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OSCILLATION PROPERTIES OF THE SOLUTIONS
OF HYPERBOLIC EQUATIONS
WITH DEVIATING ARGUMENTS

1. Introduction

Nowadays one observes an expanding interest toward the study of initial
value problems and oscillations for partial differential equations with devi-
ating arguments (cf. [2]-[5]). But only a few papers have been published so
far considering the oscillatory properties. The purpose of this paper is to
obtain the sufficient conditions for the oscillation of solutions of following
hyperbolic equation with deviating arguments

2 m

(1) ‘9—'% = a(t)Au(z, 1) + ) ai(t)Au(z, pi(t))

i=1

—gq(z,t) f(u(z,0(t)), (z,t) €N x[0,00)=G,

where 2 is a bounded domain in R*, n > 1, with piecewise smooth boundary
09, and A is the Laplacian in R™.

Suppose that the following conditions hold:

(C1) a,a; € C([0,00);[0,00)),2 = 1,2,...,m;

(C,) ¢ € C(G;[0,00)) and ¢(t) = min_ 7 g(z,t) is not identically zero
on [tg,00) for some tg > 0;

(C3) pi,o € C([0,00); R), lim¢ .o 0(t) = lim; o0 pi(t) = 00,
1=1,2,...,m;

(C4) f € C(R,R) is convex in (0,00) and uf(u) > 0 for u # 0;

(Cs) there exists a function F € C(R;R) such that |f(u)| > |F(u)],
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uF(u) >0, F'(u) > 0 for u # 0, and

T d T d
: f 2 < oo, foranye>0.

J Fw) = J Fw
We consider two kinds of boundary conditions:
du(z,t)
2
where N is the unit exterior normal vector to 02 and p is a nonnegative
continuous function on 9% x [0, ), and
(3) u(z,t)=0 (z,t) € 90N x[0,00).

Our objective is to present conditions which imply that every (classical)
solution u(z,t) of the problem (1), (2) (or (1), (3)) is oscillatory in Q x [0c0).

+ p(z,t)u(z,t) =0, (z,t)€ 9N x[0,00),

DEeFiniTION. The (classical) solution u(z,t) of the problem (1), (2) (or
(1),(3)) is called oscillatory in G = 2x[0, 00), if u(z, t) has zero in ¥ x[tp, 00)
for each {5 > 0.

2. Oscillation for the problem (1), (2)

THeOREM 1. Let (C1)-(Cs) hold and

(4) a(t)<t, o'(t)>0.

If there ezists a function p € C*([0,00);[0,00)) such that

(5) fp(s)q(s) ds = 0o for each tg > 0,

©  Aw20 wdsn=(50) <o prixT20

then every solution u(z,t) of the problem (1), (2) is oscillatory in the do-
main G.

Proof. Suppose to the contrary that there is a nonoscillatory solution
u(z,t) of the problem (1), (2) which has no zero in Q x [to, 00) for some
to > 0. Without loss of genearality we may assume that u(z,t) > 0 in
X [tg, 00). From condition (Cj) there exists a t; > tg such that u(z,t) > 0,
u(z,o(t)) > 0 and u(z,pi(t)) > 0,i=1,2,...,m,in X [t;,00).

Integrating (1) with respect to z over the domain 2, we obtain

2 m
(7) 57[ | u(:c,t)dz] =a(t)anu(z,t)dz+;a,-(t)ﬂfAu(z,p,-(t))dz

Q

- [ a@.0)f(u(z,0(t))dz, t> 1.
Q
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Green’s formula and (2) yield

(8) [ Au(e,t)de= %(z,t)d5=— J wz,t)u(z,1)ds,
0 an an

©) [ Auzp)de= [ Thulz,pi(0)ds
Q an

=~ [ u(z,pi(t))u(z, pi(1))dS <0, t2t,i=1,2,.
N

Moreover, from (C4) and Jensen’s inequality it follows that

(10) [ a(z,1)f(u(z,0(t))) dz > q(1) f f(u(z,0(2))) dz

1]

> mlq(t)f(lQl J wz,o0)dz), 120,
where |Q| = f dz. Then (7)-(10) imply
Q

(11) V) + g f(V(e() <0, t>t,

where V(t) = ﬁ Jqu(z,t)dz, t > tg. Thus, V(2) is positive solution of the
inequality (11). Obviously V(t) > 0 and V"(t) < 0 for t > t;. Hence V'(2)
is a decreasing function. We claim that V'(t) > 0 for t > t;. If there exists a
t >ty such that V'(t3) <0, then V'(¢) < V/(t2) <0 for ¢t > t;. From (C;)
and (11) it follows that there is a t3 > t; such that V"(t3) < 0. Moreover,
the inequalities V'() < V'(t3) < V'(t2) < 0 and

Vit)-V fv )ds < thg)ds<0 t> ts,
imply lim;_., V(t) = —oo, which contradicts the fact that V(¢) > 0 for
t > t;. By (Cs) and (11), we obtain
(12) Vi) + a0 F(V(e(1) <0, t2t.

Multiplying both sides of (12) by p(t)/F(V(o(t))) and integrating from ¢,
to t, we have

f F‘Z;’/((t)/zg) dt + hf q()p(t)dt <0, t>t,
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or

POV'(H) o (V') ‘vmmss

FVem) < Fvemy - J P01 ] vy

L VI()o(8) (Y (o()V'(0())0'(s)
- F(V(o())P o fzh
Further, from (4) and (Cs) we have
pPOV'(1) I N B A OO

1 oy <= J e s [ gyt 20

where Cy is a constant. Since V'(t) is decreasing, from (13) and (4) it follows
that

gy LOVE o fp(s)q(s)ds+ f‘ V{e)p(t) ,

FV(e@) = ° " ] FVD) *
_ : p'(t) d(V(a(1)))
_%'JMW““+f'u(wwn“
= Co— fp(s)q(s)ds—ﬁl—(—QG(t)+p(I)G(t1)+ fﬂ ds, t>t,

; 70 " o)
where G(t) = f;?a(t)) 7oy > 0- Hence, using (Cs), (6) and (14), we obtain

pOV'(1) :
Pty SC [ pedsr G2

where C, is a constant, too. So, by (5), we have
. pMV'(1)
A PV ) T
From this it follows that there exists a t; > t; such that V'(t) < 0 for t > 5,
which leads to a contradiction.
If u(z,t) < 0 for (z,t) € Q X [to,0), then —u(z,1) is a positive solution
of the problem (1), (2), and the proof is similar.

THEOREM 2. If (C1)-(Cs), (4) and (5) hold and

TI(5)

ds < 0o for each ty > 0,

(6 Pw>0, [

then every solution u(z,t) of the problem (1), (2) oscillates in G.

Proof. Let u(z,t) be a nonoscillatory solution of the problem (1), (2).
Without loss of generality, we can assume that u(z,t) > 0in Q x [t, 00) for
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some to > 0. As in the proof of Theorem 1, we can have that (7)-(13) hold
and

(14) g%%%%s%—gwwmwa—ggao

+”(t‘) fﬁ(t (H)dt, t>1t.

Now, by the condition (Cs), there exists a constant M > 0 such that
0 < G(t) < M for any t > tg, and from (6’) we have

t
’ jﬂ(S)G(S) ds‘ <M f |ﬂ(s)|d3 <00, t>1.
1 0

Thus, there is a constant K > 0 such that

POV _ o
15 —r -~ < K — s)q(s)ds, t> 1.
Hence, from this and (5) it follows that
p(HV'(1)

Im s = — 00,
5 F(V(a (1))
which contradicts V'(¢) > 0 for ¢ > ¢;.
THEOREM 3. If (Cy)~(Cs) and (4) hold and

(16) fa'(s)( fq(n) dn) ds = oo for each ty > 0,

to
then every solution u(z,t) of the problem (1), (2) oscillates in G.
Proof. Let u(z,t) be a positive solution of the problem (1), (2) and

u(z,t) > 0 for (z,t) € QX [tg,00) with to > 0. As in the proof of Theorem 1,
we can get (12). Then for t > t; we have the inequality

f ﬁds-}- fq(s)dsSO

leading to
Vi)  V'(th)
F(V(a(t))) F(V(a(t1)))
P VI(s)V'(0(s)a"()F'(V(a(s)))
i B T O d'*fq Jhs

t



66 B. Cui

From this and conditions (Cs), (4) it follows that
V() V'(t1) '
Vo) < Fiviotay) ~ J 194 12t

Since V'(t) > 0 for t > ¢, (see the proof of Theorem 1), we have

(17)

V'(t)

0< F(V(a'(t))) [ q(s)ds, t > t;. Hence

T V(1)
q(s)ds < ——————, t>1t,.

J dds < Framy 2 h

Then, from t > o(t) and V" (t) < 0 for t > t;, we obtain
T V'(a(t))

(17) g(s)ds < —— 2 > 1.
J )< FyGry 12 h

Multiplying both sides of (17') by ¢’(¢) > 0 and integrating from ¢; to t, we
get

: View'w) , _ T du
hf a'(s )( fq(n)dn)ds< f FV o) dt_V(a(fg))m < oo,

which contradicts (16).

3. Oscillation for the problem (1), (3)
In the domain 2 we consider the following Dirichlet problem:
(18) Aw(z,t)+ aw(z,t) =0, z€Q,
w(z,t) =0, z € 09,
where « is a constant. It is well known [6], [7] that the least eigenvalue ap
of the problem (18) is positive and the corresponding eigenfunction ®(z) is
positive on .

With each solution u(z,t) of the problem (1), (3) we associate a function
V defined by

-1
(19) V(t) = ( i q»(z)dz) [ u(z,0)®(z)dz, t20.
Q Q
THEOREM 4. If all conditions of Theorem 1 hold, then every solution of
(1), (3) is oscillatory in G.

Proof. Let u(z,t) be a positive solution of (1), (3) in © X [tg,00) for
some to > 0. By condition (Cj), there exists a t; > ¢y such that

u(z,o(t)) >0, u(z,pi(t))>0, i=12,....m
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for any t > t;. Multiplying both sides of (1) by the eigenfunction ®(z) > 0
and integrating with respect to z over the domain {2, we have
d2

(20) E?[ [ u(z,t)@(z)dx] <a(t) [ Au(z,t)®(z)dz
Q Q

+3 ai(t) [ Au(z,pi(t)®(z)dz - g(t) [ f(u(z,0(1)))®(z)dz, t> 1.
=1 Q Q

From the divergence theorem it follows that

(21) fAu(:z:,t)@(:z:)d:c: fu(z,t)Aé(z)d:r
Q Q

=—ao [ u(z,t)®(z)dz, t>1,
2

(22) [ Au(z,pi(1)®(z)dz = [ u(z,pi(t))A%(z)de
2

Q

= —qp f u(z, pi(1))®(z)dz, t>t;,:1=12,...,m,
Q
where ag is the least eigenvalue of the problem (18). From the condition
(C4) and Jensen’s inequality it follows that

(23) [ f(u(z,0(t))®(z) dz
Q

z(nfﬁz)dz) (f“ fq,(t);ii) ) > 1.

Using (21)-(23) and (19), from (20) we obtain for ¢t > ¢;

(24) V(1) + c0a(t)V (1) + ao Z a()V (pi(1)) + a(1) f(V(a(2))) <

Since V(t) > 0, V(pi(t)) > 0 and V(o(t)) > 0 for any t > t; and all 4,
we have the inequality
(25) Vi) +q()f(V(a(1))) <0, t2>1t.
The remains are similar to the proof of Theorem 1. We have also the fol-
lowing results.

THEOREM 5. If all conditions of Theorem 2 hold, then every solution of
the problem (1), (3) is oscillatory in G.

THEOREM 6. If all conditions of Theorem 3 hold, then every solution of
the problem (1), (3) is oscillatory in G.
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ExaMPLE. Consider the problem

(26)

(27)

g = Juzr(z,t) + uze(z,t —7)
—u(z,t — m)exp{[u(z,t — 7)}> — sin® tcos® z},(z,t) € (0,7) x [0, 00),
ur(0,t) = u (m,t) =0, t>0.

Here a(t) = 3,a:(t)=1,m=1,Q = (0,7),n = 1, f(u) = uexp(u?), o(t) =
pi(t) =t — m, g(z,t) = exp(—sin® t cos® ) with ¢(t) = Minze(o,n q(z,t) =
exp(—sin®t). Choose p(t) = t, then

It is

fore,

plt)y=1>0, B)= (%) =0,

oo}

o0 ) 1 o0
f p(s)q(s)ds = f sexp(—sin® s)ds > - f sds =00, th=0.
to to to
easy to check that all the conditions of Theorem 1 are satisfied. There-

every solution of the problem (26), (27) oscillates in G' = (0,7) %[0, o).

In fact, u{z,t) = sin tcos z is such a solution.

(7]
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