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SINGULARITIES OF PRINCIPAL-DIRECTED CURVES 
IN THE PLANE, I 

Principal-directed curves in the plane R 2 , called shortly P-directed 
curves, were introduced in paper [3] in connection with the study of smooth 
curves with respect to the product final differential structures «S1 and S2 

defined on R 2 . These structures determine the differential spaces R x j R = 
( R 2 , ^ 1 ) and R x 2 R = (R2,«S2) which have many common properties (see 
[2] for details) and can be considered together as the differential space R x ^ R 
where k £ {1,2} is fixed but arbitrary. In particular, the class of all smooth 
curves in R x ^ R does not depend on k and consists of exactly all locally 
A'-subordinate smooth curves in R 2 (see [3], Corollary 2 . 2 1 ) , which implies 
that any such curve must be P-directed. On the other hand, it is easy to con-
struct a P-directed curve in R 2 which is not locally A'-subordinate (see [3], 
Example 2 .22) , and so, the class of all P-directed curves in R 2 is essentially 
stronger than that of all smooth ones in R x^ R. 

In the present paper we treat principal-directed curves in the plane in 
a way independent of the differential structures and S2. For such curves 
we first prove the so-called statements of singularity (SA) and (SB) of Theo-
rem 1.3. Next, relative to statement (SA) we formulate the special condition 
of singularity (SCA) as well as the general one (GCA). In particular, this 
means that any curve satisfying condition (SCA) has to satisfy condition 
(CCA) for the corresponding data. Our paper is mainly devoted to the 
study of condition (SCA). More precisely, applying topological and func-
tional analysis methods we obtain appropriate constructions of P-directed 
curves in R 2 satisfying this condition. Strictly speaking, we replace condi-
tion (SCA) by equivalent one (SCAo) which concerns real smooth functions 
defined on an interval of R . We prove the basic Theorem 2.8 which im-
plies that there exists a monotonically nondecreasing real smooth function 
that satisfies condition (SCAQ") of Corollary 2.9, being stronger than condi-
tion (SCAQ). In turn, this involves that there exists a monotonically nonde-
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creasing smooth curve in R 2 satisfying condition ( S C A + ) of Corollary 2.10, 
stronger than condition (SCA). Finally, we ask Question (QSA) and then 
present a correct answer to it given by statements (A) and (B) of Theorem 
3.2. Strictly speaking, s tatement (A) asserts that any P-directed curve in 
R 2 satisfying some condition hits to be contained in a principal line. Oth-
erwise, by s tatement (B) one can construct a monotonically nondecreasing 
P-directed curve in R 2 which is contained in a given principal right angle 
with a mixed direction but is not in any principal line. 

The programme of an investigation of the remaining condition (GCA) is 
continued in the next papers (see [4], par ts II and III). It turns out that the 
corresponding solutions take account of various kinds of ordinal invariants 
of smooth geometric curves in R 2 . This is fully presented in part III of [4] 
where such solutions for some realizations of (GCA) are given. However, the 
preparatory considerations are included in part II of [4] where the concepts 
of chains and chain fibrations are explained (Section 4) in a form suitable for 
our fur ther considerations. Give attention that all the conditions discussed 
above are formulated relative to statement (SA) only. This means tha t any 
similar discussion relative to s tatement (SB) remains completely open. 

Our paper has been intended to be part I of series [4] of preprints which 
have common terminology and notation as well as continuous numeration. 
Moreover, since they are meant to be continuations of paper [3], we accept 
for them all the terminology and notation from [3] unless otherwise s tated. 

1. Statements and conditions of singularity 
Let c be a smooth curve in R 2 . Following [3], we have defined the sets 

dom(c), donifl(c), doms(c) , d o m c s ( c ) and dom/vs( c) as w e l l as the sets 
dom^(c ) and loc^(c) where X 6 {V,H,P}. In addition we adopt the fol-
lowing notations: 

domps (c ) = dom(c) \ locp(c), 
loc f lA-(c) = domfl(c) n locx(c) . 

Obviously, the set domps(c ) is closed in dom(c). In turn, the sets loc/iv(c) 
and loc/i//(c) are disjoint and open in dom(c). Furthermore, l o c R P ( C ) = 

IOCRV^c) U 1OCK//(C) and by definition we get loc/jp(c) C dom/i(c) and 
loc/ip(c) C locp(c). It is easy to verify the following propositions: 

1.1 . P R O P O S I T I O N . Let c be a smooth curve in R 2 . Then the following 
conditions are equivalent: 

(a) c is P-directed, i.e. domp(c) = dom(c); 
(b) locp(c) is a dense subset o /dom(c) ; 
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(c) domps(c) is a boundary subset o /dom(c) ; 
(d) locfip(c) = domfl(c). • 

1.2. P R O P O S I T I O N . Let c be a smooth curve in R 2 . Then the following 
conditions are equivalent: 

(a) c is almost regular, i.e. in tdoms(c) = 0; 
(b) IOCHP(C) = locp(c); 
(c) locziv'(c) = locv(c) and l o c r h ( c ) = loc//(c). • 

The following theorem presents the so-called statements of singularity 
(SA) and (SB) for a P-directed curve c in R 2 . They can be the basis for for-
mulating the corresponding conditions of singularity, which is realized here 
relative to statement (SA) only. 

1.3. T H E O R E M . If X e {V,H} and c is a P-directed curve in R 2 , then 
the following statements hold: 

(SA) domps(c) C f r domcs(c) C f rdoms(c) , 

(SB) domps(c) = cl locflxic) \ IOCA-(C) = f r Ioc f l x(c) \ locx(c) = 
= cl locpv(c) fl cl locn//(c) = frloc/?v(c) D frloc/?//(c), 

where fr and cl are the boundary and the closure operations in dom(c)', re-
spectively. 

P r o o f . (SA). Since domcs(c ) and dom5(c) are closed subsets of dom(c), 
domcs(c) ^ doms(c) and i n t d o m c s ( c ) = in tdoms(c) , we conclude that 
f r d o m c s ( c ) Q frdom5(c). Thus, it remains to show the inclusion 
domps(c) C f r d o m c s ( c ) which is equivalent to the following one 

(1) dom(c) \ f r d o m c s ( c ) C locp(c). 
To prove (1), note first that 

(2) dom(c) \ f r d o m c s ( c ) = in tdomcs (c ) U domArs(c). 
Furthermore, i n t d o m c s ( c ) = locv(c) fl loc//(c) C locp(c) and domyvs(c) Q 
locp(c) (see [3], Lemma 1.3 and Proposition 1.13). Hence and from (2) we 
get (1), and so, the proof of statement (SA) is complete. 

(SB). Suppose that c = (a,/3). First we prove that 
(3) domps(c) = c l locf lv(c)n clloc/j//(c). 

Indeed, let us take a parameter s € domps(c) . If U is an open neigh-
bourhood of s in dom(c), then there are v,w € U such that Q(U) ^ 0 and 
P(w) ^ 0, for otherwise s € locp(c), a contradiction. Therefore, we can find 
open neighbourhoods V of v and W of w in dom(c) such that V, W C U and 
a(v') ^ 0 and $(w') 0 for any v' € V and w' € W. Since c is P-directed, 
it follows that V C loc/i//(c) and W C loc/jv(c). Consequently, we have 
s € clloc/jv(c) fl clloc/t//(c). 
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Conversely, let us take s G clloc/iv(c)nclloc/i / /(c) . In this case for an ar-
bitrary open neighbourhood U of s in dom(c) we have U flloc/i//(c) ^ 0 and 
U fl 1OCRI/(C) / 0. This means that there are v,w G U such that a(i>) ^ 0 
and P(w) 0. Therefore, we conclude that 5 G domps(c) , for otherwise 
•s G locp(c), and so, there would exists an open neighbourhood U of s in 
dom(c) such that a\U = 0 or $\U = 0, a contradiction. Summarizing, we 
have proved the equality (3). 

Now, since loc/?p(c) = locfty(c) U locp//(c) and domps(c) are disjoint 
sets, it follows from (3) that 

domps(c) = (cl locpv(c) fl c l l o c R H { C ) ) \ l o c R P ( c ) 
= (cl IOCPK(C) \ locav(c)) n (cl locp//(c) \ 1OCK H (C) ) 

= frlocpK(c) H frloc/j / /(c) . 

Analogously, we have 

domps(c) = (frloc/{v(c) fl frloc/?//(c)) \ locp(c) 

= (fr locpv(c) \ locv(c)) n (fr locH / / (c) \ \ocH(c)), 
which implies 

domps(c) C fr loc/ ix(c) \ locx(c) C c l loc f ix(c) \ l oc x ( c ) 

for X G {V, II}. Thus, to complete the proof, it remains to show that 

( 4 ) CLLOCFLX(c) \1OCJC(C) C d o m p s ( c ) . 

Indeed, since the cases X = V and X = H are analogous, we can fur-
ther assume that X = V. Let us take a parameter s G clloc/jv/(c) \ l o c y ( c ) . 
Consider an open neighbourhood U of s in dom(c). Obviously, we have 
U l~l locR\/(c) ^ 0 and note that U f~1 loc/^//(c) ^ 0, for otherwise we get 
a\U = 0, which means that U C locv(c), a contradiction. Consequently, 
we conclude that s G clloc/?y(c) fl clloc/i//(c) and from (3) we obtain 
s G domps(c) , which proves (4) for X — V. m 

Obviously, from this theorem and Proposition 1.2 we get 

1.4. COROLLARY. If C is an almost regular P-directed curve in R 2 , then 

domps(c) = cllocv(c) fl c l loc#(c) = fr locv(c) = fr loc//(c) . • 

Statement (SA), also called the stratification statement of singularity for 
c, will have a special significance for our further investigations. We shall as-
sociate with it the special condition (SCA) and the general condition (GCA) 
which will be regarded as those of singularity for P-directed curves in R 2 . 
More exactly, the first one will be the main condition under consideration in 
this paper, but the second is intended to be studied more thoroughly in the 
next paper (see [4], part III). To formulate these conditions, we first make 
some necessary observations relative to statement (SA). 
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In what follows the symbol I s tands for an arbi t rary but fixed interval of 
R , that is, a nonsingle-element connected subspace of R , or equivalently, a 
convex subset of R with nonempty interior, which will often be regarded as 
the base topological space. We accept tha t all topological operations for sub-
sets of / or for functions defined on / are meant relative to / . In part icular, 
this concerns the operations of interior, closure and boundary for subsets of 
I (see [1]), represented respectively by the symbols int, cl and fr as well as 
the operation of support for real functions defined on / , represented by the 
symbol supp. For any subset A of I we denote by Ad the derived set of A 
relative to / , t ha t is, 

Ad = { x e l :x e c I ( A \ {x})}. 

From the definition of Ad we obviously get 

1.5. L E M M A . For any A C I the set A \ Ad is discrete in I , and so, 
cardial \ Ad) < N0. • 

We adopt the notation N 0 = N U {0}. For any a G C°°(I) and i G N 0 

let, the symbol D'a stand for the tth derivative of a . In particular, we accept 
D°a = a , Dla = a' = a and D2a = a". Moreover, we adopt the following 
notat ions: 

Z(n) = {x e I: a ( x ) = 0}; 
Zk(a) = {\{Z{Dia) : 0 < i < k} for k G N 0 ; 
¿T° (a ) = f l { Z i & a ) • * € N 0 } = f]{Zk(cx) : k € N 0 } . 

1.6. L E M M A . If a e C°°{I) and A = Z ( a ) , then Ad C Z°°(a). • 

P r o o f . Let us take a 6 Ad. Of course, there is a strictly monotonic 
sequence of elements of the set Z(D°a) = A such tha t lim, = a. 
Without loss of generality we can fur ther assume tha t (a°) is strictly in-
creasing, i.e. a° < a°+ 1 for i 6 N . Suppose now that for any k 6 No we have 
defined a strictly increasing sequence ( a f ) of elements of Z(Dka) such tha t 
lim, af = a. In particular, we have (Dka)(ak) = (Dka)(ak

+1) = 0 for each 
i G N , and so, it follows from the Rolle Theorem that there exists a t

fc+1 in 
I satisfying ak < a f + 1 < a,fc+1 and ( D A : + 1 a ) ( a f + 1 ) = 0. Therefore, for any 
k G N 0 we have defined a strictly increasing sequence ( a f ) of elements of 
Z(Dka) such tha t lim, ^ = a. Hence we conclude tha t a G Zk(a) for all 
k G No, which implies tha t a G Z°°(a). Finally, since a can be an arbi t rary 
element of Ad, it follows tha t Ad C Z°°(a). m 

To any a G C°°(/) we can assign, for example, the horizontal smooth 
curve ca = ( « , 0 ) : / —» R 2 . Clearly, the assignment ttHca defines a one-to-
one correspondence between C ° ° ( / ) and the family of all smooth curves in 
R 2 defined on I and contained in the horizontal line R x { 0 } . This assignment 
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allows us to transfer to C°°(I) those necessary notations for smooth curves 
in R 2 which depend on differential operations. Therefore, we can adopt the 
following notations: doms(a ) = doms(c 0 ) and domcs(f t ) = domcs(c 0 ) . 
Clearly, we have doms(a) = Z(a) and domcs(oO = C\{Z(Dk Q) '• k € N} = 
Z°°(q). Finally, note that with the same effect, for any given principal line L 
in R 2 , we can consider in a similar way the appropriate assignment a >-»• 
from C°°{I) to the family of all smooth curves in R 2 which are defined on 
/ and contained in L. 

Let us fix a G C°°(I) and set F = doms(a) = Z(a) and E = domes!« ) 
= Z°°(a). Obviously, F and E are closed subsets of I such that E C F. By 
applying Lemma 1.6 for a we get the condition Fd C E. More generally, 
note that if F and E are closed subsets of I such that E C F, then the 
condition Fd C E involves that int F = int E. Indeed, we have int F C int E 
because int F C Fd C E and int E C int F because E C F. Furthermore, it 
turns out that the condition Fd C E C F is in general essentially stronger 
than that int F = int E and E C F. For instance, let I = [0; 1], E = 0 and 
F = C be the Cantor set lying in / (see [3], Example 2.6). In this case we 
have int F = int E = 0 and E C F, however, the set Fd = C is not con-
tained in E. Clearly, this implies that for such E and F there is no function 
q 6 C°°(/) satisfying doms(a) = F and domcs(«) = E. 

Let now c — {a,f3) : I —* R 2 be a smooth curve. Clearly, we have 
F = F\ D A and E = E\ fl £2 where F,F\,F2 and E, E\, E2 denote re-
spectively the sets dom5(c), dom5(a), dom5(/i) and the sets domcs ( f ) , 
domcs(oi)> domcs(^)- From the previous considerations it follows that 
Ff C Ex C Fi and F2

d C E2 C F2, whence we get Fd C Ff n F? C E C F. 
We have thus for c the condition Fd C E C F which is also in general 
essentially stronger than the condition int F = int E and E C F (see [3], 
Lemma 1.3), similarly as for real smooth functions defined on I . 

Suppose that E and F are closed subsets of I such that Fd C E C F. 
One can ask whether there exists a P-directed curve c : I —* R 2 which is 
subject to the following condition: 

(SCA) domp5(c) = 0, domcs(c) = E and doms(c) = F\ 
This condition is consistent with statement (SA) and will be regarded as 
the purpose for constructions of the corresponding curves. Moreover, we 
can formulate the most general condition (GCA) as follows. Let D,E and 
F be closed subsets of / such that D is a boundary set, Fd C E C F 
and D C fr E C fr F. One can ask whether there exists a P-directed curve 
c : / —+ R 2 for which the following condition holds: 
(GCA) domps(c) = D, domcs(c) = E and doms(c) = F. 
It is seen that any curve satisfying condition (SCA) has to satisfy condition 
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(GCA) for the corresponding D, E and F. In our paper applying topolog-
ical and functional analysis methods we present appropriate constructions 
of P-directed curves in R 2 relative to condition (SCA). In the next paper 
(see [4], part III) we give similar constructions of such curves relative to 
condition (GCA). 

We first show that condition (SCA) can be replaced by condition (SCAo) 
below. Suppose that E and F are closed subsets of / such that Fd C E C F. 
One can ask whether there exists a function A G C°°(I) satisfying the fol-
lowing condition: 

(SCA0) domcs(A) = E and doms(A) = F. 
Indeed, if A 6 C°°{I) satisfies condition (SCAo), then the horizontal 

curve c\ = (A,0) clearly satisfies condition (SCA). Conversely, if c = (a , ¡3) : 
I R 2 is a P-directed curve satisfying condition (SCA), then observe first 
that the assumption domp5(c) = 0 involves that supp a fl supp / j = 0. This 
implies that the function A = a + (3 satisfies condition (SCAo) because 
doms(A) - doms(c) = F and d o m c s ( ^ ) - domcs(c) = E. Summarizing, 
we have shown that conditions (SCA) and (SCAo) are equivalent. 

2. Singularit ies of real s m o o t h funct ions 
Consider the family C°°{I) as a real vector space under the pointwise 

operations. Denote by (9 = ©( / ) the set of all pairs ( k , C ) where k £ No 
and C is a compact subset of I. We shall regard (5 as partially ordered set 
under the ordering < defined as follows: (k',C') < ( k " , C " ) if k' < k" and 
C" C C". Fo r a n y A 6 C°°(I) a n d a = (k,C) G <9 w e se t 

||A||a = max{|(£>'A)(<)| : 0 < i < k, teC}. 

It is seen that every || • Ĥ  is a seminorm in C°°( / ) . Moreover, if A ^ 0, one 
can find a G © such that ||A||a ^ 0. We have thus a topological vector space 
C°° ( / ) under the weakest topology induced by the family {|| • Ĥ  : a € 0 } 
of seminorms. Moreover, this family is monotonically nondecreasing, which 
means that for any <r, r £ <8 such that a < t we have ||A||ff < | | A | | f o r each 
A G C°°( / ) , written as || • Ĥ  < || • | |T. Since I is a locally compact space 
being countable at infinity, we can fix a sequence (C k ) of compact subsets of 
I such that Ck C i n t C * + 1 for k £ N 0 and : k £ N 0 } = I. Let us set 
|| = || -||(A for k G No - One can see that for each a G <3 there is k G No 
such that || • |jcr < || • ||fc. It follows that the topology of C°°(I) is induced 
by the family {|| • ||/t : k G No} of seminorms too. This means that C°°(7) is 
a metrizable topological vector space. In fact, C°° ( / ) is a separable Frechet 
space (compare [5], the definitions of a Frechet space in 1.8 (f) and of C°°(i2) 
in 1.46). In this topology the convergence An —> A in C°°(I) means that for 
each i G No, D*Xn is convergent to D'X uniformly on every compact subset 
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of I. In the sequel we shall always regard that C°°(I) is a Frechet space with 
respect to the above-described family || • : k £ No of seminorms. 

Let \ i , A2,.. . be an infinite sequence of functions of the Frechet space 
C°°(I). The series An is called absolutely convergent in C°°( / ) if for 
each a G (9 the series ll^nlU' s convergent, or equivalently, if for each 
k 6 No the series ll-MU is convergent. Clearly, every series ^n 
absolutely convergent in C°°(I) is convergent in C°°(I) but not conversely in 
general. We need the following lemma which can be proved, more generally, 
for an arbitrary Frechet space C°°{f2) (see [5], 1.46). 

2 . 1 . L E M M A . If the series «n is absolutely convergent in C°°(I), 
then for each i £ N so is the series Dlan. Furthermore, if a = 
E^ri Qn, then Dxa = j Dlan. m 

2 . 2 . L E M M A . If ot\,ot2,... is an infinite sequence of functions of C ° ° ( / ) , 
there exists an infinite sequence f i , £2» • • • °f positive real numbers such that 
the series £nftn is absolutely convergent in C°°(I). 

P r o o f . It is clear that for any n £ N one can find en > 0 such that 
£n||o!n||n < 2 _ n . This implies that for each k € No the series S ^ L i lkn»n||fc 
is convergent because the family (|| • is monotonically nondecreasing, 
and so, we have ||£n

an||A; = £n||i*n||fc < £n||a„||„ < 2 - n for n > k. Thus the 
series £„a„ is absolutely convergent in C°°(I). m 

2.3. L E M M A . For any closed subset A of / , there exists a nonnegative 
function a £ C°°(7) such that Z(a) = Z°°(a) = A. 

P r o o f . The assertion is trivial if A = I. Therefore we can further assume 
that A I. Since A is a G^-subset of the normal topological space / , it fol-
lows that there is an infinite sequence U\, U2,.. • of open neighbourhoods of 
A in I such that cl Un+1 C {/n for n 6 N and : n £ N} = A. In turn, 
it is known that for each n there exists a nonnegative function an 6 C°°(I) 
such that Z(an) = c l f / n + i . By Lemma 2.2 there exists an infinite sequence 
(e„) of positive real numbers such that the series a = X^^Li £n(*n is ab-
solutely convergent in C°°(I). Clearly, we have Z(a) — A. Moreover, from 
Lemma 2.1 it follows that Z°°(a) = A. m 

It is clear that I equipped with the differential structure C°°(I) is a para-
compact connected one-dimensional differentiate manifold (with boundary 
in case I is not open in R) being a normal topological space. Applying a 
smooth partition of unity it is easy to prove the following lemma which can 
be generalized for paracompact finite-dimensional manifolds too. 

2 . 4 . L E M M A . Let A and B be closed disjoint subsets of I. IfU and V are 
open neighbourhoods of A and B in I respectively such that cl U fl cl V = 0, 
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then there exists a function A 6 C°°(I) such that X\U — 1, A | V = 0 and 

0 < A(ar) < 1 f o r x e l . m 

2.5. L E M M A . For any discrete subset A of I there exists a nonnegative 
function a € C°°(I) such that A C Z1(a) and a"{a) > 0 (a" (a ) £ 0) for 
each a 6 A. 

P r o o f . The assertion is obviously trivial if A = 0. Therefore we can 
further assume that A / 0. Since A is a discrete subset of I , it follows that 
1 < card A < No- We can thus suppose that A = { a i , . . . } where ( a n ) for 
n < min{card ¿4 + 1, No} is a finite or infinite sequence of all distinct elements 
of A. Next, since A is a discrete subset of the normal topological space / , it 
follows that there exists a sequence (W,,) of disjoint open subsets of I such 
that Wn fl A = {a n } for each n. Furthermore, by applying induction on n 
we conclude that for n < min{card/ l + 1, Ho} there exist disjoint open sets 
Un and Vn in I such that 

( 1 ) an € Un C Wn n K ( n ) , I \ W n C V n a n d cl Un n cl Vn = 0 

where V ( l ) = / and V(n) = H i ^ i : 1 < i < n — 1} for n > 1. Moreover, by 
Lemma 2.4 we conclude that for each n there exists a function A„ £ C°°(I) 
such that 

(2) Xn\Un = 1, An |Vn = 0 and 0 < A„(z) < 1 for x € / . 

Let us set 
a n ( x ) = A n ( i ) • (x — an)2 for x 6 I 

and note that a n is a nonnegative function of C°°(I) satisfying the condi-
tions: 

(3) supp a „ C a n ( a „ ) = a ' ( a n ) = 0 and a"(an) = 2. 

In the case when m = card A < No we set a = a?i + . . . -f a m . Note 
that a is a nonnegative function of C°°(I) such that ct\Un = o n | i / n for 
each 1 < ?i. < m, which follows from (1) and (2) because for i ^ n we 
have A„|i/j = 0, and so, otn\Ui — 0. Therefore, from (3) we infer tha t in 
this case a satisfies the assertion of our lemma. Otherwise, if A is infinite, 
then from Lemma 2.2 it follows that there exists an infinite sequence (e„) 
of positive real numbers such that the series £notn is absolutely con-
vergent in C°°(I). Clearly, in that case a = e n a n is a nonnegative 
function of C°°(7). Moreover, similarly as in the previous case, we conclude 
that a\Un = £nan\Un for each n £ N . Consequently, it follows from (3) that 
a satisfies the assertion of our lemma too. • 

2.6. R e m a r k . Observe that if a is a nonnegative function of C ° ° ( / ) 
and a G Z i ( a ) , then the condition a " ( a ) ^ 0 involves that a " ( a ) > 0. 
Indeed, suppose to the contrary that a"(a) < 0. Then there exists e > 0 
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such that a"(x) < 0 for each x G Uc = / D (a - e; a + e). It follows from the 
Taylor formula that for any x G Uc there exists f x G (0; 1) such that 

a ( x ) = i • a " (a + £x(x - a)) • (x - a)2 , 

which implies immediately that a (x ) < 0 for each x G Ue \ { a } , a contradic-
tion. • 

If necessary, we shall regard C'°°(/) as a real algebra under the pointwise 
operations. For any A C I and k G No U {oo} let us set 

Jk(A) = {ae C°°(I) : A C Zk(a)}. 

Clearly, we have Jk(A) = Jk(c\ A). Moreover, note that Jk{A) is an ideal 
of the algebra C°°(/). 

2 . 7 . LEMMA. Let A and B be disjoint subsets of I. Suppose that A is 
discrete, B is closed and Ad C B. Then there exists a nonnegativc function 
V of C°°(I) such that A C Z1^), <p"(a) > 0 for each a G >4, = B 
and Z(ip) = A U B. 

P r o o f . By Lemma 2.5 there exists a nonnegative function a of C ° ° ( J ) 
such that A C Zl(a) and a"(a) > 0 for each a G A. In turn, by Lemma 
2.3 there exists a nonnegative function (5 of C°°{I) such that Z((3) = 

= B. Let us consider the nonnegative function d = a(3 of C°°(I). 
Since a G J1 (A), (5 G J°°{B) and both J1 (A) and J™(B) are ideals of 
C°°(/), it follows that A C Zl(i)) and B C Z°°(0). Moreover, by applying 
the Leibniz rule we conclude that i?"(o) = a"(a)f}(a) > 0 for each a G A 
because a(a) = a'(a) = 0, a"(a) > 0 and (3(a) > 0. Next, since A U B is a 
closed subset of /, it follows from Lemma 2.3 that there exists a nonnegative 
function u> G €"^{1) such that Z(u) = Z°°(u>) = A U B. Finally, note that 
the function <p = i? + w satisfies the assertion of our lemma. • 

2 . 8 . T H EOREM. Let E and F be closed subsets of I such that Fd C E C F. 
Then there exists a nonnegative function tp G C°°(I) such that Z(tp) = F, 
Z°°(<p) = E, F\E C Z(<p') and <p"(x) > 0 for each x G F\E. 

P r o o f . This theorem is a consequence of Lemma 2.7 for A = F \ E and 
B = E, where A C F \ Fd is a discrete subset of I by Lemma 1.5. • 

2 . 9 . COROLLARY. Let E and F be closed subsets of I such that Fd C E C 
F. Then there exists a monotonically nondecreasing function -0 G C°°(/) 
satisfying the following condition: 

dom c s ( 0 ) = E , dom s( i?) = F ; 
0 F\ECZ(r), ( ^ ) ( i ) > 0 V x 6 F \ £ . 

In particular, 0 satisfies condition ( S C A Q ) . 
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Let <p be a function satisfying Theorem 2.8. We define the function 
i? € C°°(I) to be an antiderivative of ip, that is, satisfying •d' = if. It is 
seen that d satisfies the assertion of our corollary. • 

A curve c = (a,/?) : / —• R 2 is called monotonically nondecreasing if so 
are both the functions a and (3. If c is smooth, then for any i £ N we set 

D*c = [D'a, £>•'/?] and Z(D*c) = Z^a) n Z(Z?'7?). 

2 . 1 0 . COROLLARY. Let E and F be closed subsets of I such that Fd C E C 
F. Let L be a given principal line in R 2 . Then there exists a monotonically 
nondecreasing P-directed curve c : / —• R 2 contained in L and satisfying the 
following condition: 

domps(c) = 0, domcs( c ) = E, dom s(c) = F; 

F\ECZ(D2c), (D3C)(X)?0VX E F\E; 

which is stronger than condition (SCA). 

P r o o f . By definition, L has to be of the form R x {a } or { a } x R for 
some a € R . Therefore if we take a function d satisfying Corollary 2.9, then 
the smooth curve c = (resp. c = (a,d)) in R 2 satisfies clearly the 
assertion of our corollary. • 

3. Singularity of locally P-subordinate smooth curves 
Following [3], a smooth curve c in R 2 is said to be almost regular if 

intdoms(c) = 0. Recall that c is locally P-subordinate if locp(c) = dom(c), 
or equivalently, domps(c) = 0. Clearly, every locally P-subordinate smooth 
curvc in R 2 is P-directed. We need the following (see [3], Proposition 1.9). 

3.1. LEMMA. Every almost regular locally P-subordinate smooth curve in 
R 2 is contained in a principal line, m 

Of course, if c is a P-directed curve in R 2 and dom/>s(c) ^ 0, then c 
cannot be contained in any principal line. It is of interest to know whether 
there exists a locally P-subordinate smooth curve in R 2 or, more gener-
ally, satisfying condition (SCA) which is not contained in any principal line. 
From Lemma 3.1 it follows that if c is a locally P-subordinate smooth curve 
in R 2 not contained in any principal line, then it cannot be almost regular. 
On the other hand, a totally stationary smooth curve c in R 2 , that is, satis-
fying doms(c) = dom(c), is clearly not almost regular however is contained 
in a principal line as a constant map. More generally, note that if c is a 
P-directed curve in R 2 such that the set dom/j(c) is connected, then c is 
contained in a principal line (Corollary 3.3). 

One can ask the following question formulated relative to condition 
(SCA): 
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(QSA) For what closed subsets E and F of I satisfying Fd C E C F, 
there exists a P-directed curve c in R 2 such that 

d o m p s { c ) = 0, domcs ( c ) - E, d o m s ( c ) = F 

and c is not contained in any principal line. 

To obtain an affirmative answer to this question (Theorem 3.2), we first 
consider the operation of C°°-gluing for P-directed curves in R 2 which cor-
responds to that for real smooth functions. This operation can be regarded 
as a particular case of the procedure of gluing for differential or differentiable 
spaces (see [6] and [7]). 

For any nonempty 5 C I we adopt the following notations: 

I~(S) = {x 6 I : x < s Vs G 5 } , 
I+(S) = {x G I : X > 5 Vs g 5} . 

Clearly. I~(S) and I+(S) are convex subsets of I. In particular, for a G / 
we accept I~(a) = / " ( { « } ) and / + ( a ) = I+({a}). 

Let us take a 6 int / and observe that I~(a) and / + ( o ) are subinterva.ls 
of I satisfying the identities / = I~(a)Ul+(a) and I~(a)C\I+(a) = {a}. The 
pair (I\,h) where I\ — I~(a) and I2 = I+(a) is called the cut of / by a, and 
a is referred to as the contact parameter of I\ and I2. In this case we also say 
that /1 and In are contact intervals of R at a. Conversely, if Ii and I2 arc 
intervals of R such that sup I\ = max I\ = mi I2 = min /2 , then I\ and /2 
are contact intervals of R at the parameter a = m a x / i = min /2. Moreover, 
I — I\ U I2 is an interval of R and the pair I2) is the cut of / by a. 

Suppose further tha t I\ and I2 are contact intervals of R at a. We say 
that functions a j 6 C°°(I\) and a> G C°°(/2) are C°°-contact (at a) in the 
case when ( D l a i ) ( c ) = (D%a2)(c) for each i G No, which is equivalent to 
the fact that there is a unique function a G C°°{I) such that Q] = q | / , 
and »2 = «I/2, called the (smooth) gluing of a i and c*2 [at a) and de-
noted by c*i II„ 02, or shortly, a j II ao. Let now cj = ( a i , / ? i ) : I\ —>• R 2 

and c2 = (otOiPi) '• h R 2 be smooth curves. We say that c\ and C2 are 
C™-contact if the functions Oi and «2 as well as (3\ and (¡2 a r e C 0 ' -contact 
at a. Clearly, in this case there exists a unique smooth curve c : I —* R 2 

where / = 1\ U I2 such that c\ = c\T\ and C2 = c | / 2 , called the (smooth) 
giving of cj and C2 (at a) and denoted by c 1 l l a c2 or Ci II ct for short. It is 
seen that if in addition c\ and C2 are P-directed, then so is the gluing C1IIC2. 

For any (a,b) G R 2 and a, r G { —,+} we define the set 

A(a°,bT) = RCT(o) x {6} U {a} x R T (6) 

and call it the principal right angle at (a,b) with (a, r)-direction. In par-
ticular, we have the sets A(a~,b+) and / l ( a + , 6 _ ) called the principal light 
angles at (a,b) with mixed directions. It is seen that the principal cross Kp 
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for p — (a, 6) (see [3]) is a union of four distinct principal right angles at 
p with all possible directions which correspond to the four quarters of the 
plane determined by Kp. 

For any subset S of I denote by conv 5 the convex hull of 5 in / , i.e. 
conv 5 = {tx + (1 - t)y : x, y 6 5 and 0 < t < 1}. It is clear that conv S is 
a subinterval of I provided that S has at least two distinct elements. 

3.2. THEOREM. Let E and F be closed subsets of I such that Fd C E C F . 
Then the following statements hold: 

(A) If int F H conv(/ \ F) = 0, then any P-directed curve c in R 2 such 
that domps (c ) = 0, domcs (c ) = E and doms(c) = F is contained in a 
principal line. 

(B) If int F fl conv( / \ F) ^ 0, then for any principal right angle A at 
a point p 6 R 2 with a mixed direction, there exists a monotonically non-
decreasing smooth curve c : I —• R 2 satisfying condition (SCA+) of Corol-
lary 2.10 and such that c is contained in A but is not in any principal line. 

P r o o f . (A). In the case when int F = 0, c is almost regular, so it is 
contained in a principal line by Lemma 3.1. In turn, if I \ F = 0, then c is 
totally stationary, which means tha t it is contained in a principal line as a 
constant map. Therefore we can further assume that int F ^ 0 and I\F ^ 0. 
In the sequel we put R — I \ F. Since int F fl conv R = 0, it follows that 
int F C I~(R) U I+(R). Without loss of generality one can also assume that 
int F f l I~(R) ^ 0. Thus, we can set a = max I~(R) and note that x < a < y 
for any x € int F fl I~(R) and y 6 R, so a € int I. Let ( / j , I2) be the cut of 
/ by a. We set Ci = c\\I\ and ci = C2I/2, which means that c — Cj l l a ci. It 
is seen that c 1 is totally stationary, i.e. c(t) = c(a) for each t G I \ . In turn, 
observe that c2 satisfies the condition: 

dom R ( c 2 ) = R and int F2 C I+(R) 

where F> = F fl I2 = doms(c2). 
Consider first the case when int F2 = 0, which means that c2 is almost 

regular. Then since c2 is locally P-subordinate, it follows from Lemma 3.1 
that c2 is contained in some principal line in R 2 , say L. In this case c is also 
contained in L because c = c\ IIa c2 and Ci is totally stationary. 

Similarly, in the case when int F2 0, it suffices also to show that c2 is 
contained in a principal line. Indeed, in that case we can set b = min = 
m i n / + ( i Z ) G i n t / 2 . Consider the cut ( / 2 i , / 2 2 ) °f h by b, i.e. / 2 J = /2~(&) 
and I22 = i t i ^ ) - Let us set c2i = c 2 | / 2 i c22 = c 2 | / 2 2 , which means 
tha t c2 = c21 II(, c2 2 . It is seen that c2i is almost regular but c22 is totally 
stationary. Therefore, analogously as for c in the previous case, we conclude 
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t h a t c2 is contained in a principal line in R 2 , which completes t h e proof in 
the case under considerat ion. 

(B) . Since int F f l c o n v R ^ 0, we infer t h a t there exists a connected com-
ponent G of int F such t h a t I~ (G) n R / 0 and / + (G) n R ^ 0. Let us t ake 
g G G C int I and consider the cut ( / j , I2) where I\ = I~{g) and I2 = I+{g)-
Moreover , note t h a t for k = 1 ,2 the sets Ek = E fl Ik and Fk = F fl Ik are 
closed subsets of Ik such t h a t Fjf C Ek C Fk. By Corollary 2.10 there exists 
a monotonical ly nondecreasing smoo th curve Ck : h —* R 2 such t h a t 

and f u r t h e r m o r e , we can require t h a t the following inclusions hold: 

From (2) we obviously have ci = (Ai ,0 ) and c2 = (0 ,A 2 ) (C\ = (0 ,A i ) 
and c2 — (A 2 , 0 ) ) where \k G C°°(Ik)- One can fu r the r assume t h a t Ai(<?) = 
A2(<7) = 0, for otherwise we can replace Ai by Ai - Ai(^) and A2 by A2 — A 2 { g ) 
with preserving all above-ment ioned proper t ies for c\ and c 2 . Obviously, this 
addi t ional assumpt ion means t h a t Ci(g) = 02(g) = (0 ,0 ) . Fur the rmore , ob-
serve t h a t c 1 and c2 are C°°-contac t a t g because g £ G fl Ik C E fl Ik = Ek 
for it = 1 ,2 , and so, (D'c^ig) = (Dic2)(g) = [0,0] for each i G N . We have 
thus a smoo th curve c = c\ U p c2 which is monotonical ly nondecreasing and 
P-directed because so are C\ and c 2 . From (1) we infer t h a t c satisfies the 
condit ions: d o m C s ( c ) = E, d o m s ( c ) = F, F\E C Z(D2c) and ( D 3 c ) ( x ) / 0 
for each x G F \ E. Since g G int F, it follows t h a t c is locally s t a t ionary a t 
g, which implies t h a t g G locp(c) . This involves t h a t don ip5(c ) = 0 because 
A{5} = (h\{g})U(I2\{g}) C l o c p ( c 1 ) U l o c F ( c 2 ) C locp(c) . Consequently, 
we conclude t h a t c satisfies condit ion ( S C A + ) of Corollary 2.10. 

Finally, consider the principal right angles / t ( 0 ~ , 0 + ) and / l ( 0 + , 0 - ) . Ob-
viously, f rom proper t ies of Cj and c2 and f rom the definition of c we conclude 
t h a t c is contained in J 4 ( 0 ~ , 0 + ) ( / 1 ( 0 + , 0 - ) ) . Moreover, observe t h a t c can-
not be contained in a principal line. Indeed, since I\ D R ^ 0 and I2 fl R ^ 0, 
there exist ti G I\ H R = d o m / i ( c i ) and <2 G / 2 H R - dom/i(c2) where 
¿1 < g < t2- Clearly, these sets are open and locally convex subsets of / , 
which implies t h a t there exist ¿i G dom/ i ( c 1 ) and s 2 G dom/ j ( c 2 ) such t h a t 
t\ < si < g < s2 < t2, 

Since ci = (A i , 0 ) and c2 = (0 ,A 2 ) (ci = ( 0 ^ ) and c2 = (A 2 , 0 ) ) are mono-
tonically nondecreasing smoo th curves, so are the real smooth funct ions Ai 
and A2• Fur the rmore , we get A ^ j ) > 0 for G (¿i;-si) and A ^ ^ ) > 0 

(1) 
domps(cfc) = 0, domcs ( c f c ) = Ek, doms(cA:) = Fk, 

Fk\EkC Z(D2C), (D3C)(X) i 0 Vi G Fk \ Ek, 

(2) 
c i ( A ) Ç R x { 0 } and c 2 ( / 2 ) Ç {0} x R 

( c i ( h ) Q {0} x R and c 2 ( / 2 ) Ç R x { 0 } ) . 

[¿ i ; s i ] Ç d o m f l ( c i ) and [s2; t2] Ç d o m f i ( c 2 ) . 
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for £2 € (52^2) because ( i i j s i ) C dom/j(ci) and (525/2) C dom/i(c2). 
Next, from the Lagrange Mean-value Theorem it follows that there exist 

6 (ti;si) and F 2 € (JS2;<2) such that A k ( t k ) - A k ( s k ) + A ^ F * ) • (tk - sk) 
where k = 1,2. For these reasons we conclude that 

A I ( I I ) = A I ( * I ) + A I ( ^ I ) • ( H ~ ¿ 1 ) < A X I S , ) < A , ( S ) = 0 , 

H H ) = A 2 ( S 2 ) + A J ( F 2 ) • ( / 2 - 5 2 ) > A 2 ( S 2 ) ^ A 2 ( 0 ) = 0 . 

This means that 
c(h) = c i ( h ) e H0 \ {o}, c(<2) = c2( i2) e V0 \ {0} 

(c(t 1) = Cj(ij) e Vo \ {o}, c(t2) = C2(i2) € /To \ {o}) 
where H0 = R x {0}, Vo = {0} x R and o = (0,0). Hence we infer that 
there is no principal line in R 2 containing points c(ii) and c(<2), so c is not 
contained in any principal line. This completes the proof of statement (B). • 

From statement (A) of this theorem we obviously obtain the following 
corollaries: 

3 . 3 . C O R O L L A R Y . If c is a P-directed curve in R 2 such that the set 
dom/i(c) is connected, then c is contained in a principal line, m 

3 . 4 . C O R O L L A R Y . If c is a locally P-subordinate smooth curve in R 2 not 
contained in any principal line, then 

in tdoms(c) fl convdomn(c) ^ 0. 

The following example shows that there exist monotonically nondecreas-
ing locally P-subordinate smooth curves in R 2 with images much more 
complicated than that of such a curve considered in the proof of statement 
(B) of Theorem 3.2. 

3 . 5 . E X A M P L E . Let 0 < e < 1 / 2 . By Lemma 2 . 3 we infer that there exist 
nonnegative functions a',f3' € C°°(R) satisfying the following conditions 
(n € Z): 

a'(<) > 0, f3'(t) = 0 i f n + £ < i < n + 2£ where n is even; 
a'(t) = 0, (3'(t) >Q\fn + e<t<n + 2£ where n is odd; 
a ' ( i ) = (3'(t) = 0 otherwise. 

In addition, one can require that 
n+1 n+1 
j a'(t) dt = 1 if n is even, J (3'(t) dt = 1 if n is odd. 
n n 

Define the functions a,(3 6 C°°(R) by 
J 3 

a(s)= J a'(t)dt and /?(«)= j (3'(t)dt 
o o 
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and observe that c = (a, /3) : R —• R 2 is a monotonically nondecreasing 
P-subordinate smooth curve. Let us set 

/„ = {t € R : n < t < n + 1} 

for n G Z and note tha t c (R) = U{c( /„ ) : n £ Z}. Of course, for each k £ Z 
we have c(/2fc) = [fc; fc + 1] x {A;} and c(I2k-i) = {&} x [Ar - 1; k], Therefore 
the image c (R) is a principal broken line (edge path) consisting of countable 
many distinct principal closed segments (its edges). Furthermore, observe 
tha t c cannot be contained in any finite union of principal angles (crosses). • 

A chain (i.e. linearly ordered set) S is called integral in case it is order-
isomorphic to a subchain of Z. This means tha t for each s £ S there exist in 
5 at most one predecessor and one successor of 5, which are usually denoted 
b y ' s and s' respectively. We say that Si and S2 are successive elements of S 
provided that s'j = S2> or equivalently, 's2 = si- Clearly, every integral chain 
is order-isomorphic to an interval (convex subset) of Z (compare [4], part 
II, Proposition 4.2). If 5 is an integral chain, then by a convex partition of 
S we shall mean a disjoint family V of intervals of S, i.e. nonempty convex 
subchains of 5 , such that (J V = S. In this case V can also be regarded as an 
integral chain under the ordering relation < defined as follows (P,Q £ V): 
P < Q if and only if x < y for any x £ P and y £ Q. 

Consider an integral-indexed sequence ( c n ) „ e s of smooth curves in R 2 , 
which means tha t S is an integral chain. We say that (c n) is C°°-contact in 
case any two successive curves of (c n ) are C°°-contact. This means tha t 
if cn : / „ —• R 2 and cn< : /„< —• R 2 are such curves, then we have 
m a x / „ = min /„« and there is the smooth gluing cn II c„< : /„ U /„- -+ R 2 . 
More generally, one can see that in this case there exists a unique smooth 
curve c : / —• R 2 where I = ( J{ / n n € 5 } such that c\In = cn for each 
n 6 S, called the gluing of ( c n ) n 6 s and denoted by LI n e sc n . If ci , C2 , . . . , c* is 
a C°°-contact finite sequence of smooth curves in R 2 , then by ci l l c i l l . . .Ilcfc 
we denote the gluing of this sequence as well. It is easily seen that the gluing 
of any C°°-contact integral-indexed sequence of P-directed curves in R 2 is 
again such a curve. 

Let now tha t ( c n ) n g s be a C°°-contact integral-indexed sequence of 
smooth curves in R 2 . If V is a convex partition of 5 , then for each P £ V 
we have defined the gluing cp = LI„epcn which is clearly a smooth curve in 
R 2 . In turn, since V is an integral chain, there is an order-preserving iso-
morphism from V onto an interval of Z, and so, we can regard that ( c p ) p e p 
is an integral-indexed sequence of smooth curves in R 2 too. Moreover, one 
can see tha t this sequence is C°°-contact, which implies that there exists the 
smooth gluing LIp^-pcp. It is easy to verify the following associative law: 
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3 . 6 . P R O P O S I T I O N . Let ( c n ) n 6 s be a C°°-contact integral-indexed seq-
uence of smooth curves in R 2 . Then for any convex partition V of S we 
have 

In particular, if C\, c2 and c^ are C°°-contact smooth curves in R 2 , then 

( c i II C 2 ) II C3 = Ci II ( c 2 II C 3 ) = Ci II c 2 II c 3 . • 

Recall that a principal K-graph in R 2 is defined to be a compact con-
nected subset of R 2 which can be expressed as a finite union of principal 
closed segments (see [3], Section 2). In turn, by a pointed principal K-graph 
in R 2 we shall mean a pair (G , p ) where G is a principal A'-graph in R 2 and 
p £ G. Of course, from the definition of locally P-subordinate curve in R 2 

(continuous in general) we get 

3 . 7 . P R O P O S I T I O N . If c : [A;6] —» R 2 is a locally P-subordinate curve 
where a ,6 6 R and a < b, then the image c([a;6]) is a principal K-graph, m 

One can prove the following (compare [3], Lemma 2.23) 

3.8. L E M M A . If [a; 6] (a < b) is an arbitrary closed interval of R , then 
for any pointed principal K-graph (G,p) in R 2 there exists a locally P-
subordinate smooth curve c : [a; 

6] R 2 such that 

c([a; b]) = G, c(a) = c(b) — p and a, b £ int doms(c) 

where int denotes the interior operation in [a; 6]. • 
3 . 9 . T H E O R E M . For any nonclosed interval I of R there exists a locally 

P-subordinate smooth curve c \ I R 2 such that the image c(I) is dense 
in R 2 . 

P r o o f . We can regard R 2 as a real normed space under the point-
wise vector space operations and the norm || • ||* defined by ||(x,j/)| |* = 
max( |x | , |y|). Consider the standard net Ar = Z x R U R x Z i n R 2 . It is 
easily seen that for each n £ N the set Gn = {p £ 2~ n • N : ||p||* < n} 
is a principal A'-graph in R 2 such that o = (0,0) € Gn, where 2 - n • N = 
{'2~nq : q £ N}. Furthermore, note that Gn C Gn+\ for n 6 N and the set 
G = U{Gn : n € N } is a dense subset of R 2 . 

By Lemma 3.8, for each n £ N there exists a locally P-subordinate 
smooth curve cn : [n; n +1] —• R 2 such that c„([n; 7i +1]) = Gn, c(n) = c(n + 
1) = o and n, n+1 £ int doms(c„) . This implies that ( c n ) ^ is a C°°-contact 
sequence of locally P-subordinate smooth curves in R 2 . Thus there exists the 
gluing c = ll£°=1cn and from properties of all cn it follows that c is a locally 
P-subordinate smooth curve in R 2 too. Furthermore, note that c([l ;oo)) = 
l j{c„([n; n + 1]) : n £ N } = G, and so, c([l; oo)) is a dense subset of R 2 . 
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Finally, since I is a nonclosed interval of R , we conclude that either / is 
diffeomorphic to [1; oo) or / is an open interval of R . In the first case if ¡p : 
I —• [1; oo) is a diffeomorphism, then the curve coip : I —• R 2 satisfies the as-
sertion of our theorem. Otherwise, for any a € / both the intervals I~(a) and 
I+(a) are diffeomorphic to [1; oo). Therefore, if <p : I+(a) -* [1; oo) is a dif-
feomorphism, then the curves ci : I~(a) —• R 2 and c2 : I+(a) —• R 2 defined 
by c i (x) = o for all x G I~(a) and c2 = coip are C°°-contact. Observe that in 
this case the gluing c' = c\ II satisfies the assertion of our theorem too. • 

It turns out tha t for an arbitrary smooth curve c : I —* R 2 the image c(7) 
is O-measurable (in R 2 ) . Indeed, we have I = I s U IR where I s = doms(c) 
and IR = doniR(c). Clearly, c ( / s ) consists of singular values of c, and so, 
it is O-measurable by the Sard Theorem. On the other hand, IR can be ex-
pressed as at most countable sum of disjoint open intervals of I . If U is such 
an interval, then c(U) is a regular arc of c which has to be O-measurable. 
Hence we conclude that C(IR) is O-measurable too. Thus, since both C(IR) 
and c ( / s ) are O-measurable, so is the image c(7). 
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