

Baotong Cui

OSCILLATION PROPERTIES OF THE SOLUTIONS
OF HYPERBOLIC EQUATIONS
WITH DEVIATING ARGUMENTS

1. Introduction

Nowadays one observes an expanding interest toward the study of initial value problems and oscillations for partial differential equations with deviating arguments (cf. [2]–[5]). But only a few papers have been published so far considering the oscillatory properties. The purpose of this paper is to obtain the sufficient conditions for the oscillation of solutions of following hyperbolic equation with deviating arguments

$$(1) \quad \frac{\partial^2 u(x, t)}{\partial t^2} = a(t) \Delta u(x, t) + \sum_{i=1}^m a_i(t) \Delta u(x, \rho_i(t)) \\ - q(x, t) f(u(x, \sigma(t))), \quad (x, t) \in \Omega \times [0, \infty) = G,$$

where Ω is a bounded domain in R^n , $n \geq 1$, with piecewise smooth boundary $\partial\Omega$, and Δ is the Laplacian in R^n .

Suppose that the following conditions hold:

- (C₁) $a, a_i \in C([0, \infty); [0, \infty))$, $i = 1, 2, \dots, m$;
- (C₂) $q \in C(\bar{G}; [0, \infty))$ and $q(t) = \min_{x \in \bar{\Omega}} q(x, t)$ is not identically zero on $[t_0, \infty)$ for some $t_0 > 0$;
- (C₃) $\rho_i, \sigma \in C([0, \infty); R)$, $\lim_{t \rightarrow \infty} \sigma(t) = \lim_{t \rightarrow \infty} \rho_i(t) = \infty$, $i = 1, 2, \dots, m$;
- (C₄) $f \in C(R, R)$ is convex in $(0, \infty)$ and $uf(u) > 0$ for $u \neq 0$;
- (C₅) there exists a function $F \in C(R; R)$ such that $|f(u)| \geq |F(u)|$,

Key words: hyperbolic equation, functional argument, boundary value problem, oscillation.

1991 MSC: 35B05, 35R10

$uF(u) > 0$, $F'(u) \geq 0$ for $u \neq 0$, and

$$\int_{-\epsilon}^{\infty} \frac{du}{F(u)} < \infty, \quad \int_{-\infty}^{-\epsilon} \frac{du}{F(u)} < \infty, \quad \text{for any } \epsilon > 0.$$

We consider two kinds of boundary conditions:

$$(2) \quad \frac{\partial u(x, t)}{\partial N} + \mu(x, t)u(x, t) = 0, \quad (x, t) \in \partial\Omega \times [0, \infty),$$

where N is the unit exterior normal vector to $\partial\Omega$ and μ is a nonnegative continuous function on $\partial\Omega \times [0, \infty)$, and

$$(3) \quad u(x, t) = 0 \quad (x, t) \in \partial\Omega \times [0, \infty).$$

Our objective is to present conditions which imply that every (classical) solution $u(x, t)$ of the problem (1), (2) (or (1), (3)) is oscillatory in $\Omega \times [0, \infty)$.

DEFINITION. The (classical) solution $u(x, t)$ of the problem (1), (2) (or (1), (3)) is called oscillatory in $G = \Omega \times [0, \infty)$, if $u(x, t)$ has zero in $\Omega \times [t_0, \infty)$ for each $t_0 > 0$.

2. Oscillation for the problem (1), (2)

THEOREM 1. *Let (C_1) – (C_5) hold and*

$$(4) \quad \sigma(t) \leq t, \quad \sigma'(t) > 0.$$

If there exists a function $\rho \in C^2([0, \infty); [0, \infty))$ such that

$$(5) \quad \int_{t_0}^{\infty} \rho(s)q(s) ds = \infty \quad \text{for each } t_0 > 0,$$

$$(6) \quad \rho'(t) \geq 0 \quad \text{and } \beta(t) = \left(\frac{\rho'(t)}{\sigma'(t)} \right)' \leq 0 \quad \text{for } t \geq T \geq 0,$$

then every solution $u(x, t)$ of the problem (1), (2) is oscillatory in the domain G .

Proof. Suppose to the contrary that there is a nonoscillatory solution $u(x, t)$ of the problem (1), (2) which has no zero in $\Omega \times [t_0, \infty)$ for some $t_0 \geq 0$. Without loss of generality we may assume that $u(x, t) > 0$ in $\Omega \times [t_0, \infty)$. From condition (C_3) there exists a $t_1 > t_0$ such that $u(x, t) > 0$, $u(x, \sigma(t)) > 0$ and $u(x, \rho_i(t)) > 0$, $i = 1, 2, \dots, m$, in $\Omega \times [t_1, \infty)$.

Integrating (1) with respect to x over the domain Ω , we obtain

$$(7) \quad \begin{aligned} \frac{d^2}{dt^2} \left[\int_{\Omega} u(x, t) dx \right] &= a(t) \int_{\Omega} \Delta u(x, t) dx + \sum_{i=1}^m a_i(t) \int_{\Omega} \Delta u(x, \rho_i(t)) dx \\ &- \int_{\Omega} q(x, t)f(u(x, \sigma(t))) dx, \quad t \geq t_1. \end{aligned}$$

Green's formula and (2) yield

$$(8) \quad \int_{\Omega} \Delta u(x, t) dx = \int_{\partial\Omega} \frac{\partial u}{\partial N}(x, t) dS = - \int_{\partial\Omega} \mu(x, t) u(x, t) dS,$$

$$(9) \quad \int_{\Omega} \Delta u(x, \rho_i(t)) dx = \int_{\partial\Omega} \frac{\partial u}{\partial N}(x, \rho_i(t)) dS \\ = - \int_{\partial\Omega} \mu(x, \rho_i(t)) u(x, \rho_i(t)) dS \leq 0, \quad t \geq t_1, \quad i = 1, 2, \dots, m.$$

Moreover, from (C₄) and Jensen's inequality it follows that

$$(10) \quad \int_{\Omega} q(x, t) f(u(x, \sigma(t))) dx \geq q(t) \int_{\Omega} f(u(x, \sigma(t))) dx \\ \geq |\Omega| q(t) f\left(\frac{1}{|\Omega|} \int_{\Omega} u(x, \sigma(t)) dx\right), \quad t \geq t_1,$$

where $|\Omega| = \int_{\Omega} dx$. Then (7)–(10) imply

$$(11) \quad V''(t) + q(t) f(V(\sigma(t))) \leq 0, \quad t \geq t_1,$$

where $V(t) = \frac{1}{|\Omega|} \int_{\Omega} u(x, t) dx$, $t \geq t_0$. Thus, $V(t)$ is positive solution of the inequality (11). Obviously $V(t) > 0$ and $V''(t) \leq 0$ for $t \geq t_1$. Hence $V'(t)$ is a decreasing function. We claim that $V'(t) > 0$ for $t \geq t_1$. If there exists a $t_2 \geq t_1$ such that $V'(t_2) \leq 0$, then $V'(t) \leq V'(t_2) \leq 0$ for $t \geq t_2$. From (C₂) and (11) it follows that there is a $t_3 > t_2$ such that $V''(t_3) < 0$. Moreover, the inequalities $V'(t) \leq V'(t_3) < V'(t_2) \leq 0$ and

$$V(t) - V(t_3) = \int_{t_3}^t V'(s) ds \leq \int_{t_3}^t V'(t_3) ds < 0, \quad t \geq t_3,$$

imply $\lim_{t \rightarrow \infty} V(t) = -\infty$, which contradicts the fact that $V(t) > 0$ for $t \geq t_1$. By (C₅) and (11), we obtain

$$(12) \quad V''(t) + q(t) F(V(\sigma(t))) \leq 0, \quad t \geq t_1.$$

Multiplying both sides of (12) by $\rho(t)/F(V(\sigma(t)))$ and integrating from t_1 to t , we have

$$\int_{t_1}^t \frac{V''(s)\rho(s)}{F(V(\sigma(s)))} ds + \int_{t_1}^t q(s)\rho(s) ds \leq 0, \quad t \geq t_1,$$

or

$$\begin{aligned} \frac{\rho(t)V'(t)}{F(V(\sigma(t)))} &\leq \frac{\rho(t_1)V'(t_1)}{F(V(\sigma(t_1)))} - \int_{t_1}^t \rho(s)q(s)ds + \int_{t_1}^t \frac{V'(s)\rho'(s)}{F(V(\sigma(s)))}ds \\ &\quad - \int_{t_1}^t \frac{V'(s)\rho(s)F'(V(\sigma(s)))V'(\sigma(s))\sigma'(s)}{[F(V(\sigma(s)))]^2}ds, \quad t \geq t_1. \end{aligned}$$

Further, from (4) and (C₅) we have

$$(13) \quad \frac{\rho(t)V'(t)}{F(V(\sigma(t)))} \leq C_0 - \int_{t_1}^t \rho(s)q(s)ds + \int_{t_1}^t \frac{V'(s)\rho'(s)}{F(V(\sigma(s)))}ds, \quad t \geq t_1,$$

where C_0 is a constant. Since $V'(t)$ is decreasing, from (13) and (4) it follows that

$$\begin{aligned} (14) \quad \frac{\rho(t)V'(t)}{F(V(\sigma(t)))} &\leq C_0 - \int_{t_1}^t \rho(s)q(s)ds + \int_{t_1}^t \frac{V'(\sigma(t))\rho'(t)}{F(V(\sigma(t)))}dt \\ &= C_0 - \int_{t_1}^t \rho(s)q(s)ds + \int_{t_1}^t \frac{\rho'(t)}{\sigma'(t)} \frac{d(V(\sigma(t)))}{F(V(\sigma(t)))}dt \\ &= C_0 - \int_{t_1}^t \rho(s)q(s)ds - \frac{\rho'(t)}{\sigma'(t)}G(t) + \frac{\rho'(t_1)}{\sigma'(t_1)}G(t_1) + \int_{t_1}^t \beta(s)G(s)ds, \quad t \geq t_1, \end{aligned}$$

where $G(t) = \int_{V(\sigma(t))}^{\infty} \frac{du}{F(u)} > 0$. Hence, using (C₅), (6) and (14), we obtain

$$\frac{\rho(t)V'(t)}{F(V(\sigma(t)))} \leq C_0 - \int_{t_1}^t \rho(s)q(s)ds + C_1, \quad t \geq t_1,$$

where C_1 is a constant, too. So, by (5), we have

$$\lim_{t \rightarrow \infty} \frac{\rho(t)V'(t)}{F(V(\sigma(t)))} = -\infty.$$

From this it follows that there exists a $t_2 \geq t_1$ such that $V'(t) < 0$ for $t \geq t_2$, which leads to a contradiction.

If $u(x, t) < 0$ for $(x, t) \in \Omega \times [t_0, \infty)$, then $-u(x, t)$ is a positive solution of the problem (1), (2), and the proof is similar.

THEOREM 2. *If (C₁)–(C₅), (4) and (5) hold and*

$$(6') \quad \rho'(t) \geq 0, \quad \int_{t_0}^{\infty} \left| \left(\frac{\rho'(s)}{\sigma'(s)} \right)' \right| ds < \infty \quad \text{for each } t_0 > 0,$$

then every solution $u(x, t)$ of the problem (1), (2) oscillates in G .

P r o o f. Let $u(x, t)$ be a nonoscillatory solution of the problem (1), (2). Without loss of generality, we can assume that $u(x, t) > 0$ in $\Omega \times [t_0, \infty)$ for

some $t_0 > 0$. As in the proof of Theorem 1, we can have that (7)–(13) hold and

$$(14) \quad \frac{\rho(t)V'(t)}{F(V(\sigma(t)))} \leq C_0 - \int_{t_1}^t \rho(s)q(s) \, ds - \frac{\rho'(t)}{\sigma'(t)}G(t) \\ + \frac{\rho'(t_1)}{\sigma'(t_1)}G(t_1) + \int_{t_1}^t \beta(t)G(t) \, dt, \quad t \geq t_1.$$

Now, by the condition (C_5) , there exists a constant $M > 0$ such that $0 < G(t) \leq M$ for any $t \geq t_0$, and from $(6')$ we have

$$\left| \int_{t_1}^t \beta(s)G(s) \, ds \right| \leq M \int_{t_1}^t |\beta(s)| \, ds < \infty, \quad t \geq t_1.$$

Thus, there is a constant $K > 0$ such that

$$(15) \quad \frac{\rho(t)V'(t)}{F(V(\sigma(t)))} \leq K - \int_{t_1}^t \rho(s)q(s) \, ds, \quad t \geq t_1.$$

Hence, from this and (5) it follows that

$$\lim_{t \rightarrow \infty} \frac{\rho(t)V'(t)}{F(V(\sigma(t)))} = -\infty,$$

which contradicts $V'(t) > 0$ for $t \geq t_1$.

THEOREM 3. *If (C_1) – (C_5) and (4) hold and*

$$(16) \quad \int_{t_0}^{\infty} \sigma'(s) \left(\int_s^{\infty} q(\eta) \, d\eta \right) ds = \infty \quad \text{for each } t_0 > 0,$$

then every solution $u(x, t)$ of the problem (1), (2) oscillates in G .

P r o o f. Let $u(x, t)$ be a positive solution of the problem (1), (2) and $u(x, t) > 0$ for $(x, t) \in \Omega \times [t_0, \infty)$ with $t_0 \geq 0$. As in the proof of Theorem 1, we can get (12). Then for $t \geq t_1$ we have the inequality

$$\int_{t_1}^t \frac{V''(s)}{F(V(\sigma(s)))} \, ds + \int_{t_1}^t q(s) \, ds \leq 0$$

leading to

$$\frac{V'(t)}{F(V(\sigma(t)))} - \frac{V'(t_1)}{F(V(\sigma(t_1)))} \\ + \int_{t_1}^t \frac{V'(s)V'(\sigma(s))\sigma'(s)F'(V(\sigma(s)))}{[F(V(\sigma(s)))]^2} \, ds + \int_{t_1}^t q(s) \, ds \leq 0.$$

From this and conditions (C_5) , (4) it follows that

$$(17) \quad \frac{V'(t)}{F(V(\sigma(t)))} \leq \frac{V'(t_1)}{F(V(\sigma(t_1)))} - \int_{t_1}^t q(s) ds, \quad t \geq t_1.$$

Since $V'(t) > 0$ for $t \geq t_1$ (see the proof of Theorem 1), we have $0 \leq \frac{V'(t)}{F(V(\sigma(t)))} - \int_t^\infty q(s) ds, t \geq t_1$. Hence

$$\int_t^\infty q(s) ds \leq \frac{V'(t)}{F(V(\sigma(t)))}, \quad t \geq t_1.$$

Then, from $t \geq \sigma(t)$ and $V''(t) \leq 0$ for $t \geq t_1$, we obtain

$$(17') \quad \int_t^\infty q(s) ds \leq \frac{V'(\sigma(t))}{F(V(\sigma(t)))}, \quad t \geq t_1.$$

Multiplying both sides of (17') by $\sigma'(t) > 0$ and integrating from t_1 to t , we get

$$\int_{t_1}^t \sigma'(s) \left(\int_s^\infty q(\eta) d\eta \right) ds \leq \int_{t_1}^t \frac{V'(\sigma(t))\sigma'(t)}{F(V(\sigma(t)))} dt = \int_{V(\sigma(t_1))}^{V(\sigma(t))} \frac{du}{F(u)} < \infty,$$

which contradicts (16).

3. Oscillation for the problem (1), (3)

In the domain Ω we consider the following Dirichlet problem:

$$(18) \quad \begin{cases} \Delta\omega(x, t) + \alpha\omega(x, t) = 0, & x \in \Omega, \\ \omega(x, t) = 0, & x \in \partial\Omega, \end{cases}$$

where α is a constant. It is well known [6], [7] that the least eigenvalue α_0 of the problem (18) is positive and the corresponding eigenfunction $\Phi(x)$ is positive on Ω .

With each solution $u(x, t)$ of the problem (1), (3) we associate a function V defined by

$$(19) \quad V(t) = \left(\int_{\Omega} \Phi(x) dx \right)^{-1} \int_{\Omega} u(x, t) \Phi(x) dx, \quad t \geq 0.$$

THEOREM 4. *If all conditions of Theorem 1 hold, then every solution of (1), (3) is oscillatory in G .*

P r o o f. Let $u(x, t)$ be a positive solution of (1), (3) in $\Omega \times [t_0, \infty)$ for some $t_0 \geq 0$. By condition (C_3) , there exists a $t_1 \geq t_0$ such that

$$u(x, \sigma(t)) > 0, \quad u(x, \rho_i(t)) > 0, \quad i = 1, 2, \dots, m,$$

for any $t \geq t_1$. Multiplying both sides of (1) by the eigenfunction $\Phi(x) > 0$ and integrating with respect to x over the domain Ω , we have

$$(20) \quad \frac{d^2}{dt^2} \left[\int_{\Omega} u(x, t) \Phi(x) dx \right] \leq a(t) \int_{\Omega} \Delta u(x, t) \Phi(x) dx \\ + \sum_{i=1}^m a_i(t) \int_{\Omega} \Delta u(x, \rho_i(t)) \Phi(x) dx - q(t) \int_{\Omega} f(u(x, \sigma(t))) \Phi(x) dx, \quad t \geq t_1.$$

From the divergence theorem it follows that

$$(21) \quad \int_{\Omega} \Delta u(x, t) \Phi(x) dx = \int_{\Omega} u(x, t) \Delta \Phi(x) dx \\ = -\alpha_0 \int_{\Omega} u(x, t) \Phi(x) dx, \quad t \geq t_1,$$

$$(22) \quad \int_{\Omega} \Delta u(x, \rho_i(t)) \Phi(x) dx = \int_{\Omega} u(x, \rho_i(t)) \Delta \Phi(x) dx \\ = -\alpha_0 \int_{\Omega} u(x, \rho_i(t)) \Phi(x) dx, \quad t \geq t_1, \quad i = 1, 2, \dots, m,$$

where α_0 is the least eigenvalue of the problem (18). From the condition (C₄) and Jensen's inequality it follows that

$$(23) \quad \int_{\Omega} f(u(x, \sigma(t))) \Phi(x) dx \\ \geq \left(\int_{\Omega} \Phi(x) dx \right)^{-1} f \left(\frac{\int_{\Omega} u(x, \sigma(t)) \Phi(x) dx}{\int_{\Omega} \Phi(x) dx} \right), \quad t \geq t_1.$$

Using (21)-(23) and (19), from (20) we obtain for $t \geq t_1$

$$(24) \quad V''(t) + \alpha_0 a(t) V(t) + a_0 \sum_{i=1}^m a_i(t) V(\rho_i(t)) + q(t) f(V(\sigma(t))) \leq 0.$$

Since $V(t) > 0$, $V(\rho_i(t)) > 0$ and $V(\sigma(t)) > 0$ for any $t \geq t_1$ and all i , we have the inequality

$$(25) \quad V''(t) + q(t) f(V(\sigma(t))) \leq 0, \quad t \geq t_1.$$

The remains are similar to the proof of Theorem 1. We have also the following results.

THEOREM 5. *If all conditions of Theorem 2 hold, then every solution of the problem (1), (3) is oscillatory in G .*

THEOREM 6. *If all conditions of Theorem 3 hold, then every solution of the problem (1), (3) is oscillatory in G .*

EXAMPLE. Consider the problem

$$(26) \quad u_{tt} = 3u_{xx}(x, t) + u_{xx}(x, t - \pi) - u(x, t - \pi) \exp\{[u(x, t - \pi)]^2 - \sin^2 t \cos^2 x\}, (x, t) \in (0, \pi) \times [0, \infty),$$

$$(27) \quad u_x(0, t) = u_x(\pi, t) = 0, \quad t \geq 0.$$

Here $a(t) = 3$, $a_1(t) = 1$, $m = 1$, $\Omega = (0, \pi)$, $n = 1$, $f(u) = u \exp(u^2)$, $\sigma(t) = \rho_1(t) = t - \pi$, $q(x, t) = \exp(-\sin^2 t \cos^2 x)$ with $q(t) = \min_{x \in (0, \pi)} q(x, t) = \exp(-\sin^2 t)$. Choose $\rho(t) = t$, then

$$\rho'(t) = 1 > 0, \quad \beta(t) = \left(\frac{\rho'(t)}{\sigma'(t)} \right)' = 0,$$

$$\int_{t_0}^{\infty} \rho(s)q(s) ds = \int_{t_0}^{\infty} s \exp(-\sin^2 s) ds \geq \frac{1}{e} \int_{t_0}^{\infty} s ds = \infty, \quad t_0 = 0.$$

It is easy to check that all the conditions of Theorem 1 are satisfied. Therefore, every solution of the problem (26), (27) oscillates in $G = (0, \pi) \times [0, \infty)$. In fact, $u(x, t) = \sin t \cos x$ is such a solution.

References

- [1] D. Georgiou, K. Kreith, *Functional characteristic initial value problems*, J. Math. Anal. Appl., 107 (1985), 414-424.
- [2] D.P. Mishev, D.D. Bainov, *Oscillation properties of the solutions of a class of hyperbolic equations of neutral type*, Funkcial. Ekvac., 29 (1986), 213-218.
- [3] B.T. Cui, *Oscillation theorems of hyperbolic equations with deviating arguments*, Acta Sci. Math., 58 (1993), 155-164.
- [4] B.S. Lalli, Y.H. Yu, B.T. Cui, *Oscillations of certain partial differential equations with deviating arguments*, Bull. Austral. Math. Soc., 46 (1992), 373-380.
- [5] B.S. Lalli, Y.H. Yu, B.T. Cui, *Oscillation of hyperbolic equations with functional arguments*, Appl. Math. Comput., 53 (1993), 97-110.
- [6] B.T. Cui, *Oscillation theorems of nonlinear parabolic equations of neutral type*, Math. J. Toyama Univ., 14 (1991), 113-123.
- [7] D.D. Bainov, B.T. Cui, *Oscillation properties for damped hyperbolic equations with deviating arguments* in "Proceedings of the Third International Colloquium on Differential Equations". International Science Publishers, (1993), 23-30 (Netherlands).

DEPARTMENT OF MATHEMATICS
BINZHOU NORMAL COLLEGE
SHANDONG 256604
PEOPLE'S REPUBLIC OF CHINA

Received February 22, 1994.