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GLOBAL E X I S T E N C E RESULTS 
FOR C E R T A I N I N T E G R O D I F F E R E N T I A L EQUATIONS 

1. Introduction 
Let R n be the n-dimensional Euclidean space and | • | be a norm on R n . 

For a fixed r > 0 we define C = C ( [ - r , 0],Rn) to be the Banach space of all 
continuous functions x : [—r, 0] —• R n , endowed with the sup-norm 

||*|| = s u p { | * ( i ) | : < € [ - r , 0 ] } . 

For any continuous function x : [ - r , T ] -* R n , T > 0 and every t 6 [0,1"], 
we denote by xt the element of C defined by 

xt(0) = x(t + 6), 0 € [ - r , O ] , 

for details, see [1], [4]. 

This paper is concerned with the global existence of solutions for initial 
value problems for functional integrodifferential equations of the forms 

t 
( 1 ) x'{t) = f ( t , x t , J k(t,s)h(s,xs)ds), t G [ 0 , T ] , 

0 

(2) x0 = 4>, 

and 
t 

(3) [x'(t)-g(t,xt)]'= f ( t , x u J k(t,s)h(s,xs)ds), t 6 [0,T], 
o 

(4) x0 = (f>, x'(0) = a , 

where k is measurable real valued function for t > s > 0, <f> 6 C, a is a real 
constant, h, g : [0, T] x C Rn and / : [0, T] x C x R n ->• R n are continuous 
functions. 
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T h e main tool employed in our analysis is based on a simple and classical 
application of the topological transversali ty theorem of Granas [3], known 
as Leray-Schauder al ternat ive. Recently, in [7], [8] the au thors used this 
method to s tudy the global existence of solutions of certain special versions 
of the above equations. An interesting feature of this method is tha t this 
yields simultaneously the existence of a solution and the maximal interval 
of existence. For fu r ther applications of this method to s tudy the global ex-
istence of solutions of initial value problems for various types of differential, 
funct ional differential and differential delay equations, see [2], [5], [6] and 
the references given therein. Our results given here are fu r the r extensions 
of the results given in [7], [8] to more general funct ional integrodifferential 
equat ions. 

2. Statement of results 
Our existence theorems are based on the following theorem, which is a 

version of the topological t ransversali ty theorem given by A. Granas in ([3], 
p. 61). 

THEOREM G . Let B be a convex subset of a normal linear space E and 
assume 0 € B. Let F : B —* B be a completely continuous operator and let 

U(F) = {x e B :x = \Fx for some 0 < A < 1}. 

Then either U(F) is unbounded or F has a fixed point. 

We list the following hypotheses used in our discussion. 

( A i ) There exists a continuous function p : [0, T] —»• R + = [0,oo) such 
t h a t 

\f(t,^u)\<p(t)(U\\ + \u\), 

for every t <E [0,T], $ € C, u e R". 
(A2) There exists a continuous function q : [0,T] —• R + such tha t 

\h(t,i>)\<q(t)Hm\), 

for every t E [0,T], xf> € C , where H : [0,oo) —• (0 ,oo) is a continuous 
nondecreasing funct ion. 

(A3) There exists a constant L > 0 such t ha t 

t > s > 0. 

(A4) There exist nonnegative constants Ci,C2 such t h a t 

I g(t,4>)\<ci\m + c2, 

for every t € [0,T] and V 6 C. 

Our main results are given in the following theorems. 
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T H E O R E M 1 . Suppose that the hypotheses (Aj)-(A4) are satisfied. Then 
the initial value problem ( l ) - (2) has a solution x defined on [—r,T] provided 
T satisfies 

T oo . 

<6» IW'Jj+wr 
where 

(5) c = ||0|| arid M(t) = max{p(i), t € [0,T]. 

T H E O R E M 2. Suppose that the hypotheses (Ai)-(A.i) are satisfied. Then 
the initial value problem (3)-(4) has a solution x defined on [—r, T] provided 
T satisfies 

T oo 

(6 ) 

I 

f N(s)ds< f —7r~r> J [> ¡2 s + H{\sy 
where 

(7) c = ( i + C l r ) | | 0 | | + (|Q| + 2c 2 ) r , 

and 

(8) N(t) = mzx{l, cup(t),Lq(t)}, te[0,T]. 

R e m a r k 1. We note that , in a recent paper [8], the topological trans-
versality method is used to study the global existence of solutions of the 
special versions of equations ( l ) - (2) and (3)-(4) when the function / is of 
the form 

t 
A(t)x(t) + J k(t,s)h(s,xa)ds and fi(t, xt) + f2(t, xt) 

o 

respectively, where is a continuous n X n matrix for t G [0,T] and 
J \ , J2 : [0,T] x C -» R n are continuous functions satisfying some suitable 
assumptions. It is easy to observe that Theorem 1 cannot be obtained from 
Theorem 2 by integrating equation (3). Our results given here are influenced 
by the recent results obtained by various authors in [2], [5]-[8] by using 
topological arguments based on Leray-Schauder degree theory and a very 
interesting result given by Wintner in [10]. 

3. P r o o f s of T h e o r e m s 1 and 2 
Since the proofs of Theorems 1 and 2 resemble one another, we give the 

details for Theorem 2 only, the proof of Theorem 1 can be completed by 
closely looking at the proof of Theorem 2. 
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To prove the existence of a solution of (3)-(4) we apply Theorem G. First 
we establish the bounds for the initial value problem (3)a - (4), A £ (0,1), 
where 

t 
( 3 ) { x ' ( t ) ~ \g(t,xt)}'= \ f ( t , x t , J k{t,s)h(s,x,)dsy t G [0 ,T], 

o 

Let x(t) be a solution of (3)a~(4). Then it satisfies the equivalent integral 
equation 

t 
(9) x(t) = <¿>(0) + [a - A<7(0,4>)}t + A J g(s,x3)ds 

o 
i a r 

+A J J f(r,xT, J kiT^W^xJdvjdTds, t e [0,T]. 
0 0 0 

From (9) and using the hypotheses (Ai)-(A,j) we have 
t t 3 

(10) |s(0l<c+ /c1||xJ||d5+ f f p{T)\\xT\\drds 
0 0 0 
t a T 

+ / J P ( r ) ( j Lq^HiWx.lDd^drds, 
0 0 0 

where c is defined by (7). Consider the function z : [—r, T] —> R given by 

z(t) = sup{|z(s) | : -T < s < ¿}, 0 < i < T, 

and let t* € [—r, t] be such that z(t) = |x(f*)|. If t* G [0, i], by (10), we have 
t' f 4 

(11) z(t) = | i ( i*) | < c + J , c , | | a f , | | d a + / J p{T)\\xT\\drds 
0 0 0 

+ f f p(tK I Lq{rj)H(\\xn\\)dri)drds 
0 0 0 

t t s 

<c+ J ciz(s)ds+ J J p(T)z(T)drds 
o o o 

+ f J P i T ) ( j Lq(r,)H(z(ri))dV)dTd3 
0 0 0 

t t a 

<c+ f N(s)z{s)ds+ f J N(r)z(T)drds 
0 0 0 
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t s T 

+ I fN(TK I N(T,)H(z(T,))dT,)dTds, 
0 0 0 

where N(t) is defined by (8). If t* € [ - r , 0 ] , t h e n z{t) = < c, by (7) and 
(11) holds. Denoting by u(t) the right hand side of (11) we have 

z(t)<u(t), t e [o, r i , u(o) = c, 
and 

t 
u'(t) < N(t) u{t) + f N(r)u(r)dT 

o 
t . T 

+ 
0 0 

t T 

f N ( r ) ( J N f r M u M d ^ d r ] , i € [ 0 , 7 ] . 

Denote by v[t) the expression in the brackets above, then, since the compo-
nents with integrals are nonnegative 

u(t)<v(t), t £ [0,T], t>(0) = u(0) = c, 

and 

v'(t) < 7V(0[2i;(<)+ / iV(7?)jy(U(r?))ci7?], t 6 [0,T], 
o 

Denote by w(t) the expression in the brackets above, then since the compo-
nents with integrals are nonnegative 

a n d 

i.e. 

i € [ 0 , T ] , Ii>(0) = »(0) = c, 

w'(t) < 2N(t )w( t ) + N(t)H » € [0, T], 

( 1 2 ) < e [ 0 ' n 

Integrating (12) from 0 to t and using (6) we obtain 
tf(t) , t T 

( 1 3 ) / 2s + Hr-s) - I N ^ d s 
c v 2 / o 0 

is 

From (13) we conclude by the mean value theorem that there is a constan 
Q independent of A € (0,1) such that w(t) < Q, for t 6 [0,T]. Then w< 
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have succesively v(t) < Q, u(t) < Q, z(t) < Q for t 6 [0,T]. Since for every 
t e [0, T], | |z t | | < z{t), we have ||z|| < Q. 

In the next step, we rewrite the initial value problem (3)-(4) as follows, 
see [4]. For 4> <= C define 4>e B, B = C ( [ - r , T ] , R n ) by 

0 < t < T . 

If x ( t ) = y ( t ) + < f i ( t ) , t € [—r, T ] , then, provided that x satisfies the equivalent 
integral equation to (3)-(4), it is easy to see that y satisfies 

Vo = 0, 
t 

y(t) = [ a - ff(0,4>)]t + f g(s, ys + 0 , ) ds 

o 
t S T 

+ I J + f k f a r i h f a t o + fydTrjdrds, 0 < t < T . 

0 0 0 

Define F : B0 - B0, B0 = {y G B : y0 = 0} by 

0, - r < t < 0, 
t 

[ a - 5 ( 0 , <t>))t+ J g ( s , y t + 4 a ) d s 

o 

t S T 

+ f f f ( r , y T + <t>T, f k ( r , T / ) h ( T } , y v + 4 > v ) d T j ) d T d s , 

o 0 < t < T . 

(14) F y ( t ) 

o o 

Then F is clearly continuous. Now we shall prove that F is completely 
continuous. 

Let {u>m} be a bounded sequence in Bq, i.e. | |wm | | < £>, for all m, where 
b is a positive constant. We obviously have | | ^ m t | | < b,t € [0, T], for all m. 
For (14) and using the hypotheses (Ai)-(A4) and letting f3 = sup{.V(Z) : 
0 < t < T}, we see that {Fwm} is uniformly bounded. 

Now we shall show that the sequence {Ftt>m} is equicontinuous. To prove 
this we consider the following cases: 

(i) 0 < < i2. Then 

\ F w m ( t 2 ) - F w m { h ) \ 

"J. 

< / \ [ o t - g(Q, </»)]| d s + f \g(s,ys + t s \ d s 
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yT + <f>T, f k(r,T])h(T),yv +¿Jd^jdrds 
11 o o 

h t2 

< / ( | a | + C l | |0 | | + c 2 ) d s + f [ c , ( 6 + | M | ) + c2]<fo 
ti U 

+ ///?(&+Il</>ll + J/3H(b+\\4>\\)dri)dTds. 
(] 0 0 

(ii) < 0 < ¿2- Then we get the estimation as above but with the 
integrals over [¿i, ¿2] replaced by those over [0, ¿2]-

(iii) it <t2 < 0. Then 

From (i)-(iii), since they imply ||.Fu;m(i2)-.F1Wm(*i)|| < 7 |*2 _ ' i |> with con-
stant 7 > 0, for every <1, G [ - r , T], we conclude that {Ftt>m} is equicontin-
uous and hence by the Arzela-Ascoli theorem the operator F is completely 
continuous. 

Moreover, the set U(F) = {y £ B0 : y - AFy, A € (0,1)} is bounded, 
since for every solution y in U(F) the function x = y -f- <f> is a solution of 
(3)a~(4), for which we have proved ||z|| < Q and hence ||j/|| < Q + Now 
in virtue of Theorem G, the operator F has a fixed point in Bq. This means 
t hat the initial value problem (3)-(4) has a solution. The proof is completed. 

R e m a r k 2. We note that one can easily use the ideas of this paper to 
obtain a result similar to that of given in our Theorem 1, for the integrod-
ifferential equation with delayed arguments of the form (see, also [9], [10], 
[11]) 

( 1 5 ) x'{t) = 77(0/(*,zM<)),...,zK(0), 
t 

J k(t,s)h(s,x({j1(s)),...,x(tjm(s)))ds), te[0,T], 
0 

(16) x(t) = <t>(t), - r < t < 0, 

under some suitable conditions on the functions involved in (15)-(16). For 
such result on the special version of (15)-(16), (see, [6], p. 351). It is possible 
to combine the ideas of this paper together with the ideas of [2], [5]-[8] to 
extend the foregaing existence results to integrodifferential equations with 
advanced arguments as well as with advanced and delayed arguments. The 
various results on such equations will be reported elsewhere. 
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