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1. Preliminaries

Let Lj,c be the set of all measurable (complex-valued) functions Lebes-
gue-integrable on every finite subinterval of R = (~o0, 00). Denote by L*®
the set of those functions f € L. for which

(Ifll = esssup |f(¢)| < o0.
—oo<Lt<oo
Write f e W, 1< a < o0, if f € Ljoc and
T (1O
) dt < oo.
{, (1 )

If f € Ly and if
oo ) 1/2
Iflle = { [ 15@0Pdt} " < oo,
—00
the Fourier transform fis defined by
T oo ennve
v) = é“.’rg"'\/ﬁ_e f(u)e u for a.e. v € R.

In this case, the Parseval formula

(1) 71l = 1| fll
holds (see [1, p. 209]).

Let E;, 0 < 0 < 00, be the class of all entire functions of exponential
type, of order ¢ at most. Considering a function f € Lj,c, introduce the
quantity

Ao(f) = jaf |If - F)
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called the best approximation of f by entire functions of class E,. Obviously,
A, (f) is non-negative and, sometimes, equals infinity. Moreover, A,(f) >
A (f)forT>02>0.

Take into account the entire function Dy, 0 < A < oo, given by

sin Az

Diy(z) = for z # 0.
Suppose that f € Lj,. and write
—+00
Si\lfl(z) = f f(w)Dx(z — u)du

whenever the improper Lebesgue integral on the right-hand side exists. This
is the so-called Dirichlet (singular) integral of f at a point z = z + iy
(z,y € R).

Put

@ ={% [is@ - rapra)”

for positive numbers m,n,p (m < n) and z € R. Let, by convention,
Vn m("’) Va m[f](z) va,ln}x[f](z)
and
To,m(2) = Tnm[f1(2) = M{Vatm,m(2) = Vam(2)}

It was proved in [3, Section 4] that under the assumptions f € WlnW?2,
A,(f) < oo foro>0and 0 < m<n< oo, the estimate

(2) VAN < K(P)An-m(f)log =

holds with a certain constant K (p) depending only on p. Now, in case p = 1,
an other result will be presented. It corresponds to the theorem on strong
approximation by Fourier series formulated in [2, p. 29].

The symbols K, K;, K5 used below will mean posmve absolute constants
not necessarily the same at each occurrence.

2. Basic estimates
Consider a function f from W' n W2, with A,(f) < oo for o > 0.

LEMMA 1. Suppose that 0 < m < n < o0, m < q < co. Then S)\[f](z)
for z € R is continuous in A > 0 and
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@ swp{L [ 1Sudlfie) - SN < K Auom(F)log 22
xe% m_ - Ate AJR® = nom &

Proof. Since f € W1, the Dirichlet integral S\[f](z) is continuous in
A > 0 (see Remark in [3, Sec. 2}).
Given any £ > 0, let F' be a function of class F,_,, such that
If = Fll < An-m(f) + .
Evidently F € W? and, by Lemma 1 of [3, Sec. 3],
(4)  S\[f - F)(z) = SA[fl(z) — F(z) for A>n—mand z € R.

In view of (4),

[ 134l f1(@) ~ S3[71(=)ldA

[ 1Sx44lf = Fl(@) = Salf = Fi(z)ldA

n—

f {f(z —t) = F(z — )}{Dx+q(t) — Da(t)}dt|dA

m
n
n—m
n
-m

2“““ f{f(x—t) F(z~t)+ f(z +t) - F(z + 1)}

x{Dyq(t) - D,\(t)}dtld,\.

Putting
0u(t) = { f(-‘v—t)—F(f-‘)Tf(r-H)-F(r+t) if |¢] > %,
0 otherwise,
we obtain
J 15344[7)(=) = Salfl(=)ldA
n~-m

< f (f+ J )@ =)= Fe - ) + f(z + ) - F(z +1)|

n-m 1/q

« sin(A + ¢)t — sin /\tldt}d/\

t
+ J |3

n-—

n{ 1/q 1/m

e
py oango _{ gz(t){sin(A + ¢)t - sin At}dt|dA
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=hLh+5L+1.
Clearly,

n 1/q) . .
2 sin(A + ¢)t — sin At
nelf {49 J ) dt}dx

n  1/g

<2tnmNte) [{ [ attfar=2(Aen(ptom
n-m 0
Analogously,
9 ™ l/m
I < '7; f {(An m(f) +¢) f dt}d’\= =(An- m(f)+5)m1°g_
-m 1/q

By the Cauchy-Schwarz inequality and the Parseval formula (1),
1 n 2 1/2
—Ia {E L d)\}
n . 1/2
—={x JaG+o- gz()\)l2d/\}
<y ={ J gt} = Va2 f jg=(o)at}
< 4‘/ (An_m(f)+s) f —dt}

1/m

27 g0

0
— lim f gz (t)(sin(A + ¢)t — sin At) dt
—e

Consequently,

I <4/1/n(An_m(f) + €)m.

Summing up we get at once the desired assertion (3).

LEMMA 2. Let0 < m < n < 0o and let 0 < 2u < m. Then

(5) 771 = T sl < KpAn—u()log =
Proof. Clearly, for a.e. z € R,
n+m n n+m-—2p
Tam(®) = Tawmu(@=( [ = [ = [ )IS@) - f=)ldA

(T - [ - sane- s

n+m-—2u n—u n—
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By Lemma 1,
n+m—p

() = J)IS@) - @1 = bVatmops(@) - Vaul@)

n+m-2p 4

f" (Sxemosl1(&) = F(2)] - 1\[1(2) - F(@)])dA
L1
B

f" [Sxmalf1(2) ~ SAA(@)IdA

< K Aoy 1o L1,

n+m n

|( I - f)ISA[f](z)—f(2)|d/\I

n+m—p n—up

< [ 15mlA1(=) - Silf1(=)1dA
n—pu

<uKA,_ ,,(f)log%m

Hence

2(m — 2m
lTnm = Tn—pm—ull < Kl‘An—u(f){ log % +log T},
and the estimate (5) is established.
PRroPOSITION . If0 < m < n < 0o then
[m]
(6) lrnml Al < K Z An-mio(f).

v=0
Proof. In case 0 < m < 2 Lemma 1 gives
7a,m[f]ll = m”Vn+m,m = Vamll

n+m

f ISxLf] - fldX - f|sA[f] fld|

<|| Jisnmifl- 5A[f]|d'\”

2m
< KmA,_n(f)log o < KiAn_n(f).
Therefore, we may suppose that m > 2.
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Following Stechkin ([2, p. 33]) take into account the positive sequence
defined by
me=m, My=mseq—[me-1/2] (s=1,2,...).
Evidently, there exists a smallest index ¢ > 1 such that 1 < m; < 2 and
m=mg>m >...>m 21, m_1—my=1.

Since
t

" Taym = § :{Tn—m+m,_x,m,-1 - Tn—m+mum.} + Tn—m+mq,mes
s=1

we have

t
Ira,mll < z ITa-mtm,—1mecy = Tnemtm,,m, || + | Taemtme,m |-
s=1

In view of Lemma 2,
ms-1

lTn-mtmezimecy = Ta—mtm,m,ll < KpAn-mim,_ -u(f)log

where g = ms_y —ms > ms_1/4 (s =1,...,1).
By Lemma 1,

ITn—mtmemell = MellVaemszm,m, = Vacmtme,m |
1 n—m-+m,

T Svamilf1 - S311110A| < KAwom($)og2.

n—m

<2

Hence

7l < Ka{ 3 (mact = M) Anrmtm, () + Anem(£)}

s=1
t—1
< K, {4 Z(ms - ms+1)An—m+m, (f) + An—m+m¢ + An—m(f)}7
s=1
ie.
t—=1 m,
Irnmll < Ko {3 [ Ancmss(£)d0 + An-m(£)}

s=1m,41

= I(g{ } Anpeman(f)dv + An_m(f)}.

my
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Further,
(m]-1 k+1
f Ap—man(fldv < f Ancmin(Ddv < Y [ Ancmpu(fdv.
k=1 &
Consequently,
[m]-1
“Tn,m” <K, E An—m+k(f),
k=0

which leads to (6), immediately.
3. Main result
Suppose that f € Wl N W2, A,(f)-< oo for ¢ > 0, limy—e0 As(f) =0

THEOREM . If 0 < m < n < 0o then

(n]
(7) Wamlfll < K Y Sozmteld)

v=0

Proof. When 0<n <1,
| 153071 flad]| € Krdnowm(r)

Indeed, given any £ > 0 there is an entire function F € E,_,, such that

“f - F” < An-m(f) + €.
Thus, by Lemma 1 and Lemma 2’ of [3, Sec. 3],

J 15:£1(=) — f(z)ldx
[

mn—

Sx[f = F(z) + F(z) - f(=)|dA

n—

< Km{An_n(f)+c}log 2;"
+ m|F(z) - f(z)| for a.e.z € R.

Consequently,
r 2
| [ 15,0 - £1dA]| < KmAn-m(£)10g = + An-m(f) < KiAn-m(1),

and the estimate (7) follows.
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In case n > 1 we construct, similarly to [2, p. 34, a finite sequence {n;}
of positive numbers ng = n,n; > ng,... Namely, assuming that n, < 2n, we
define n,4; as follows. Denote by v, the smallest non-negative integer such
that

(8) An,-—m+u, (f) S %An,—m(f)

and set

n,+vs ifm<vs<2n+m-—ng,

2n+m ifv, 2> 2n+ m—n,.
When ns41 < 2n we continue the procedure; in case n,4; > 2n we stop the
construction and define ¢ := s + 1.

ns+m ifv, <m,
Nsp1 =

Clearly,
9) n=ng<ny<...<ny, 2n<n;<2n+m
and ngyy — ns > mifor s=0,1,...,t— 1. By (8),
(10) Ampprem(f) < %An,_m(f) for s =0,1,...,t—2.
Moreover, if ng41 —ns > m (0 < s <t - 1) then
1
(11) '2_An, —m(f) S An,.“—m—l(f)
(see [2, p. 35)).
Since
t-1
Vam = E{Vn,,m - Vn.+1,m} + Vaymo
s=0 .
we have
t-1
“Vn,m” < Z ”Vn.,m - Vn.+1,m“ + ”Vnnm“-
s=0

In view of (2) and (9),

dn +2
Vaorll < K Any—m(£)10g 22 < K App—m(f) log 222
m m
2[n}+1
2[n]+m+2 , 1
< ———— < 2KAy_n
< 2K Agn—m(f)log — < 2K Agn—m(f) go —
S Cn Anms s (f)
S 4I(An—m+[n](f) E m+ v S 4K Z '—Tn—_‘:—y—
v=0 v=0
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Putting A; = [ns41 — n,), we observe that

(12)  [[Vipyaim = n,m||<1r§j Anmtd]) por g = 0,1, 0

Indeed, if n;y; — n; = m then
1

Vn,+1,m —Va,m = Va,4mm — Vo, m = ;n""n,.m-

Hence, by Proposition,

‘¥ & Ay
R S
In case ng4; —ns > m, Lemma 1 and (11) yield
2(ns41 — 7ms)

||Vns+1 m Vn: 1m” S KA“.! "m(f) log

< KAp, —m( f)% if A, =0,

m

and

“Vns+1 m ,171." < 4I(A"s+l"'m l(f) z

m+v

< 8K Z "*‘"‘*”(f) if A, > 1.

Thus (12) holds.
In view of (12),

1013

1.

t—1 t-1 2, N (f)
Z ”Vns+17m - ns m” < I Z E 'm + v
s=0 s=0 v=0
Since A ;< nsp1—n; <2n+m-n=n+mfors=0,1,...,t ~ 1, we get
[n+m] 1
22 < Z m+ v Z An.—m+u(f)'
v=0 A2

Let p = min{s : A\; > v}. Then
Z An,—m+v(f) = An,—m+u(f) + Z Aﬂ. —m+u(f)

s A, 2V s2p+1l: A, >v



1014 R. Taberski

and, by (10),
Z . An, —m+u(f) < Z An.,—m(f) < 2An,+1—m(f)

$2p+1:, >v s2p+1
< 2An,+v-m(f) < 2An—m+u(f)-

Consequently,
[n+m] 1
2:2 < —_— 3An—m+u(f)
om +v
[n] [27]
An—m u(f)
<3(Y4 Y )Anomrdl)
(V=0 = ) m+v
[n]
n-—m+u(f)
<6 Z iy
Thus

4 [n]
Waonll < Ky 3 22zmtdl) 4 g, 3 Anomtel ),

m+v
v=0 v=0
and the proof of (7) is complete.

Remark. In case A¢(f) < oo, Theorem also holds when 0 < m =
n < 00.
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