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OSCILLATION PROPERTIES OF THE SOLUTIONS 
OF HYPERBOLIC EQUATIONS 

WITH DEVIATING ARGUMENTS 

1. Introduction 
Nowadays one observes an expanding interest toward the study of initial 

value problems and oscillations for partial differential equations with devi-
ating arguments (cf. [2]-[5]). But only a few papers have been published so 
far considering the oscillatory properties. The purpose of this paper is to 
obtain the sufficient conditions for the oscillation of solutions of following 
hyperbolic equation with deviating arguments 

where i) is a bounded domain in Rn, n > 1, with piecewise smooth boundary 
df i , and A is the Laplacian in Rn. 

Suppose that the following conditions hold: 
(Ci ) a , a , € C([0,oo) ; [0 ,oo)) , t = 1 , 2 , . . . , m ; 
(C2) q G C(G;[0,00)) and q(t) = m i n x e n q(x, t) is not identically zero 

on [<0)Oc) for some <0 > 0; 
(C 3) Pi, ere C"([0,00); R), l i m ^ o o o(t) = l i m ^ « , />,(/) = 00, 

i = 1,2 , . . . , m ; 
(C4) / € C{R, R) is convex in (0,00) and uf(u) > 0 for u ^ 0; 
(C 5) there exists a function F € C(R;R) such that | / ( « ) | > |F (u) | , 
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( 1 ) 

- q(x, t ) f ( u ( x , a(t)), ( x , t ) € il X [0,00) = G, 
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uF(u)> 0, F'{u) > 0 for u / 0, and 
00 j — OO j 
r au (• au 
1 -pr—- < OO, / — — < OO, for any £ > 0. 

J Flu) J F(u) e —e 

We consider two kinds of boundary conditions: 

du(x t) 
(2 ) — + n ( x , t ) u ( x , t ) = 0, ( i , i ) e a f i x [ 0 , o o ) , 

where N is the unit exterior normal vector to dSl and p is a nonnegative 
continuous function on dSl x [0,oo), and 

(3) u{x,t) = 0 {x,t) G dSl x [0,oo). 

Our objective is to present conditions which imply that every (classical) 
solution u(x, t) of the problem (1), (2) (or (1), (3 ) ) is oscillatory in f i x [Ooo). 

DEFINITION. The (classical) solution u(x,t) of the problem (1), (2 ) (or 
( ] ) , (3 ) ) is called oscillatory in G = i ) x [0 , oo), if u(x, t) has zero in i i X [<o, oo) 
for each io > 0. 

2. Oscillation for the problem (1) , (2 ) 

THEOREM 1. Let ( C I ) - ( C 5 ) hold and 

(4) <r(0 < t, o\t) > 0. 

If there exists a function p € C 2 ( [0 ,oo ) ; [0,oo)) such that 

OO 
(5) J* p(s)q(s)ds = oo for each to > 0, 

io 

(6) p'(t) > 0 and (3(t) = ( ^ y ) < 0 fort>T> 0, 

then every solution u(x,t) of the problem (1), (2) is oscillatory in the do-

main G. 

P r o o f . Suppose to the contrary that there is a nonoscillatory solution 
u(x,t) of the problem (1), (2 ) which has no zero in SI x [¿o,oo) for some 
to > 0. Without loss of genearality we may assume that u(x,t) > 0 in 
f i x [to, oo). From condition ( C 3 ) there exists a t\ > 10 such that u(x, t) > 0, 
u(x, &(t)) > 0 and u(x,Pi{t)) > 0, 1 = 1 ,2 , . . . , m, in ft x [ i j , 00). 

Integrating (1) with respect to x over the domain SI, we obtain 

d? r 1 m 

(7) J u(x,t)dx = a(t) J Au(x,t)dx + ^Tai(t) J Au(x,pi(t))dx 

q n 1=1 Q 

- J q(x,t)f(u(x,a(t)))dx, t>ti. 
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Green's formula and (2) yield 

/
,r du r 

Au(x,t)dx = J —(x,t)dS=- J n(x,t)u(x,t)dS, 
n an an 

(9) J Au(x,p,(t))dx = J ^u(x,Pi(t))dS 
u an 

= - J fi(x,pi(t))u(x,pi(t)) dS < 0, t > ¿i, i = 1 , 2 , . . . , m. 
an 

Moreover, from (C4) and Jensen's inequality it follows that 

(10) J q(x,t)f(u(x,cr(t)))dx>q(t) f f(u(x, <r(<))) dx 
q n 

> f u(x,<T(t))dx^, t>tU 

where |Q| = J dx. Then (7)-(10) imply n 

(11) V"(t) + g(t)/(V(a(t)))<0, t>tu 

where V(i) = joj /q t) dx, t > to- Thus, F ( i ) is positive solution of the 
inequality (11). Obviously V(t) > 0 and V"(t) < 0 for t > h. Hence V'(t) 
is a decreasing function. We claim that V"(i) > 0 for t > i j . If there exists a t2 > <1 such that V'(t2) < 0, then V'(t) < V'(t2) < 0 for t > t2. From (C2) 
and (11) it follows that there is a <3 > t2 such that V ' f a ) < 0. Moreover, 
the inequalities V'(t) < ^'(<3) < V'{t2) < 0 and 

t t V(t)-V(t3)= fV(s)ds< fV(t3)ds< 0, t>t3, 
13 i3 

imply limi—oo V(t) — - 0 0 , which contradicts the fact that V(t) > 0 for 
t > h - By (C5) and ( 1 1 ) , we obtain 

(12) V"(t) + q(t)F(V(v(t)))< 0, t>h. 
Multiplying both sides of (12) by p(t)/F(V(cr(t))) and integrating from t\ 
to t, we have 

J F(v(lm d t  + frt)p(t)dt<0, t>tu 
<1 



64 B . C u i 

Jm^rn £ F(vwum ~ J J TWWM 'l '1 

* V'(s)p(s)F'(V(a(s)))V'(a(s))g'(s) 

- J i m ^ w d 5 ' 

Further, from (4) and (C5) we have 
' { T/// 

(13) PW(0 
F(V(<r(t))) J ^ v - , - . j F(V>(s))) 

M '1 
<C0- fp(s)q(s)d3+ f ds, t > t u 

where Co is a constant. Since V"(<) is decreasing, from (13) and (4) it follows 
that 

'1 '1 

= C0- J p(s)q(s)ds+ J — dt 

'1 h 

= Co- J p(s)q(s)ds-^G(t)+^-G(tl)+ J (3(s)G(s)ds, t > t u 

'1 '1 

where G(t) = > 0. Hence, using (C5), (6) and (14), we obtain 

/ f f ^ ^ C o - f p(s)g(s)ds + C1, t > t u 

where C\ is a constant, too. So, by (5), we have 
p(t)V'(t) 

urn _ — . . . . = —00. 
1 - 0 0 F ( V ( < 7 ( i ) ) ) 

From this it follows that there exists a ¿2 > <1 such that V'(t) < 0 for t > i 2 , 
which leads to a contradiction. 

If u(x,t) < 0 for (x,<) € il x [io,oo), then — u(x,t) is a positive solution 
of the problem (1), (2), and the proof is similar. 

T h e o r e m 2. / / ( C i ) - ( C 5 ) , ( 4 ) and ( 5 ) hold and 

(6') p'(t) > 0 , J I ds < 00 for each t0 > 0, 
to 

then every solution u(x,t) of the problem (1), (2) oscillates in G. 

P r o o f . Let u(x,t) be a nonoscillatory solution of the problem (1), (2). 
Without loss of generality, we can assume that u(x,t) > 0 in i) x [ioi°°) for 
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some to > 0. As in the proof of Theorem 1, we can have that (7)-(13) hold 
and 

Now, by the condition (C5), there exists a constant M > 0 such that 
0 < G(t) < M for any t > t0, and from (6') we have 

t < 

J 0(s)G(s)ds < M J |/3(5)| ds < 00, t>h. 
11 h 

Thus, there is a constant K > 0 such that 

<i5> s few 
Hence, from this and (5) it follows that 

,. PWC) 

which contradicts V'(t) > 0 for t > t\. 

T H E O R E M 3. / / ( C i ) - ( C 5 ) and (4) hold and 
00 00 

(16) J J liv) drj^ ds = 00 for each t0 > 0, 
to s 

then every solution u(x,t) of the problem (1) , (2) oscillates in G. 

P r o o f . Let u(x,t) be a positive solution of the problem (1), (2) and 
u(x, t) > 0 for (x, t) 6 Q x [io, 00) with to > 0. As in the proof of Theorem 1, 
we can get (12). Then for t > t\ we have the inequality 

r V"(s) r 
i w m » d s + ^ ^ '1 '1 

leading to 
V'{t) V'{h) 

+ J i n v ( ° ( m 2 + J q { s ) d s ^ ° -
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From this and conditions (C5) , (4) it follows tha t 

M 

Since V'(t) 

> 0 for t ~> 11 (see the proof of Theorem 1), we have 

0 < ~ S r ds> 1 ^ Hence 
7 V'(t) 

f « s ) d s i w U ï ï y • 

Then, from t > a(t) and V"(t) < 0 for < > i j , we obtain 

( 1 7 ' > r 

Multiplying both sides of (17') by a'(t) > 0 and integrating f rom t\ to t, we 
get 

V(°(t)) du_ 
J F(V(a(t))) - - J F(u) '1 » '1 

which contradicts (16). 

f 00 f A r n t . \ \ n . \ " { < * { ' 

I M I s I - m ^ m d l - I — < 

3. Osc i l la t ion for t h e p r o b l e m ( 1 ) , ( 3 ) 
In the domain SI we consider the following Dirichlet problem: 

f A u ( i , t) + acj(x, t) = 0, x e SI, 
1 ; \ w ( ® , 0 = o, x e d n , 

where o is a constant . It is well known [6], [7] tha t the least eigenvalue a 0 

of the problem (18) is positive and the corresponding eigenfunction $ ( z ) is 
positive on SI. 

With each solution u(x, t) of the problem (1), (3) we associate a function 
V defined by 

(19) V(t)= ( f $(x)dx) 1 f u(z,t)*(x)dx, t > 0. 
n n 

THEOREM 4. If all conditions of Theorem 1 hold, then every solution of 
(1), (3) is oscillatory in G. 

P r o o f . Let u(x,t) be a positive solution of (1), (3) in SI x [¿o,oo) for 
some to > 0. By condition (C3) , there exists a <1 > <0 such tha t 

u(x,cr(t)) > 0, u (x ,p i ( t ) ) > 0, i = l , 2 , . . . , m , 
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for any t > tj. Multiplying both sides of (1) by the eigenfunction > 0 
and integrating with respect to x over the domain il, we have 

j2 , 
(20) f u(x,t)$(x)dxj < a(t) J Au(x,t)$(x)dx 

n n 
m 

+ f Au(x,pi(t))$(x)dx - q(t) f f(u(x,a(t)))$(x) dx, t>tx. 
i=i n n 
From the divergence theorem it follows that 

(21) J Au{x,t)$(x)dx = J u(x,t)A$(x)dx 
n o 

= —«o J* u(x, t)$(x) dx, t>t\, 
n 

(22) f Au(x,pi(t))$(x)dx= f u(x,pi(t))A$(x)dx 
n n 

=-a0 J u(x,pi(t))$(x)dx, t > i = 1,2, . . . , m , 
n 

where »o is the least eigenvalue of the problem (18). From the condition 
(C4) and Jensen's inequality it follows that 

(23) f f(u(x,ff(t)))*(z)dz 

> - ( f * ^ r ' ( L y ) ' 
Using (21)-(23) and (19), from (20) we obtain for t > ^ 

m 

(24) V"{t) + a0a(t)V(t) + a0 £ «i(0^(A>i(0) + q(t)f(V(cr(t))) < 0. 
1=1 

Since V{t) > 0, V(p,-(i)) > 0 and V(a(t)) > 0 for any t > t} and all i, 
we have the inequality 

(25) V"(t) + q(t)f(V(cr(t)))<0, t>tx. 
The remains are similar to the proof of Theorem 1. We have also the fol-
lowing results. 

THEOREM 5. If all conditions of Theorem 2 hold, then every solution of 
the problem (1), (3) is oscillatory in G. 

THEOREM 6. If all conditions of Theorem 3 hold, then every solution of 
the problem (1), (3) is oscillatory in G. 
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E X A M P L E . Consider the problem 

(26) utt = 3uXI(x, t) + uXI(x, t - 7r) 

-u(x,t - 7r) exp{[u(x, i - 7r )]2 - sin21 cos2 i } , ( x , < ) e ( 0 , 7 r ) x [ 0 , o o ) , 
(27) uT(0, t) = ur(7r, <) = 0, t > 0. 

Here a(t) - 3, ai(<) = 1, m = 1, Q = (0,7r), n = 1, f(u) - uexp(u 2 ) , a(t) = 
Pi(t) — t - 7R, q(x, t) = e x p ( - sin2 t cos2 x) with q(t) = minx 6(0 i T) q(x, t) = 
exp(— sin2 <)• Choose p(t) = t, then 

It is easy to check that all the conditions of Theorem 1 are satisfied. There-
fore, every solution of the problem (26), (27) oscillates in G = (0, IT) X [0, oo). 
In fact, u(x, t) = sin t cos x is such a solution. 
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