

Ram Nivas, K. K. Bajpai

***CR-SUBMANIFOLDS OF A NEARLY
 r-COSYMPLECTIC MANIFOLD***

CR-submanifolds have been defined and studied by Professor A. Bejancu ([1], [2]) and others. In this paper, we have defined and studied *CR*-submanifolds of a nearly *r*-cosymplectic manifold. Certain interesting results have been stated and proved in this paper.

1. Preliminaries

Let \bar{M} be $(2n + r)$ -dimensional differentiable manifold of class C^∞ . Suppose there exists on \bar{M} , a tensor field ϕ of type $(1, 1)$, $r(C^\infty)$ contravariant vectorfields ξ_p and $r(C^\infty)$ 1-forms η^p (r some finite integer and $p = 1, 2, \dots, r$) satisfying

$$(1.1) \quad \phi^2 = -I + \sum_{p=1}^r \eta^p \otimes \xi_p,$$

where

$$(1.2) \quad \begin{cases} \text{(i)} & \phi \xi_p = 0, \\ \text{(ii)} & \eta^p \circ \phi = 0, \\ \text{(iii)} & \eta^p(\xi_q) = \delta_q^p, \end{cases}$$

where $p, q = 1, 2, \dots, r$ and δ_q^p denotes Kronecker delta.

Thus in view of the equations (1.1) and (1.2) the manifold \bar{M} will be said to possess an almost *r*-contact structure [5].

Suppose further that the manifold \bar{M} is endowed with a Riemannian metric g satisfying

$$(1.3) \quad g(\bar{X}, \bar{Y}) = g(X, Y) - \sum_{p=1}^r \eta^p(X) \eta^p(Y)$$

and

$$(1.4) \quad g(\xi_p, X) = \eta^p(X).$$

Then we say that in view of the equations (1.1) to (1.4) the manifold \bar{M} admits an almost r -contact metric structure.

Let us call such a manifold as nearly r -cosymplectic manifold if ϕ is killing, i.e.

$$(1.5) \quad (\tilde{\nabla}_X \phi)(Y) + (\tilde{\nabla}_Y \phi)(X) = 0$$

for any the vectorfields X and Y on \bar{M} ; $\tilde{\nabla}$ denotes the Riemannian connection for the metric tensor g on \bar{M} .

On such a nearly r -cosymplectic manifold \bar{M} , the vectorfields ξ_p are killing i.e.

$$(1.6) \quad g(\tilde{\nabla}_X \xi_p, Y) + g(X, \tilde{\nabla}_Y \xi_p) = 0$$

for $p = 1, 2, \dots, r$ and X, Y are arbitrary vectorfields on \bar{M} .

Let M be a submanifold of \bar{M} such that the vectorfields ξ_p are tangents to M . Let us denote the r -dimensional distribution formed by the vectorfields ξ_p by $\{\xi_p\}$. We say that M is CR -submanifold of \bar{M} if there exist differentiable distributions D and D^\perp on M such that

$$(i) \quad TM = \{D\} \oplus \{D^\perp\} \oplus \{\xi_p\},$$

where D, D^\perp are mutually orthogonal and TM denotes the tangent bundle of M ;

(ii) The distribution D is invariant by ϕ , i.e.

$$\phi(D_x) = D_x \quad \text{for every } x \text{ in } M, \text{ and}$$

(iii) The distribution D^\perp is anti-invariant by ϕ , i.e. $\phi(D_x^\perp) \subset T_x(M^\perp)$, where $T_x(M^\perp)$ denotes the normal space of M at $x \in M$.

Let us call such a submanifold M of almost r -contact metric manifold \bar{M} as semi r -invariant CR -submanifold. We denote by P, Q the projection morphisms of TM to D and D^\perp respectively so that we have [2]

$$(1.7) \quad X = PX + QX + \sum_{p=1}^r \eta^p(X) \xi_p$$

for all $X \in \Gamma(TM)$, where $\Gamma(TM)$ denotes the module of differentiable sections of the tangent bundle TM . Also

$$(1.8) \quad \phi V = BV + CV$$

for all $V \in \Gamma(TM^\perp)$, where BV denotes the tangent part of ϕV and CV its normal part. Let ∇ be the Levi-Civita connection and ∇^\perp the normal

connection in M induced by the Riemannian connection $\tilde{\nabla}$ on \bar{M} . Then Gauss and Weingarten equations are respectively as

$$(1.9) \quad \tilde{\nabla}_X Y = \nabla_X Y + h(X, Y)$$

and

$$(1.10) \quad \tilde{\nabla}_X V = -A_V X + \nabla_X^\perp V,$$

where A_V is the fundamental tensor of Weingarten with respect to the vectorfield V in the normal bundle and ' h ' is the second fundamental form of M . The operator A_V satisfies

$$(1.11) \quad g(A_V X, Y) = g(h(X, Y), V)$$

for X, Y tangents to M and V normal to M .

2. Some results

In this section we shall establish some propositions on CR -submanifold M of a nearly r -cosymplectic manifold \bar{M} .

PROPOSITION 2.1. *Let M be a CR -submanifold of a nearly r -cosymplectic manifold \bar{M} . Then we have*

$$(2.1) \quad \begin{aligned} 2(\tilde{\nabla}_X \phi)(Y) &= \nabla_X \phi Y - \nabla_Y \phi X + h(X, \phi Y) \\ &\quad - h(Y, \phi X) - \phi[X, Y] \end{aligned}$$

for all $X, Y \in \Gamma(D)$.

Proof. We have

$$(2.2) \quad (\tilde{\nabla}_X \phi)(Y) = \tilde{\nabla}_X(\phi Y) - \phi \tilde{\nabla}_X Y.$$

In view of the equation (1.9), the above equation (2.2) takes the form

$$(2.3) \quad (\tilde{\nabla}_X \phi)(Y) = \nabla_X(\phi Y) + h(X, \phi Y) - \phi \tilde{\nabla}_X Y.$$

Interchanging X, Y in the above equation (2.3) we get

$$(2.4) \quad (\tilde{\nabla}_Y \phi)(X) = \nabla_Y(\phi X) + h(Y, \phi X) - \phi \tilde{\nabla}_Y X.$$

Since the structure tensor ϕ is killing, in view of the equation (1.5), the above equation (2.4) takes the form:

$$(2.5) \quad -(\tilde{\nabla}_X \phi)(Y) = \nabla_Y(\phi X) + h(Y, \phi X) - \phi \tilde{\nabla}_Y X.$$

Subtraction of the equation (2.5) from (2.3) yields

$$2(\tilde{\nabla}_X \phi)(Y) = \nabla_X(\phi Y) - \nabla_Y(\phi X) + h(X, \phi Y) - h(Y, \phi X) - \phi[X, Y].$$

Since $\tilde{\nabla}$ is a Riemannian connection on the enveloping manifold \bar{M} , the following proposition can be proved:

PROPOSITION 2.2. *We have for all $X, Y \in \Gamma(D^\perp)$*

$$2(\tilde{\nabla}_X \phi)(Y) = A_{\phi X} Y - A_{\phi Y} X + \nabla_X^\perp(\phi Y) - \nabla_Y^\perp(\phi X) - \phi[X, Y].$$

Proof. We have from the equation (2.2)

$$(2.6) \quad (\tilde{\nabla}_X \phi)(Y) = \tilde{\nabla}_X(\phi Y) - \phi \tilde{\nabla}_X Y.$$

In view of the equation (1.10), the above equation takes the form

$$(2.7) \quad (\tilde{\nabla}_X \phi)(Y) = -A_{\phi Y} X + \nabla_X^\perp(\phi Y) - \phi \tilde{\nabla}_X Y.$$

Interchanging X and Y in the above equation and using the fact that ϕ is killing, we obtain

$$(2.8) \quad -(\tilde{\nabla}_X \phi)(Y) = -A_{\phi X} Y + \tilde{\nabla}_Y(\phi X) - \phi \tilde{\nabla}_Y X.$$

Subtracting (2.8) from (2.7) and using the fact that $\tilde{\nabla}$ is Riemannian connection on \bar{M} , we get the required result.

PROPOSITION 2.3. *We have for any $X \in \Gamma(D)$ and $Y \in \Gamma(D^\perp)$*

$$(2.9) \quad 2(\tilde{\nabla}_X \phi)(Y) = \nabla_X^\perp(\phi Y) - \nabla_Y(\phi X) - A_{\phi Y} X - h(\phi X, Y) + \phi[X, Y].$$

Proof. By virtue of equations (2.5) and (2.7), the above proposition follows in a straightforward manner.

PROPOSITION 2.4. *Let M be a CR-submanifold of a nearly r -cosymplectic manifold \bar{M} . Then we have*

$$(2.10) \quad 2(\tilde{\nabla}_X \phi)(\xi_p) = \phi[\xi_p, X] - \nabla_{\xi_p}(\phi X) - h(\phi X, \xi_p),$$

where $p = 1, 2, 3, \dots, r$ and for any $X \in \Gamma(D)$.

Proof. We can write

$$(2.11) \quad (\tilde{\nabla}_X \phi)(\xi_p) = \tilde{\nabla}_X(\phi \xi_p) - \phi \tilde{\nabla}_X \xi_p.$$

By virtue of the equation (1.2)(i), the above equation takes the form

$$(2.12) \quad (\tilde{\nabla}_X \phi)(\xi_p) = -\phi \tilde{\nabla}_X \xi_p.$$

Also

$$-(\tilde{\nabla}_{\xi_p} \phi)(X) = -\{\tilde{\nabla}_{\xi_p}(\phi X) - \phi \tilde{\nabla}_{\xi_p} X\}$$

or

$$(2.13) \quad -(\tilde{\nabla}_{\xi_p} \phi)(X) = -\{\nabla_{\xi_p}(\phi X) + h(\phi X, \xi_p)\} + \phi \tilde{\nabla}_{\xi_p} X.$$

In view of the equation (1.5), we can write the above equation in the form

$$(2.14) \quad (\tilde{\nabla}_X \phi)(\xi_p) = -\nabla_{\xi_p}(\phi X) - h(\phi X, \xi_p) + \phi \tilde{\nabla}_{\xi_p} X.$$

Addition of (2.12) and (2.14) yields

$$2(\tilde{\nabla}_X \phi)(\xi_p) = \phi[\xi_p, X] - \nabla_{\xi_p}(\phi X) - h(\phi X, \xi_p)$$

for $\phi = 1, 2, \dots, r$ and $X \in \Gamma(D)$.

PROPOSITION 2.5. *For any $X \in \Gamma(D^\perp)$ we have*

$$(2.15) \quad 2(\tilde{\nabla}_X \phi)(\xi_p) = A_{\phi X} \xi_p + \phi \nabla_{\xi_p} X - \phi \nabla_X \xi_p - \nabla_{\xi_p}^\perp(\phi X).$$

P r o o f. From the equation (2.12) we have also

$$\begin{aligned} -(\tilde{\nabla}_{\xi_p} \phi)(X) &= -\{\tilde{\nabla}_{\xi_p}(\phi X) - \phi \tilde{\nabla}_{\xi_p} X\} \\ &= -\{-A_{\phi X} \xi_p + \nabla_{\xi_p}^\perp(\phi X)\} + \phi \tilde{\nabla}_{\xi_p} X. \end{aligned}$$

Since the structure tensor ϕ is killing, the above equation becomes

$$(2.16) \quad (\tilde{\nabla}_X \phi)(\xi_p) = A_{\phi X} \xi_p - \nabla_{\xi_p}^\perp(\phi X) + \phi \tilde{\nabla}_{\xi_p} X.$$

Adding the equations (2.12) and (2.16), we get

$$(2.17) \quad 2(\tilde{\nabla}_X \phi)(\xi_p) = A_{\phi X} \xi_p + \phi \tilde{\nabla}_{\xi_p} X - \phi \tilde{\nabla}_X \xi_p - \nabla_{\xi_p}^\perp(\phi X).$$

By virtue of the equation (1.9), the above equation (2.17) takes the form

$$2(\tilde{\nabla}_X \phi)(\xi_p) = A_{\phi X} \xi_p + \phi \nabla_{\xi_p} X - \phi \nabla_X \xi_p - \nabla_{\xi_p}^\perp(\phi X)$$

for $p = 1, 2, \dots, r$. This proves the proposition.

3. Totally r -contact umbilical CR-submanifold of a nearly r -cosymplectic manifold

We say that CR-submanifold M of the nearly r -cosymplectic manifold \bar{M} as totally r -contact umbilical submanifold if there exists a normal vectorfield H such that

$$(3.1) \quad h(X, Y) = g(\phi X, \phi Y)H + \frac{1}{r} \sum_{p=1}^r \{\eta(X)h(Y, \xi_p) - \eta(Y)h(X, \xi_p)\}$$

for any $X, Y \in \Gamma(TM)$. If $H = 0$, we say that M is totally r -contact geodesic submanifold of \bar{M} . One can easily verify the following lemma.

LEMMA 3.1. *On a nearly r -cosymplectic manifold we have*

$$(3.2) \quad (\tilde{\nabla}_X \phi)(\phi X) = \sum_{p=1}^r g(X, \xi_p) \tilde{\nabla}_X \xi_p$$

for any $X \in \Gamma(T\bar{M})$.

THEOREM 3.2. *Let M be a proper CR-submanifold of a nearly r -cosymplectic manifold \bar{M} . If M is totally r -contact umbilical it is also totally r -contact geodesic.*

P r o o f. For any $X \in \Gamma(D)$, we have from Lemma 3.2

$$g((\tilde{\nabla}_X \phi)\phi X, H) = 0.$$

Making use of the equation (1.1), (1.3), (1.9) and (1.10), we obtain

$$(3.3) \quad \begin{aligned} g((\tilde{\nabla}_X\phi)\phi X, H) &= g(\tilde{\nabla}_X\phi X, \phi H) - g(\tilde{\nabla}_X X, H) \\ &= g(X, \tilde{\nabla}_X H) - g(\phi X, \tilde{\nabla}_X \phi H). \end{aligned}$$

Making use of the equation (3.1), we get

$$(3.4) \quad g(\phi X, A_{\phi H} X) = g(h(X, \phi X), \phi H) = g(X, \phi X)g(H, \phi H) = 0.$$

Thus from (3.2), (3.3), and (3.4), it follows that

$$(3.5) \quad g(X, X)g(H, H) = 0 \quad \text{for any } X \in \Gamma(D).$$

Since M is proper CR -submanifold, from (3.5) it follows that $H = 0$. Hence M is totally r -contact geodesic.

References

- [1] A. Bejancu, *Geometry of CR-submanifolds*, D. Reidel Publishing Company. (1985), Tokyo, Japan.
- [2] A. Bejancu, *CR-submanifolds of a Kähler manifold*, Proc. Amer. Math. Soc. 69 (1978), 135–142.
- [3] D. Blair, *Almost contact manifolds with killing structure tensors*, Pacific J. Math. 39 (1971), 285–292.
- [4] I. Stere, *On CR-submanifolds of a nearly cosymplectic manifold*, Tensor, N.S., Vol. 46 (1987), 291–295.
- [5] J. Vanzura, *Almost r -contact structure*, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. III, Vol. 26 (1972).

DEPARTMENT OF MATHEMATICS AND ASTRONOMY
LUCKNOW UNIVERSITY, LUCKNOW, INDIA

Received January 20, 1994.