

where F; = Fn I, = domg(c;).

Consider first the case when int Fy, = @, which means that ¢, is almost
regular. Then since c; is locally P-subordinate, it follows from Lemma 3.1
that ¢, is contained in some principal line in R?, say L. In this case c is also
contained in L because ¢ = ¢; II, ¢ and ¢; is totally stationary.

Similarly, in the case when int F; # 0, it suffices also to show that c; is
contained in a principal line. Indeed, in that case we can set b = min I} (R) =
min [*(R) € int [;. Consider the cut (I21,12;) of I; by b, i.e. Iy = I;7(b)
and [, = If(b). Let us set ¢y = c¢2{l; and ¢32 = ¢3|l52, which means
that ¢ = cay L, c22. It is seen that ¢g; is almost regular but co9 is totally
stationary. Therefore, analogously as for ¢ in the previous case, we conclude
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that ¢, is contained in a principal line in R2, which completes the proof in
the case under consideration.

(B). Since int FNconv R # @, we infer that there exists a connected com-
ponent G of int F such that I=(G)NR # @ and I*(G)N R # B. Let us take
g € G C int I and consider the cut (I}, ;) where I} = I~ (g) and I, = I'*(g).
Moreover, note that for k = 1,2 the sets £, = ENI; and Fy = F N I, are
closed subsets of I, such that F,‘f C Ey C Fi. By Corollary 2.10 there exists
a monotonically nondecreasing smooth curve ¢ : Iy — R? such that

domps(ck) =0, domcs(ck) = Ex, domsg(cx) = Fj,

(1) Fk\Ek C Z(D2C), (D3c)(:c);éOVa: € Fk\Ek,

and furthermore, we can require that the following inclusions hold:

0 c1(f1) CRx{0} and () C {0} xR

( ) (Cl([l) - {O} x R and 62(12) - RX{O})

From (2) we obviously have ¢; = (A1,0) and ¢z = (0,A2) (e1 = (0,X)
and ¢ = (A2,0)) where A\p € C*®(Ii). One can further assume that A(g) =
A2(g) = 0, for otherwise we can replace A1 by A\; —A1(g) and A; by A, —A2(g)
with preserving all above-mentioned properties for ¢; and ¢;. Obviously, this
additional assumption means that ¢;(g) = ¢2(g) = (0,0). Furthermore, ob-
serve that ¢; and ¢, are C*-contact at g because ge GNI, C ENI, = E;
for k = 1,2, and so, (D'c1)(g) = (D'cy)(g) = [0,0] for each i € N. We have
thus a smooth curve ¢ = ¢; lI4 ¢; which is monotonically nondecreasing and
P-directed because so are ¢; and c;. From (1) we infer that c satisfies the
conditions: domcs(c) = E,doms(c) = F, F\E C Z(D?c) and (D3c)(z) # 0
for each z € F'\ E. Since g € int F, it follows that ¢ is locally stationary at
g, which implies that ¢ € locp(c). This involves that dompg(c) = @ because
N\{g} = (h\{g})U(L2\{g}) C locp(e1)Ulocp(cz) C locp(c). Consequently,
we conclude that c satisfies condition (SCA™*) of Corollary 2.10.

Finally, consider the principal right angles A(0~,0%) and A(07,07). Ob-
viously, from properties of ¢; and ¢; and from the definition of ¢ we conclude
that c is contained in A(0~,0%) (A(0%,07)). Moreover, observe that ¢ can-
not be contained in a principal line. Indeed, since T1NR # @ and I, N R # 0,
there exist ¢, € I; N R = dompg(cy) and t; € I, N R = dompg(cz) where
t;, < g < ty. Clearly, these sets are open and locally convex subsets of I,
which implies that there exist s; € dompg(cy) and s; € domp(cy) such that
] <81 < g< 8y <y,

[t1;81]) C dompg(cy;) and [s2;82] C dompg(cs).
Since ¢; = (A1,0) and ¢ = (0, A2) (¢1 = (0, A1) and ¢2 = (A, 0)) are mono-
tonically nondecreasing smooth curves, so are the real smooth functions A;
and A,. Furthermore, we get Aj(£&;) > 0 for & € (t1;81) and Ay(&) > 0



Singularities of principal-directed curves 83

for &, € (s2;t2) because (t;;31) C dompg(e;) and (s2;t2) C dompg(cy).
Next, from the Lagrange Mean-value Theorem it follows that there exist
& € (t1;s1) and &, € (s2;¢2) such that M\e(t) = Ae(sk) + AL(€x) - (tk — Sk)
where k£ = 1, 2. For these reasons we conclude that

A(t1) = Mls1) + X&) - (B — 1) < Mi(s1) € Mi(g) =
M(t2) = Xa(s2) + X3(&) - (t2 = 52) > Aa(s2) 2 Aa(g) =
This means that
c(t1) = ai(t1) € Ho\ {0}, c(t2) = c2(t2) € Vo \ {0}
(c(tr) = er(ts) € Vo\ {0},  c(t2) = ca(t2) € Ho \ {0})
where Hp = R x {0}, Vo = {0} x R and o = (0,0). Hence we infer that

there is no principal line in R? containing points ¢(t;) and ¢(¢;), so ¢ is not
contained in any principal line. This completes the proof of statement (B). a

0,
0

From statement (A) of this theorem we obviously obtain the following
corollaries:

3.3. COROLLARY. If ¢ is a P-directed curve in R? such that the set
dompg(c) is connected, then ¢ is contained in a principal line. w

3.4. COROLLARY. If ¢ is a locally P-subordinate smooth curve in R? not
contained in any principal line, then

intdomg(c) N convdomp(c) # 0.

The following example shows that there exist monotonically nondecreas-
ing locally P-subordinate smooth curves in R? with images much more
complicated than that of such a curve considered in the proof of statement
(B) of Theorem 3.2.

3.5. EXAMPLE. Let 0 < € < 1/2. By Lemma 2.3 we infer that there exist
nonnegative functions o', 8’ € C*(R) satisfying the following conditions
(ne€Z):

a'(t) > 0,8 (t)=0if n+ ¢ <t < n+ 2 where n is even;

a'(t)=0,0'(t)>0if n+ ¢ <t <n+ 2 where n is odd;

a'(t) = B'(t) = 0 otherwise.

In addition, one can require that
n+1 n+1
f a'(t)dt = 1if n is even, f B'(t)dt = 1if n is odd.
n n

Define the functions a, 3 € C°(R) by

afs)= [ o'(t)dt and B(s) = f B'(t)dt
0

0
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and observe that ¢ = (a,8) : R — R? is a monotonically nondecreasing
P-subordinate smooth curve. Let us set

n={teR:n<t<n+1}

for n € Z and note that ¢(R) = J{e(I,) : n € Z} Of course, for each k € Z
we have c(Ix) = [k; k + 1] X {k} and ¢(f2x—1) = {k} x [k = 1; k]. Therefore
the image ¢(R) is a principal broken line (edge path) consisting of countable
many distinct principal closed segments (its edges). Furthermore, observe
that ¢ cannot be contained in any finite union of principal angles (crosses). =

A chain (i.e. linearly ordered set) § is called integral in case it is order-
isomorphic to a subchain of Z. This means that for each s € S there exist in
S at most one predecessor and one successor of s, which are usually denoted
by s and s’ respectively. We say that s; and s, are successive elements of §
provided that s} = s, or equivalently, s; = s;. Clearly, every integral chain
is order-isomorphic to an interval (convex subset) of Z (compare [4], part
II, Proposition 4.2). If S is an integral chain, then by a conver partition of
S we shall mean a disjoint family P of intervals of S, i.e. nonempty convex
subchains of §, such that [JP = S. In this case P can also be regarded as an
integral chain under the ordering relation < defined as follows (P,Q € P):
P<Qifand only if z < y for any z € P and y € Q.

Consider an integral-indezed sequence (c,)nes of smooth curves in R?,
which means that § is an integral chain. We say that (c,,) is C*°-contact in
case any two successive curves of (c,) are C'*®-contact. This means that
if ¢n : In = R? and ¢ : In, — R? are such curves, then we have
max [, = min I, and there is the smooth gluing ¢, U ¢,y : [, U I, — R2.
More generally, one can see that in this case there exists a unique smooth
curve ¢ : [ — R? where I = |J{I, : n € S} such that ¢|I,, = ¢, for each
n € S, called the gluing of (¢, )nes and denoted by l,,escn. I c1,¢2,. .., ¢k is
a C*-contact finite sequence of smooth curves in R?, then by ¢;llcoII. . .Hey
we denote the gluing of this sequence as well. It is easily seen that the gluing
of any C*®-contact integral-indexed sequence of P-directed curves in R? is
again such a curve.

Let now that (cp)nes be a C°-contact integral-indexed sequence of
smooth curves in R2. If P is a convex partition of S, then for each P € P
we have defined the gluing c¢p = l,epc, which is clearly a smooth curve in
R2. In turn, since P is an integral chain, there is an order-preserving iso-
morphism from P onto an interval of Z, and so, we can regard that (c¢p)pep
is an integral-indexed sequence of smooth curves in R? too. Moreover, one
can see that this sequence is C*°-contact, which implies that there exists the
smooth gluing Upepcp. It is easy to verify the following associative law:
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3.6. PROPOSITION. Let (cn)nes be a C*®-contact integral-indezed seq-
uence of smooth curves in R%. Then for any convez partition P of S we
have

HPE‘P(UnGPCn) = ]-InGSCn-
In particular, if ¢;, ¢; and c3 are C™®-contact smooth curves in R?, then

(Cll_[CZ)HCg’—'-‘C] H(CzHC;}):C]HCQHC3. [ ]

Recall that a principal K -graph in R? is defined to be a compact con-
nected subset of R? which can be expressed as a finite union of principal
closed segments (see [3], Section 2). In turn, by a pointed principal K -graph
in R? we shall mean a pair (G, p) where G is a principal K-graph in R? and
p € G. Of course, from the definition of locally P-subordinate curve in R?
(continuous in general) we get

3.7. ProprosITION. If ¢ : [a;b] — R? is a locally P-subordinate curve
where a,b € R and a < b, then the image ¢([a; b)) is a principal K -graph. =

One can prove the following (compare [3], Lemma 2.23)

3.8. LEMMA. If [a;b] (a < b) is an arbitrary closed interval of R, then
for any pointed principal K -graph (G,p) in R? there ezists a locally P-
subordinate smooth curve c : [a;b] — R? such that

c([a;0)) =G, c(a)=c(b)=p and a,b€ intdomg(c)
where int denotes the interior operation in [a;b]. m

3.9. THEOREM. For any nonclosed interval I of R there ezists a locally
P-subordinate smooth curve ¢ : I — R? such that the image c(I) is dense
in R?.

Proof. We can regard R? as a real normed space under the point-
wise vector space operations and the norm || - ||* defined by [|(z,y)||* =
max(|xz|,|y|). Consider the standard net N = Zx RUR x Z in R2. It is
casily seen that for each n € N the set G, = {p € 27" - N : ||p||* < n}
is a principal K-graph in R? such that o = (0,0) € G, where 27" - N =
{2="q : ¢ € N}. Furthermore, note that G, C G4, for n € N and the set
(i = U{G, : n € N} is a dense subset of RZ.

By Lemma 3.8, for each n € N there exists a locally P-subordinate
smooth curve ¢, : [n;n+1} — R? such that ¢,([r;n+1]) = Gn, ¢(n) = c¢(n+
1) = oand n,n+1 € int domg(cy, ). This implies that (¢, )32, is a C*-contact
sequence of locally P-subordinate smooth curves in R?. Thus there exists the
gluing ¢ = U$2 ¢, and from properties of all ¢, it follows that ¢ is a locally
P-subordinate smooth curve in R? too. Furthermore, note that ¢([1; 00)) =
U{en([r;n+ 1]) : n € N} = G, and so, ¢([1; 00)) is a dense subset of RZ.
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Finally, since I is a nonclosed interval of R, we conclude that either [ is
diffeomorphic to [1;00) or I is an open interval of R. In the first case if ¢ :
I — [1;00) is a diffeomorphism, then the curve cop : I — R? satisfies the as-
sertion of our theorem. Otherwise, for any a € I both the intervals /~(a) and
I*(a) are diffeomorphic to [1;00). Therefore, if ¢ : I*(a) — [1;00) is a dif-
feomorphism, then the curves ¢; : I~ (a) — R? and ¢; : I*(a) — R? defined
by ¢1(z) = oforall z € I (a) and ¢; = cop are C*-contact. Observe that in
this case the gluing ¢’ = ¢; l ¢; satisfies the assertion of our theorem too. =

It turns out that for an arbitrary smooth curve ¢ : I — R? the image c([)
is 0-measurable (in R?). Indeed, we have I = Is U Ig where Is = domg(c)
and Igr = dompg(c). Clearly, ¢(Is) consists of singular values of ¢, and so,
it is 0-measurable by the Sard Theorem. On the other hand, I can be ex-
pressed as at most countable sum of disjoint open intervals of I. If U/ is such
an interval, then ¢(U) is a regular arc of ¢ which has to be 0-measurable.
Hence we conclude that ¢(/g) is 0-measurable too. Thus, since both ¢(/g)
and ¢(Is) are 0-measurable, so is the image ¢(7).
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