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THE CONVERGENCE OF SOME SEQUENCES
CONNECTED TO HADAMARD’S INEQUALITY

1. Introduction
Let f : I — R be a convex mapping on the interval of real numbers
o o
I, and a,b,€ | with @ < b (I is the interior of I). The following inte-
gral inequality is well known in literature as Hadamard’s inequality (see
also [4]),
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For some recent refinements, counterparts and generalizations of this classic
fact see the papers [1-7] where further references are given.

In [6], S. S. Dragomir, J. E. Pecari¢ and J. Sindor proved the following
refinement of (1):
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where n € N and n > 2. Some applications for I'-functions with interesting
connections in Number Theory are also given.
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In paper [5], among other results, the authors proved the following re-
finement of Hadamard’s inequality for weighted means:
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where p; >0(i=1,...,n) with P, =p;+p2+ ...+ pn > 0.
In this paper we will study the convergence of some sequence which can
be associated in a natural way to Hadamard’s inequality.

2. The main results

We will start with the following generalization of the inequality (3) with
a different proof (compare with [5] in which Jensen’s inequality for multiple
integral was used):

THEOREM 1. Let I be an interval with a,b € Io anda< b Iff: 1 —> R
is a convez function on I and ¢;(m) > 0 foralli,me N* (N*={1,2,...})
then we have the inequality
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where Qu ;= q1(m) + ...+ gm(m) >0, m € N*.
To prove this fact we will use the following lemma:

LEMMA 1. Suppose that g : (a,b) — R, a,b € R, a < b, is a conver
function on (a,b). Then there ezxist two sequences (a,),(b,) of real numbers
such that

(5) g(t) = sup(ant + b,) forall t € (a,b).
n>1

Proof of the Lemma. Since g is convex on (a,b), hence
9(t) 2 9(x) + (1 - 2)g}y(z) forall t,z € (a',b).
From that we get
9(t) 2 sup{g(a) + (t - 2)gl(2) 1 2 € (a,)NQ} for all t € (a,b).
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Fix tin (a,b) and let z, € QN(a,bd) such that z,, — t. Since g is continuous
in t we find that

9(t) = lim [g(za) + (¢ = 2a)gy(2a)], 1 € (,0)
because (g, (z5)) is bounded in R. Consequently
(6) 9(t) = sup{g(z) +t - 2)gy(z) iz € (a,6)NQ} for all ¢ € (a,b).

Ifh: N*— QnN(a,b)is one of bijections of the set N* onto QN (a,b), then
we can choose a, = g/, (h(n)) and b, = g(h(n)) — h(n)a,, and by (6) we
obtain (5).

Proof of Theorem. By the above lemma there exist two sequences
(al) and (bf) such that

f(t) = sup(aft +b]), te€(a,b)
n>1

and thus

f(ql(m)$1+-..+qm(m) )2 (Q1(m)$1+ +Qm(m)xm)+b£
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for all n > 1 and z; € (a,b).
Integrating on [a, b]™ we get

j’u.j‘f<‘h(m)1?1 +é‘+q’"(m)2"‘)d11...d3mz ( ,a;b+b,>(b o
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for all n > 1. Passing to the supremum in the above inequality, we deduce
the first inequality in (4).
Now, let observe by the convexity of f that
f<q1(m)z1 to ot gn(mzn) o a(m)f(z1)+. ..+ gm(m)f(zm)
Qm - Om

which gives by integration on [a,b]™ the second part of (4).
The following result for convergence holds:

THEOREM 2. Let f : I C R — R be a convez function on I,a,b, € ;, with
a<bandqg(m)>0 foralliime N*. If @, = 1(m) + ...+ gm(m) > 0
and
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We will prove the following lemma which is interesting by itselt.

LEMMA 2. Let f : [a,b] — R be a Lebesgue integrable function on [a,b]
and assume that it is continuous at “—'ZL" If gi(m) > 0 (i,m € N) are such
the.' Q. > 0 and

g(m)+ ...+ ¢4 (m)

(7) m 0z, =0
then

1
(8) lim

m—oco (b—a)™
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where the above integral is understood in the Lebesque sense.

Proof of Lemma. It is clear that the above integral exists. Choosing
r;=a+t(b—a),i=1,1, we get

Zb_la)m I f(ql(m)zl + 'cjé+ qm(m)zm) dey .. .dzy,
fa,b)™ ™

f f<a+(b_a)ql(m)tl+Q+qm( ) )(“1 lm
o)™ "

Since f is continuous at z¢ = 5:2*'—'3, therefore for each € > 0 there exists ¢ > 0

such that !1: - %”l < 6 implies |f(1,‘) - f(9_2t2)| <.

Consider the mappings c,om :[0,1)™ — [a, b] given by

Som(t) =a + tl +...+ qm(nl)tm]

Qm [ql
where t = (t1,...,tm), and define the sets

As(pm) = {t €[0,1]™: I‘fom(t) - f ©m(s)ds
[0,

25}.

Note that the sets As(¢n) are Lebesgue measurable in [0, 1]™.
If As(¢m) # 0, then

(9) 'cpm(t f Om(s ds‘ > 6% forallt € As(om) and thus
o)™

Jon)= [ om(s)ds) dt >

o™ 1"
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f (Qm(z)_ [ ¢m(s)ds)2dt252 mes(As(¢m)), i-e.,

As(em) [o,1)™
2
J b= ([ em®)dt) > 8 mes(As(¢m)).
0,1]™ [0.2)™

But a simple calculation shows that
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By the inequality (9) we get
2
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Now we have succesively
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where M = sup{|f(z)|: z € [a,b]}. Since
gi(m)+ ...+ ¢2(m)
QL -
hence there exists m, € N such that
M(b-a)g(m)+.. . +qu(m) ¢
8 12 Q2 2

m

for all m > m,, and thus we have

[ flom(t))dt - f(

[o.1m

a+b

)’ <¢ le. the limit (8).

Proof of the Theorem. Since f : I — R is convex on I and

a,b € ;,f is continuous on [a,b]. Now, applying Lemma 2 and observing
that

z1...dz,,

[ s(nmn bt an(mizn )

[a,b]™

(e

where the last integral is considered in Riemann’s sense, the proof of the
theorem is finished.

COROLLARY. Let f: I C R — R be a convez function on I,a,b € ; with
a<b. Then

b b
) 1 n1+...+zy,
A aff(—m—)d“--'d’*m:

. 1 b b 1 +...+ T, _ fa+b
7:11121'1 [(b_a)maf..-ff(———m—)d:cl...d:cm]_f( > )

Proof. Follows by Theorem 2 for g1(m) = ... = gm(m) = L (m € N*).
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