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CR-SUBMANIFOLDS OF A NEARLY
r-COSYMPLECTIC MANIFOLD

C R-submanifolds have been defined and studied by Professor A. Be-
jancu ([1], [2]) and others. In this paper, we have defined and studied C R-
submanifolds of a nearly r-cosymplectic manifold. Certain interesting results
have been stated and proved in this paper.

1. Preliminaries

Let M be (2n + r)-dimensional differentiable manifold of class C*°.
Suppose there exists on M, a tensor field ¢ of type (1,1), r(C*) con-
travariant vectorfields £, and r(C*°) 1-forms 7? (r some finite integer and
p=1,2,...,r) satisfying

(1.1) $=-I+) 1"®6&,
p=1
where

(i) nPo¢=0,
(ili) nP(&,) = 6%,
where p,¢g = 1,2,...,7 and 67 denotes Kronecker delta.
Thus in view of the equations (1.1) and (1.2) the manifold M will be
said to possess an almost r-contact structure [5].

Suppose further that the manifold M is endowed with a Riemannian
metric g satisfying

{ (l) ¢£P = 0,
(1.2)

(1.3) 9(X,Y) = g(X,Y) = Y P (X)P(Y)
r=1
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and

(1.4) 9(&p, X) = 1P(X).

Then we say that in view of the equations (1.1) to (1.4) the manifold M
admits an almost 7-contact metric structure.

Let us call such a manifold as nearly r-cosymplectic manifold if ¢ is
killing, i.e.

(1.5) (Vxd)(Y)+ (Vye)(X)=0

for any the vectorfields X and ¥ on M; V denotes the Riemannian connec-
tion for the metric tensor g on M.

On such a nearly r-cosymplectic manifold M, the vectorfields & are
killing i.e.

(1.6) (V€ Y)+ 9(X,Vyé,) =0

for p=1,2,...,7 and X,Y are arbitrary vectorfields on M.

Let M be a submanifold of M such that the vectorfields &, are tangets
to M. Let us denote the r-dimensional distribution formed by the vector-
fields &, by {£,}. We say that M is C R-submanifold of M if there exist

differentiable distributions D and D* on M such that
(i) TM = {D}& {D*} ® {&},
where D, D1 are mutually orthogonal and TM denotes the tangent bundle
of M;
(ii) The distribution D is invariant by ¢, i.e.
& Dz) =D, forevery z in M, and
(iii) The distribution Dt is anti-invariant by ¢, i.e. ¢(DL) C To(M?1),
where T(M*) denotes the normal space of M at z € M.
Let us call such a submanifold M of almost r-contact metric manifold

M as semi r-invariant C R-submanifold. We denote by P,Q the projection
morphisms of TM to D and D* respectively so that we have [2]

(1.7) X =PX+QX+) n(X)

p=1
for all X € I'(TM), where I'(TM) denotes the module of differentiable
sections of the tangent bundle TM. Also
(1.8) ¢V = BV +CV

for all V € I'(TM*), where BV denotes the tangent part of #V and CV
its normal part. Let V be the Levi-Civita connection and V+ the normal
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connection in M induced by the Riemannian connection V on M. Then
Gauss and Weingarten equations are respectively as

(1.9) VxY = VxY + h(X,Y)
and
(1.10) VxV = - AvX + VLV,

where Ay is the fundamental tensor of Weingarten with respect to the vec-
torfield V in the normal bundle and ‘h’ is the second fundamental form of
M. The operator Ay satisfies

for X,Y tangents to M and V normal to M.

2. Some results
In this section we shall establish some propositions on C R-submanifold
M of a nearly r-cosymplectic manifold M.

PROPOSITION 2.1. Let M be a CR-submanifold of a nearly r-cosymplectic
manifold M. Then we have

(2.1) 2Vx$)(Y) = VxgY — VyéX + h(X, )
- h(Ys ¢X) - ¢[Xa Y]
for all XY € I'(D).
Proof. We have
(2.2) (Vxo)(Y) = Vx(¢Y) - ¢VxY.
In view of the equation (1.9), the above equation (2.2) takes the form
(2.3) (Vx)(Y) = Vx(¢Y) + h(X,¢Y) - ¢VxY.
Interchanging X,Y in the above equation (2.3) we get
(2.4) (Vyd)(X) = Vy(dY) + h(Y,$X) - $Vy X.

Since the structure tensor ¢ is killing, in view of the equation (1.5), the
above equation (2.4) takes the form:

(2.5) ~(Vx9)(Y) = Vy(¢X) + h(Y,8X) - $Vy X.
Subtraction of the equation (2.5) from (2.3) yields
2(Vx4)(Y) = Vx(4Y) = Vy (#X) + h(X,4Y) = h(Y,$X) - ¢[ X, Y].

Since V is a Riemannian connection on the enveloping manifold M, the
following proposition can be proved:
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PRrRoOPOSITION 2.2. We have for all X,Y € I'(D*)
2AVxo)Y) = AoxY — Apy X + VE(8Y) — VE(8X) - 9[X,Y].
Proof. We have from the equation (2.2)

(2.6) (Vxg)(Y) = Vx(8Y) - ¢V Y.
In view of the equation (1.10), the ahove ~quation takes the form
(2.7) (Vxd)(Y) = —Asy X + V(oY) = oV xY.

Interchanging X and Y in the above equation and using the fact that ¢
is killing, we obtain

(2.8) ~(Vx¢)(Y) = —AgxY + Vy(¢X) - ¢Vy X.

Subtracting (2.8) from (2.7) and using the fact that V is Riemannian
connection on M, we get the required result.

PRroPoSITION 2.3. We have for any X € I'(D) and Y € I'(D*)
(2.9) 2AVxo)(Y)=Vx(8Y) - Vy(X) - Agy X — h(6X,Y) + ¢[X,Y].

Proof. By virtue of equations (2.5) and (2.7), the above proposition
follows in a straightforward manner.

PROPOSITION 2.4. Let M be a CR-submanifold of a nearly r-cosymplectic
manifold M. Then we have

(2.10) 2AVx)(Ep) = dlép, X] = Ve, (6X) — h(9X,§p),
where p = 1,2,3,...,7 and for any X € I'(D).

Proof. We can write

(2.11) (Vx8)(&) = Vx(6) = 6V x&p-
By virtue of the equation (1.2)(i), the above equation takes the form
(2.12) (Vx#)(&) = ~#Vxé,.
Aleo ~(Ve,$)(X) = ~{T¢, () - 47, X}
or
(213)  —(Vg,8)(X) = —{Ve,(6X) + h(#X, &)} + Ve, X.

In view of the equation (1.5), we can write the above equation in the
form

(2.14) (Vx8)(&) = =V, (#X) — h($X, &) + $V¢, X.
Addition of (2.12) and (2.14) yields

AVx)(&) = Blép, X = Ve, (¢X) — h(X, &)
for ¢ =1,2,...,rand X € I'(D).
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PROPOSITION 2.5. For any X € I'(D') we have
(2.15) AVx4)(&) = Apx&p + Ve, X — 6V £, — VE (6X).
Proof. From the equation (2.12) we have also
~(Ve,0)(X) = — {Ve,(9X) - $V¢, X}
= — {~Aoxtp + Vg, (6X)} + ¢V, X

Since the structure tensor ¢ is killing, the above equation becomes

(2.16) (Vx9)(&p) = Aoxbp — VE(SX) + ¢V, X
Adding the equations (2.12) and (2.16), we get
(2.17) AV.B)(&) = Apxbp + Ve, X — 9V x&, — VE (8X).

B virtue of the equation (1.9), the above equation (2.17) takes the form

2AVxdNE) = Apxp + Ve, X — ¢V xE, — VE (6X)

forp=1,2,...,7. This proves the proposition.

3. Totally r-contact umbilical C R-submanifold of a nearly r-
cosyniplectic manifold

We say that C' R-submanifold M of the nearly r-cosymplectic manifold M
as totally r-contact umbilical submanifold if there exists a normal vectorfield
I such that

(3.1)  A(X,Y) = g(¢X,6Y)H + Z{n h(Y, &) — n(Y )h(X, &)}
forany X, Y € I'(TM).1f H = 0, we say that M is totally r-contact geodesic

submanifold of M. One can easily verify the following lemma.

LeMMA 3.1. On a nearly r-cosymplectic manifold we have

(3.2) (Vx¢)($X) = Zg (X,6)Vx&

for any X € I'(TM).

THEOREM 3.2. Let M be a proper CR-submanifold of a nearly r-cosymple-
ctic manifold M. If M is totally r-contact umbilical it is also totally r-contact
geodesic.

Proof. For any X € I'(D), we have from Lemma 3.2
9((Vx4)eX,H)=0.
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Making use of the equation (1.1), (1.3), (1.9) and (1.10), we obtain
(3.3) 9(Vx$)X, H) = g(Vx¢X,0H) - g(Vx X, H)

= g(X,VxH) - 9(¢X,V x¢H).
Making use of the equation (3.1), we get
(34)  g(¢X, ApnX) = g(h(X,dX),6H) = g(X,$X)g(H,$H) = 0.
Thus from (3.2), (3.3), and (3.4), it follows that
(3.5) 9(X,X)g(H,H)=0 forany X € I'(D).

Since M is proper C R-submanifold, from (3.5) it follows that H = 0. Hence
M is totally r-contact geodesic.

References

[1] A.Bejancu, Geometry of CR-submanifolds, D. Reidel Publishing Company. (1985),
Tokyo, Japan.

[2] A. Bejancu, CR-submanifolds of a Kdhler manifold, Proc. Amer. Math. Soc. 69
(1978), 135-142.

{3] D. Blair, Almost contact manifolds with killing structure tensors, Pacific J. Math.
39 (1971), 285-292.

[4] L Stere, On CR-submanifolds of a nearly cosymplectic manifold, Tensor, N .S., Vol.
46 (1987), 291-295.

[5] J.Vanzura, Almost r-contact structure, Ann. Scuola Norm. Sup. Pisa. Cl. Seai. I,
Vol. 26 (1972).

DEPARTMENT OF MATHEMATICS AND ASTRONOMY
LUCKNOW UNIVERSITY, LUCKNOW, INDIA

Recetved January 20, 1994.



