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THE CONVERGENCE OF SOME SEQUENCES 
CONNECTED TO HADAMARD'S INEQUALITY 

1. Introduction 
Let / : I —• R be a convex mapping on the interval of real numbers 

o o 
/ , and a, b,£ I with a < b ( / is the interior of I). The following inte-
gral inequality is well known in literature as Hadamard's inequality (see 
also [4]), 

a 

For some recent refinements, counterparts and generalizations of this classic 
fact see the papers [1-7] where further references are given. 

In [6], S. S. Dragomir, J. E. Pecaric and J. Sandor proved the following 

refinement of (1): 

< 2 ) 

£ ( f T T ^ r I •• I + d x ' d " i x -
y ' a a 

- / (*1 + I n t ' r + X n) d x i dx2 * ••dXn-1 

where n E N and n > 2. Some applications for /"-functions with interesting 
connections in Number Theory are also given. 
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In paper [5], among other results, the authors proved the following re-
finement of Hadamard's inequality for weighted means: 

s Tih S w ( 6 - a ) _ 

where pi > 0 (i = 1 , . . . , n) with Pn = p\ + p2 + . . . + pn > 0. 
In this paper we will study the convergence of some sequence which can 

be associated in a natural way to Hadamard's inequality. 

2. T h e main results 
We will start with the following generalization of the inequality (3) with 

a different proof (compare with [5] in which Jensen's inequality for multiple 
integral was used): 

o 
T H E O R E M 1. Let I be an interval with a,b £ / and a < b. If f : I R 

is a convex function on I and qi(m) > 0 for all i,m £ N* ( N * — { 1 , 2 , . . . } ) 
then we have the inequality 

(4) + 
2 

¿(¡hjlw 
a 

where Qm := qi(m) + ... + qm(m) > 0,m£ N*. 

To prove this fact we will use the following lemma: 

L E M M A 1 . Suppose that g : (a, b) R, a, b £ R, a < b, is a convex 
function on (a,b). Then there exist two sequences (a„),(bn) of real numbers 
such that 

(5) g(t) = sup(ani + 6 n ) for all t £ (a, b). 
n > l 

P r o o f o f t h e L e m m a . Since g is convex on (a, b), hence 

ff(t) > g(x) + (t~ x)g'+(x) for all t,x £ (a ' ,6) . 

From that we get 

g(t) > sup{ff(x) + (t- x)g'+{x) : x £ (a, b) n Q } for all t £ (a, 6). 
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Fix t in (a, b) and let xn G Q f l ( a , 6 ) such that x„ —• t. Since g is continuous 
in t we find that 

g(t) = lim [ff(xn) + ( t - i n ) i + ( i „ ) ] , t G (a, b) n—>oo 
because (g'+(xn)) is bounded in R. Consequently 

(6) g{t) = sup{<7(x) + t — x)g'+(x) : x £ (a, b) (1 Q } for all t G (a, b). 

If h : N* —e Q n (a, b) is one of bijections of the set N* onto Q fl (a, 6), then 
we can choose an = g'+(h(n)) and bn = g(h(n)) - h(n)an, and by (6) we 
obtain (5). 

P r o o f o f T h e o r e m . By the above lemma there exist two sequences 
(a^) and ( b s u c h that 

f ( t ) = sup(af
nt + bf

n), t € (a ,6 ) 
n>l 

and thus 
,'<71(771)1! + ... + qm(m)x, > a / + ••• + gm(m)xm"j + hj 

Qm 

for all n > 1 and x, G (a ,b) . 
Integrating on [a,6]m we get 

a a 
for all n > 1. Passing to the supremum in the above inequality, we deduce 
the first inequality in (4). 

Now, let observe by the convexity of / that 

Jqi(m)xi + . . . + qm(m)xm\ qi(m)f(xi) + ... + qm(m)f(xm) 
J \ Qm Qm 

which gives by integration on [a,6]m the second part of (4). 
The following result for convergence holds: 

0 
THEOREM 2. Let f : I c R ^ R b e a convex function on I,a,b, G / , with 

a < b and qi(m) > 0 for all i,m G N*. If Qm = q\{m) + . . . + g m ( m ) > 0 
and 

lim + ^ m ) = Q m-00 Q ^ 
then 

b b 
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We will prove the following lemma which is interesting by itselt. 

L E M M A 2 . Let f : [ a , 6 ] — • R be a Lebesgue integrable function on [A, b] 
and assume that it is continuous at If Qi(m) > 0 (i,m 6 A ) are such 
th-^'Qm > 0 and 

(7) 

then 

(8) lim 

lim ? ? ( " ) + . . . + £ ( " ) = Q 
Q 

( b - a y 

[a.6]" V 

g1(m)x1 + ... + qm(rn)xm\ ,{a + b 
\ ax\ .. .dxm - f 

Vm / 

where the above integral is understood in the Lebesgue sense. 

P r o o f o f L e m m a . It is clear that the above integral exists. Choosing 
x, = a + t,(b — a), i = 1 ,1, we get 

J r J9i(m)a:i + . . . + qm{m)xr 

-a)m J J \ 
' f _ L i m N [a,6]" ?2m 

dxi ...dxT 
Q r 

f f ( a + (b-a)«(m)tl + --- + 9m(m)tm)dtl...dt, 
,,m V Qm J 

10,1]" 

Since / is continuous at xq = therefore for each £ > 0 there exists b > 0 
such that Jx - < 6 implies |/(s) - < f . 

Consider the mappings ipm : [0, l ] m —• [a, 6] given by 

Vm( 0 = a + ^-~[<7i(m)ii + . . . + qm{ni)tm] 
Vm 

where t = ( Z j , . . . , i m ) , and define the sets 

Ae{<Pm) := {t € [0, l]m : \ f m ( t ) - f > 
[ o , i ] m 

Note that the sets Ag(<pm) are Lebesgue measurable in [0, l ] m . 
If A6{ipm) ± 0, then 

I r 2 2 (9) Vm(0 _ I <Pm{s)ds > 6 for all t G As(ipm) and thus 
[0,1]"* 

J <pm(t)~ J <Pm(s)ds) 2dt> 
[0,1]m [0,l]m 
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/ ( v m ( 0 ~ f <Pm(s)ds) dt > 62 m e s ( A s ( f m ) ) , i.e., 

•m) |o,i]m 

2 

f dt — ^ f < p m ( t ) d t ) > 62 mes(As(ipm)). 

Ailv™ ) 

[0,1]"* (0,1]" 

But a simple calculation shows that 

j j m ( t ) d t = f 

[o,i]m [0,1]"* 

2 b — a 
a + 2 a——(qxtx + . . . + ç m f m ) 

Q 

+ V ^ ' ( q i h + . . . + q m t m ) 2 

Q2r 

= a2 + a{b - a ) + 

dt 

( b - a ) 2 

Q l 
S 9 i ( m ) g j ( n ) 

«=i 1 <i<j<m 

and 
( b - a ) 2 

[ J <pm(t)dt = a2 + a ( b - a ) + 

[0,1]"* 

By the inequality (9) we get 
2 

/ V m ( 0 di - ( J < p m ( t ) d t j 

[0,1]"* [0,1]*" 
_ b - a ) 2 q 2 ( m ) + . . . + q2m(m) ^ _2 

12 Q* 

Now we have succesively 

f / ( < P m ( t ) ) d t - f i a - ± ± ) < J 
i i m > / r n 1 1 n 

> 6 mes(4i(v3m)) 

[0,1]" 

I 
[ o , i ] m \ / i i ( v m ) 

f ( V m ( t ) ) d t -

dt 

[0,1] 

dt 

+ / 
^i(Vm) 

/ ( i M O ) dt 

< - + 2 M mes(As(<pm)) 

<e_ + 2 M ( b - a ) 2 q 2 ( m ) + . . . + q2m(m) 

2 62 12 Q 
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w h e r e M = s u p { | / ( x ) | : x £ [ a , 6 ] } . Since 

<7? ( m ) + • • • + <?m( m ) n 

Qm 

h e n c e t h e r e e x i s t s me £ N such t h a t 

2 M ( 6 - a ) 2 g ? ( m ) + . . . + < £ ( m ) £ 

P 12 Q l 2 

for all m > mc, a n d t h u s we h a v e 

J f { i f i m ( t ) ) d t - f ( a - ± ± ) 

[0,1]"* 

< £ i.e. t h e limit ( 8 ) . 

P r o o f o f t h e T h e o r e m . Since / : I —• R is c o n v e x o n / a n d 
o 

a , b e I i f is c o n t i n u o u s on [a , 6]. N o w , applying L e m m a 2 a n d o b s e r v i n g 
t h a t 

S i 
[a, 6]' 

qi(m)xi + •. • + qm(m)xr 

Qm 

b 6 

dxi...dxr 

j . . . j f ( q i i r n ) x i + - Q + q m { m ) x m y x l . . . d X m , 
Q r 

w h e r e t h e last in tegra l is considered in R i e m a n n ' s sense, t h e p r o o f o f t h e 
t h e o r e m is finished. 

o 
C O R O L L A R Y . Let f : I c R — * R b e a convex function on I,a,b £ / with 

a < b. Then 
b b 

lim — 
m—»oo 10 

a a 

a a 

P r o o f . Follows by T h e o r e m 2 for qi(m) - . . . — qm(m) = ( m G N*). 

inf 
m > 1 l(b 
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